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Abstract

There exist several approaches for deriving a common set of weights in data envelopment analysis
(DEA) literature. However, most of these approaches are based on complicated models. In this paper,
a new practical approach is proposed to provide a common set of weights. The results of the new
approach are compared with some of the existing models through several numerical examples.
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1 Introduction

D
ata envelopment analysis (DEA) is a non-
parametric technique to evaluate the effi-

ciency and rank a set of DMUs that are com-
parable in terms of multiple inputs and outputs.
DEA introduced by Charnes et al.[3] and devel-
oped rapidly so that this approach is one of the
powerful tools in operations research and man-
agement science. Some of the application ar-
eas that DEA has been used more frequently are
banking, health care, agriculture and farm, trans-
portation, and education [20].
The efficiency measure of a DMU is defined as
the ratio of a weighted sum of its outputs to a
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weighted sum of its inputs. The traditional DEA
models allow each DMU to choose a set of favor-
able weights for inputs and outputs so that its
maximum efficiency is attained. As a strength,
this approach provides an opportunity for DMUs
to show their performance at the highest possible
level. However, this is a weakness as well because
evaluation based on different weights may be un-
acceptable for all decision-makers. Further, it can
decrease the discrimination between DMUs be-
cause several DMUs may be identified as efficient.
The developments in the DEA context for dealing
with the problems caused by dissimilar weights
can be divided into three parts: cross efficiency
[8, 24], weights restrictions [4, 29], and common
weights [6, 22]. In cross efficiency, in addition
to evaluation by its favorable weights, each DMU
also is evaluated by the favorable weights of other
DMUs, and then an average score is assigned to it.
Weights restriction is an auxiliary approach that
can be used to prevent an unreasonable weights
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assignment, since some DMUs may be efficient
with an unrealistic set of weights. The common
weights approach was developed to evaluate the
efficiency of DMUs in a common framework. The
topic that we want to pursue here is the latter,
i.e., the common weights approach.
Common weights approach first proposed by
Cook et al. [6] and Roll et al. [22] in which
they imposed some bounds on weights and tried
to reduce the variations of weights assigned to in-
puts and outputs among various DMUs. Sinuany-
Stern et al. [26] and Sinuany-Stern and Fried-
man [27] proposed some discriminant analysis ap-
proaches to find a common set of weights to rank
DMUs. Friedman and Sinuany-Stern [12] pro-
posed a canonical correlation analysis approach
in which a common set of weights is found for all
DMUs in such a way that the coefficient of cor-
relation between the vector of the weighted sum
of the inputs and the vector of the weighted sum
of the outputs of all DMUs is maximized. Kao
and Hung [15] proposed a compromise solution
approach to provide a common set of weights for
all DMUs. They used the DEA efficiency results
as an ideal solution and tried to find a common
set of weights such that the new efficiency vector
is as close as possible to this ideal solution. Cook
and Zhu [7] proposed a nonlinear programming
common weights approach for analysis of power
plant efficiency for clustered power units. Jahan-
shahloo et al. [13] proposed a nonlinear model to
provide a common set of weights to rank DMUs.
Note that nonlinear models need some compu-
tational considerations, such as searching for a
global optimal solution and dealing with alterna-
tive optimal solutions. Liu and Peng [19] pro-
vided a comprehensive analysis to rank efficient
DMUs with common weights in which the effi-
ciency score 1 is set as a benchmark level to find
a set of weights that shows the efficiency of the
group of efficient DMUs as close as possible to
this benchmark level. Jahanshahloo et al. [14]
proposed an approach to obtain a common set of
weights by comparing the efficient DMUs with an
ideal line and a special line. Zohrehbandian et al.
[36] proposed an improvement to models of Kao
and Hung [15] in such a way that, in some cases,
the models are linear. Wang et al. [32] proposed
a new approach based on regression analysis to

find a common set of weights in which the effi-
ciencies determined by common weights are fit-
ted to the traditional CCR efficiencies. Chiang
et al. [5] proposed a new approach to obtain a
common set of weights using a multiple objective
fractional linear programming model, including
the efficiency ratios as objectives. They converted
the proposed multiple objective fractional linear
programming model into a linear one using a sep-
aration vector. Ramón et al. [23] proposed an
approach for deriving a set of common weights
that is the most similar to the profiles of weights
of the efficient DMUs. Sun et al. [28], consid-
ering ideal and anti-ideal DMU, proposed two
models for generating common weights in order
to compare the efficiency scores of DMUs from
two different perspectives. Khalili-Damghani and
Fadaei [18] proposed an alternative approach re-
lated to the use of ideal and anti-ideal DMU to
producing a common set of weights. Ramezani-
Tarkhorani et al. [21] demonstrated the existence
of alternative optimal solutions in Liu and Peng’s
approach [19] and proposed a lexicographic model
to find a unique optimal solution. Wu et al. [34]
introduced the concept of satisfaction degree of
a DMU related to a common set of weights and
proposed a nonlinear model to find a common set
of weights that maximizes the minimum level of
the satisfaction degree of all DMUs. They also
proposed two algorithms to find a unique opti-
mal solution for the nonlinear model. Yekta et
al. [35] proposed a model that, besides provid-
ing a common set of positive weights to evaluate
DMUs, tried to reduce weights dissimilarity.
Some other researchers used common weights to
identify the most efficient DMU. Among them,
we can refer to Karsak and Ahiska [16, 17], For-
oughi [9, 10, 11], Wang and Jiang [33], and Toloo
[30, 31].
One of the other approaches that have been de-
veloped to rank DMUs is the super-efficiency
method introduced by Andersen and Petersen [2].
This approach evaluates each DMU based on a re-
duced production possibility set obtained by re-
moving the DMU under assessment from the set
of DMUs. Note that this approach does not con-
sider the problems related to dissimilar weights.
In this paper, we propose a new approach in
which the common set of weights is obtained us-
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ing a linear programming model. The purpose
of the model is to find a common weights hyper-
plane that is as close as possible to the parts of
the efficient frontier that include the projection
points of DMUs. In spite of the simplicity, the
model contains significant information that helps
to produce a reasonable common framework for
evaluation of the DMUs.
The rest of the paper is organized as follows. In
the next section, we present some preliminaries.
Section 3 presents the new common weights ap-
proach. In section 4, we provide some numerical
examples and discussions related to the applica-
bility of the new approach. Section 5 concludes
the paper.

2 Preliminaries

Consider a set of n DMUs to be evaluated. Sup-
pose that each DMU uses m inputs to produce
s outputs. Let the input and output vectors
of DMU j (j = 1, . . . , n) be (x1j , . . . , xmj)

t and
(y1j , . . . , ysj)

t, respectively. The CCR model for
measuring the efficiency of DMU o (o = 1, . . . , n),
as proposed by Chernes et al. [3], is as follows:

max θo =

s∑
r=1

uryro

s∑
r=1

vixio

s.t.

s∑
r=1

uryrj

m∑
i=1

vixij

≤ 1 j = 1, . . . , n

vi ≥ 0 i = 1, . . . ,m
ur ≥ 0 r = 1, . . . , s

(2.1)

In this model, vi (i = 1, . . . ,m) and ur (r =
1, . . . , s) are the weights of inputs and outputs,
respectively. The optimal value of the objective
function is called the CCR efficiency of DMU o,
which is obviously less than or equal to 1. DMU
o is known as efficient if its efficiency value is
1. Otherwise, it is inefficient. The fractional
programming problem (2.1) can be converted to
the following linear program, namely, the input-
oriented CCR model:

max θo =
s∑

r=1
uryro

s.t.
m∑
i=1

vixio = 1

s∑
r=1

uryrj −
m∑
i=1

vixij ≤ 0

j = 1, . . . , n
vi ≥ 0 i = 1, . . . ,m
ur ≥ 0 r = 1, . . . , s

(2.2)

This model is solved for each DMU separately,
and the optimal weights may be different across
DMUs. Indeed, this model finds a set of fa-
vorable weights that are specific to DMU un-
der evaluation and often these weights exhibit
worse efficiency scores for other DMUs than by
their own optimal weights when they are under
evaluation. This may cause some discordance
among decision-makers since the evaluation is not
based on a common framework. Another issue
that arises from choosing weights individually by
DMUs is that several DMUs may become effi-
cient. In this situation, we cannot provide a rank-
ing of DMUs. These issues create motivation for
searching for a common set of weights.
Wang et al. [32] proposed two common weights
models based on regression analysis as follow:

min
n∑

j=1

(
θ∗j −

s∑
r=1

uryrj/
m∑
i=1

vixij

)2

s.t. vi ≥ 0 i = 1, . . . ,m
ur ≥ 0 r = 1, . . . , s

(2.3)

min
n∑

j=1
(

s∑
r=1

uryrj − θ∗j
m∑
i=1

vixij)
2

s.t.
s∑

r=1
ur(

n∑
j=1

yrj) +
m∑
i=1

vi(
n∑

j=1
xij) = n

vi ≥ 0 i = 1, . . . ,m
ur ≥ 0 r = 1, . . . , s

(2.4)
Here, θ∗j is the CCR efficiency of DMU j (j =
1, . . . , n). The common weights efficiency is ob-

tained for each DMU as θ̄j =
s∑

r=1
u∗ryrj/

m∑
i=1

v∗i xij ,

where (v∗1, . . . , v
∗
m;u∗1, . . . , u

∗
s) is an optimal solu-

tion of the corresponding model.
Model (2.3) is a direct fitting to the CCR ef-

ficiencies, while model (2.4) is an alternative re-
gression model to indirect fitting. The optimal
solutions of these models are not necessarily iden-
tical. Note that, these models are nonlinear and
need special optimization software packages.
In the next section, we present our common
weights approach. The proposed model is a lin-
ear programming model that tries to minimize
the difference in common weights efficiencies and
CCR efficiencies of all DMUs. The new model
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Table 1: Data and results of the new common weights approach (Example 4.1)

DMU x1 x2 y CCR efficiency CW efficiency Rank

A 2 5 1 1.0000 0.6617 7
B 3 2.5 1 1.0000 1.0409 1
C 4.2 3.2 1 0.7702 0.7895 4
D 5 2.2 1 1.0000 0.9197 2
E 4 4 1 0.7143 0.6873 6
F 5.5 3 1 0.7712 0.7421 5
G 4 2.6 1 0.9219 0.9180 3

Table 2: Data for 12 DMUs, two inputs (x1 and x2), and four outputs (y1, y2, y3, and y4) along with CCR
efficiencies (Example 4.2)

DMU x1 x2 y1 y2 y3 y4 CCR Efficiency.

1 17.02 5.0 42 45.3 14.2 30.1 1
2 16.46 4.5 39 40.1 13 29.8 1
3 11.76 6.0 26 39.6 13.8 24.5 0.9824
4 10.52 4.0 22 36.0 11.3 25.0 1
5 9.50 3.8 21 34.2 12 20.4 1
6 4.79 5.4 10 20.1 5 16.5 1
7 6.21 6.2 14 26.5 7 19.7 1
8 11.12 6.0 25 35.9 9 24.7 0.9614
9 3.67 8.0 4 17.4 0.1 18.1 1
10 8.93 7.0 16 34.3 6.5 20.6 0.9536
11 17.74 7.1 43 45.6 14 31.1 0.9831
12 14.85 6.2 27 38.7 13.8 25.4 0.8012

Table 3: The results of different models and the new approach

DMU Agg.a rank Benev.b rank Model (2.3) rank Model (2.4) rank CWknc rank

1 0.8483 2 0.9550 5 0.9866 5 1.0071 4 0.9922 6
2 0.8391 4 0.9355 6 0.9708 7 0.9784 8 0.9547 8
3 0.7767 5 0.9245 8 0.9633 8 0.9798 7 1.0080 5
4 0.8441 3 0.9812 2 1.0264 3 1.0009 5 1.0248 4
5 0.8668 1 0.9770 3 1.0085 4 1.0100 3 1.0588 2
6 0.7273 8 0.9556 4 1.0655 2 1.0684 2 1.0355 3
7 0.7581 6 0.9879 1 1.0818 1 1.0973 1 1.0814 1
8 0.7243 9 0.9308 7 0.9862 6 0.9974 6 0.9820 7
9 0.5638 12 0.7487 12 0.9390 10 0.9048 10 0.7845 12
10 0.6178 11 0.8147 10 0.8752 11 0.8858 11 0.8949 10
11 0.7472 7 0.9077 9 0.9460 9 0.9769 9 0.9516 9
12 0.6675 10 0.7734 11 0.8042 12 0.8076 12 0.8260 11

a Aggressive model
b Benevolent model
c New common weights model

aims to produce a common weights hyperplane
that nearly passes through a part of the produc-
tion possibility set that contains the more number
of the projection points of DMUs.



M. J. Rezaeiani et al., /IJIM Vol. 13, No. 2 (2021) 135-144 139

Table 4: The correlation coefficient between the results of the new common weights approach and other models

Aggressive Benevolent Model (2.3) Model (2.4) CW

Aggressive 1 0.7273 0.5874 0.6014 0.6713
Benevolent 1 0.9510 0.9510 0.9301
Model (2.3) 1 0.9720 0.9161
Model (2.4) 1 0.9371
CW 1

3 The new common weights ap-
proach

Let the set of efficient and inefficient DMUs iden-
tified by model (2.2) be E and Ec, respectively,
with Ec ̸= ∅. We propose the following minimax
model to determine a common set of weights:

min ∆

s.t. ∆ ≥
s∑

r=1
uryrj − θ∗j

m∑
i=1

vixij j ∈ E

∆ ≥ θ∗j
m∑
i=1

vixij −
s∑

r=1
uryrj j ∈ Ec

vi ≥ ε i = 1, . . . ,m
ur ≥ ε r = 1, . . . , s

(3.5)
Here, ε is a small positive non-Archimedean ele-
ment imposed to provide positive weights. Based
on an optimal solution (v∗1, . . . , v

∗
m;u∗1, . . . , u

∗
s)

of the model, the common weights efficiency of
DMU o (o = 1, . . . , n) is obtained as θ̂o =
s∑

r=1
u∗ryro/

m∑
i=1

v∗i xio.

Note that (θ∗jx1j , . . . , θ
∗
jxmj ; y1j , . . . , ysj)

t is the
radial projection of DMU j onto the efficient fron-
tier of the CCR model. However, for an efficient
DMU j, θ∗j = 1, and this projection point is just
itself. Defining x̂ij = θ∗jxij (i = 1, . . . ,m) for
all j, we can rewrite model (3.5) as the following
model:

min ∆

s.t. ∆ ≥
s∑

r=1
uryrj −

m∑
i=1

vix̂ij j ∈ E

∆ ≥
m∑
i=1

vix̂ij −
s∑

r=1
uryrj j ∈ Ec

vi ≥ ε i = 1, . . . ,m
ur ≥ ε r = 1, . . . , s

(3.6)

The first set of constraints related to the efficient
DMUs allows some efficient DMUs to have an ef-

ficiency score greater than or equal to one. This
is a result of the following theorems.

Theorem 3.1. The optimal objective function
value of model (3.6) is nonnegative.

Proof. Suppose, on the contrary, that the op-
timal value of ∆, i.e., ∆∗, is negative. Hence, we
must have:

s∑
r=1

u∗ryrj −
m∑
i=1

v∗i xij < 0 (j ∈ E)

s∑
r=1

u∗ryrj −
m∑
i=1

v∗i x̂ij > 0 (j ∈ Ec).

We show that this is a contradiction. Suppose
that j ∈ Ec. The dual problem of model (2.2)
for evaluating DMU j is as follows:

min θj

s.t.
n∑

k=1

λkxik + s−i = θjxij i = 1, . . . ,m

n∑
k=1

λkyrk − s+r = yrj r = 1, . . . , s

λk ≥ 0 k = 1, . . . , n
s−i ≥ 0 i = 1, . . . ,m
s+r ≥ 0 r = 1, . . . , s

(3.7)
As we know, at optimality of this model for k ∈
Ec we have λ∗

k = 0. Hence we have:

∑
k∈E

λ∗
kxik + s−i

∗
= θ∗jxij (i = 1, . . . ,m)∑

k∈E
λ∗
kyrk − s+r

∗
= yrj (r = 1, . . . , s).

Considering the inequality
s∑

r=1
u∗ryrj −

m∑
i=1

v∗i x̂ij >
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0 and x̂ij = θ∗jxij for j ∈ Ec, we have:

s∑
r=1

u∗r(
∑
k∈E

λ∗
kyrk − s+r

∗
)

−
m∑
i=1

v∗i (
∑
k∈E

λ∗
kxik + s−r

∗
) > 0.

Applying some settings, we have:

∑
k∈E

λ∗
k(

s∑
r=1

u∗ryrk −
m∑
i=1

v∗i xik)

>

s∑
r=1

u∗rs
+
r
∗
+

m∑
i=1

v∗i s
−
i
∗
.

The right-hand side of this inequality is nonneg-
ative. This contradicts the inequalities at the be-
ginning of the proof. Therefore, the optimal value
of the objective function is nonnegative.

Theorem 3.2. The common weights efficiency
for at least one efficient DMU is greater than or
equal to one.

Proof. We prove that at least one of the
constraints related to efficient DMUs is active at
optimality in model (3.6). The dual problem of
model (3.6) is as follows:

max ε(
m∑
i=1

s−i +
s∑

r=1
s+r )

s.t.
∑
j∈E

λj x̂ij + s−i =
∑

j∈Ec

λj x̂ij

i = 1, . . . ,m∑
j∈E

λjyrj − s+r =
∑

j∈Ec

λjyrj

r = 1, . . . , s∑
j∈E

λj +
∑

j∈Ec

λj = 1

λj ≥ 0 j = 1, . . . , n
s−i ≥ 0 i = 1, . . . ,m
s+r ≥ 0 r = 1, . . . , s

(3.8)

Clearly, the constraint
∑
j∈E

λj +
∑

j∈Ec

λj = 1 im-

plies that at least one λj is positive. Considering
the first set of constraints in model (3.8), we
can conclude that at least for one j ∈ Ec, λj

is positive. Now, the second set of constraints
implies that for at least one j ∈ E also λj

is positive. According to the complementary
slackness condition, at optimality in model

(3.6), at least one of the constraints related to
efficient DMUs is active. This means that for

some j ∈ E we have
s∑

r=1
u∗ryrj −

m∑
i=1

v∗i x̂ij ≥ 0 or

equivalently
s∑

r=1
u∗ryrj −

m∑
i=1

v∗i xij ≥ 0. Hence, we

have
s∑

r=1
u∗ryrj/

m∑
i=1

v∗i xij ≥ 1.

Note that Wang et al. [32] proved that in
the case of a single input and a single output,
their models could generate a common set of
weights that perfectly fit the CCR efficiencies.
The same result exists for our approach, as it is
proved in the following theorem.

Theorem 3.3. In the case of a single input and
a single output, the new common weights efficien-
cies are just the CCR efficiencies.

Proof. In the case of a single input and a sin-
gle output, the efficient frontier is a line passing
through the efficient DMUs, and the projection
points all lie on this line. Hence, there are positive
multipliers v̄1 and ū1 such that ū1y1j − v̄1x̂1j = 0
(j = 1, . . . , n). It follows that ∆∗ = 0 is the opti-
mal value of ∆. Now, we have:

θ̂j =
ū1y1j
v̄1x1j

=
ū1y1j

v̄1(x̂1j/θ∗j )
=

θ∗j ū1y1j

v̄1x̂1j
= θ∗j .

Hence, the proof is complete.
Note that we can replace ε with any positive

real number without any changes in efficiency val-
ues. In fact, the optimal solutions of models (3.5)
and (3.6) can be obtained easily by setting ε = 1
and then multiplying the solutions obtained by ε.
It is to be noted that model (3.5) is not an L∞-
norm version of model (2.4), because the con-
straints here are as simple inequalities, while in an
L∞-norm version of model (2.4), the constraints
are as absolute value inequalities or double con-

straints, e.g., −∆ ≤
s∑

r=1
uryrj − θ∗j

m∑
i=1

vixij ≤ ∆

(j = 1, . . . , n). Further, there is no sufficient rea-
son to impose a normalization constraint such as
s∑

r=1
ur(

n∑
j=1

yrj) +
m∑
i=1

vi(
n∑

j=1
xij) = n.

An advantage of the new approach over the
other approaches to determining a common set
of weights is that the new approach uses a lin-
ear programming model while other approaches
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mostly use nonlinear programming.
The next section presents some numerical exam-
ples and analytical discussions on the results of
the new approach and comparisons with other ap-
proaches.

4 Numerical examples

In this section, two numerical examples are pro-
vided to assess the capability of the new ap-
proach. The first example considers the treat-
ment of the new approach with situations in
which some DMUs use the proportion of the re-
sources in contrast to the majority of the DMUs.
The second example is a real data application.

Example 4.1. Consider the data for seven
DMUs with two inputs and one output as pre-
sented in table 1. Figure 1 shows DMUs in the in-
put space. It is easily seen that DMUs A, B and D
are CCR efficient. The optimal common weights
by setting ε = 1 are v∗1 = 1.0000, v∗2 = 2.5481
and u∗ = 9.7539. The common weights hyper-
plane in the input space is a line by equation
x1 + 2.5481x2 = 9.7539 as depicted in the fig-
ure. The CCR efficiency scores and the new com-
mon weights efficiency scores (indicated here by
CW) are respectively presented in the fifth and
sixth columns of table 1. The point that is no-
table here, is that DMU A has been received a low
efficiency score by the common weights approach.
This is a usual issue, because most of the pro-
jection points of DMUs lie on the line segment
BD of the efficient frontier and hence the com-
mon weights line is closer to this line segment. In
fact, using simple (not double) constraints asso-
ciated to the efficient DMUs in models (3.5) and
(3.6) prevents DMUs like A from influencing the
results. The other point that we may state is that
DMU A has been used the input resources with a
different proportion than the other DMUs. The
favorable weights that may cause DMU A to be
efficient are highly unfavorable to other DMUs.
The common weights approaches usually penalize
such DMUs. It is noted by Ahn et al. [1] that
DMUs like A are unbalanced and should not be
considered as the reference for other DMUs.

Example 4.2. Table 2 presents the data related
to 12 flexible manufacturing systems (FMSs) with

..
x1

.

x2

.

⋆

.

⋆

.

⋆

.

⋆

.

⋆

.

⋆

.

⋆

Figure 1: DMUs and the common weights hyper-
plane in the inputs space (star shapes represent the
projection points of DMUs onto the efficient frontier)

two inputs and four outputs. These data are taken
from Shang and Sueyoshi [25] and have been used
by some other researchers, e.g., Wang et al. [32]
and Sun et al. [28]. The inputs and outputs, re-
spectively, are:
x1: Annual operating and depreciation costs (one
hundred thousand dollars)
x2: The floor space requirements of each specific
system (thousands of square feet)
y1: The improvements in qualitative benefits
y2: WIP
y3: Average number of tardy jobs
y4: Average yield
Seven of the DMUs (FMSs) are CCR efficient,
as it is seen from the last column of table 2.
The results of aggressive and benevolent cross-
efficiency of Doyle and Green [8], regression mod-
els of Wang et al. [32] (models (2.3) and (2.4))
and the new common weights approach (CW) are
presented in table 3 for comparison. Except for
the aggressive cross efficiency model, the other
models rank DMU 7 in the first place. Table
4 shows the Spearman’s rank correlation coeffi-
cient between different models given by the for-

mula ρA,B = 1 − 6
∑n

j=1 (r
A
j −rBj )

2

n(n2−1)
, where rAj and

rBj are the ranks of DMU j with the ranking ap-
proaches A and B respectively. As it is seen, the
correlation coefficient between the new common
weights approach and other approaches is consid-
erable.
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5 Conclusion

The traditional data envelopment analysis models
evaluate each decision-making unit by its own fa-
vorable weights. Sometimes the favorable weights
of a DMU are highly unfavorable to other DMUs.
This can make some discordance among decision-
makers. Evaluating decision-making units based
on a common set of weights is an important con-
cern in data envelopment analysis. In this paper,
we have proposed a new approach based on lin-
ear programming to find a common set of weights
that define a hyperplane that is as close as pos-
sible to the parts of the efficient frontier where
a larger number of projection points of DMUs
accumulate. This is a meaningful idea because
the projection points are lied on faces of the pro-
duction possibility set that are used to evaluate
DMUs. The validity of the new approach has
been tested with numerical examples and an il-
lustration. The examples have showed a high cor-
relation between the results of the new approach
and other existing approaches. However, the new
approach needs less computational effort.
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