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Abstract

In this paper, two adaptive methods with memory are improved based on the Cordero-Torregrosa
method. The technique of adaptive method increases the efficiency index as high as possible. The
new proposed derivative free methods have possessed the convergence order 7.46315 and 7.99315, and
they use the information from the last two iterations. Finally, we provide convergence analysis and
numerical examples to illustrate the efficiency and applicability of the proposed methods.
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1 Introduction

F
inding the solution of nonlinear equation
f(x) = 0, where f : D ⊂ R −→ R which

is a scalar function at an open interval, is
important and challenging a problem in the field
of computational mathematics. To approximate
the simple root of f(x) = 0, it is appropriate
to use iterative methods where it starts with
initial guess x0 and conjectures by generating
new iterations, for example 1, xn+1 = φ(xn).
The first well- known iterative method was
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introduced by the Newton about 300 years ago
and it is defined as

xn+1 = xn − f(xn)

f ′(xn)
,

and continued with new published methods [1,
9, 13, 14, 15, 16, 17, 18]. Kung and Traub in
[5] proposed the following method with memory
based on the Newton method:

wn = xn + γf(xn),

γ = − 1

f [xn, xn−1]
,

xn+1 = xn − f (xn)

f [xn, wn]
, n = 0, 1, 2, · · ·

(1.1)
with the order of convergence 2.414, where

f [xn, wn] =
f(xn)− f(wn)

xn − wn
signies a divided dif-

ference. Kung and Traub proposed that each
n-step method without memory is optimal if it
uses n + 1 functional evaluations with conver-
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gence order 2n [5]. According to this conjec-
ture, there have been many efforts to construct
such optimal methods without memory. Certain
authors used the Newtons interpolation polyno-
mial to construct the self-accelerating parameter
and gave some effective iterative methods with
memory [4, 12, 15]. The acceleration in conver-
gence is based on the utilizing of a variation of at
least one free non-zero parameter in each iterative
step. This parameter is calculated using infor-
mation from the current and previous iterations.
Despite many successful and genuine attempts
in developing methods with memory, a motiva-
tion for studying adaptive method with memory
is needed. Previous scientists just use the infor-
mation of the current and the previous iterations
while it is possible to reuse all the information of
the previous iterations to increase the efficiency
as high as possible. In this paper, two adap-
tive methods have been introduced based on the
Cordero-Torregrosa method with high-efficiency
index.

This paper is organized as follows: In Section 2,
based on the Cordero-Torregrosa method [1], an
optimal fourth-order method is proposed for solv-
ing nonlinear equations, then two iterative meth-
ods with memory are constructed two adaptive
methods. Using the new technique, the new it-
erative methods with memory reach the desired
convergence order. Numerical examples are given
in Section 3 to display the implementation of the
new method, which confirms the theoretical re-
sults. Section 4 is tendered a short conclusion.

2 The method and analysis of
convergence

In this section, we consider the following two-step
method without memory that is kind of Cordero-
Torregrosa method [1],

wn = xn + γf(xn),

yn = xn − f(xn)

f [xn, wn]
,

xn+1 = yn − f(yn)f [xn, wn]

f [xn, yn]f [yn, wn]
,

n = 0, 1, 2, . . .

(2.2)

when x0 is given. This method is optimal with
convergence order four that uses three functional

evaluations.

Theorem 2.1. Method (2.2) has convergence or-
der four if x0 is close enough to the zero. It’s
error equation is

en+1 = (1 + f ′(α)γ)2c2(2c
2
2 − c3)e

4
n +O(e5n).

Proof. Instead of involving reporting some al-
gebraic expressions, we prefer to present the
prove according to implementation in mathemat-
ica. The commands are self-explained and simple
to understand, so we neglect to decipher them.

f[e ] = f1a ∗

(
e+

4∑
i=2

ci ∗ ei
)
;

ew =γ ∗ f [e] + e;

f[x ,x ] := f ′[x];

f[x ,y ] := (f [x]− f [y])/(x− y);

In[1] := ey = Series

[
e− f [e]

f [e, ew]
, {e, 0, 4}

]
//FullSimplify (∗First step∗)

Out[1] = c2(γf1a + 1)e2

+
(
c22(−('f1a('f1a + 2) + 2))

+ c3 + (γf1a + 1)(γf1a + 2)e3

+
(
c32('f1a('f1a('f1a + 3) + 5) + 4)

− c2c3(γf1a(γf1a(2γf1a + 7) + 10) + 7)

+c4 + ('f1a + 1)('f1a('f1a + 3) + 3)e4 +O[e]5

In[2] := ez =
f [ew]f [ey]

(f [ew]− f [ey)]f [e, ey]

//FullSimplify (∗Second step∗)
Out[2] = (1 + γf1a)2c2

(
2c22 − c3

)
e4 +O[e]5.

This completes our proof.

To develop a method with memory, it is nec-
essary to introduce a parameter that can be ap-
proximated as the procedure follows, so we mod-
ify Method (2.2) as follows:

wn = xn + γf(xn)

yn = xn − f(xn)

f [xn, wn] + βf(wn)
,

xn+1 = yn − f(yn)f [xn, wn]

f [xn, yn]f [yn, wn]
,

n = 0, 1, 2, . . . ,

(2.3)
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Table 1: Numerical results for f1(x) by the methods with memory

Methods |x1 − α| |x2 − α| |x3 − α| rc EI

Method (3.27) with (3.28) 0.9027(-3) 0.1827(-10) 0.7583(-41) 3.9489 1.5806
Method (3.27) with (3.29) 0.9027(-3) 0.1787(-10) 0.6924(-41) 4.1477 1.6067
Method (3.27) with (3.30) 0.9027(-3) 0.4948(-13) 0.4048(-51) 3.9116 1.5756
Method (3.27) with (3.31) 0.9027(-3) 0.3226(-10) 0.1607(-85) 3.9783 1.5845
Method (3.32) 0.2415 0.6840(-2) 0.7002(-3) 6.4360 1.8601
Method (2.4) 0.1501(-2) 0.3601(-19) 0.2462(-129) 7.0001 1.9129
Method (2.15) 0.1501(-2) 0.3781(-19) 0.7333(-129) 7.5234 1.9594

Table 2: Numerical results for f2(x) by the methods with memory

Methods |x1 − α| |x2 − α| |x3 − α| rc EI

Method (3.27) with (3.28) 0.1284(-1) 0.6392(-6) 0.2098(-22) 3.9306 1.5781
Method (3.27) with (3.29) 0.1288(-6) 0.6157(-6) 0.1592(-22) 4.1242 1.6036
Method (3.27) with (3.30) 0.1284(-1) 0.3521(-7) 0.1663(-27) 4.2464 1.6193
Method (3.27) with (3.31) 0.1616(-1) 0.1044(-7) 0.4112(-37) 4.4466 1.6444
Method (3.32) 0.2415 0.6840(-2) 0.7002(-3) 6.3360 1.8504
Method (2.4) 0.1181(-1) 0.8712(-64) 0.3771(-447) 7.3223 1.9418
Method (2.15) 0.1182(-1) 0.5791(-10) 0.1491(-63) 7.7432 1.9783

By adding the parameter β in the method (2.2)
remains optimal with following error equation.

Theorem 2.2. The error equation of method
(2.3) is given by

en+1 =(1 + f ′(α)γ)2(β + c2)

(c2(β + 2c2)− c3)e
4
n +O(e5n).

To derive a method with memory, we sup-

pose that γ = − 1

f ′(α)
≈ −1

N ′
3(xk)

and

β = −c2 = − f ′′(α)

2f ′(α)
≈ − N ′′

4 (wk)

2N ′
4(wk)

,

where N3(xk) and N4(wk) are Newton’s in-
terpolating polynomials of two and third de-
gree on the nodes (xk, yk−1, xk−1, wk−1) and
(xk, wk, yk−1, xk−1, wk−1), respectively.

Here we affirmative that albeit this method is
with memory but it is not adaptive yet. It con-
sumes information on the last two iterations. To
develop this method to an adaptive method with
memory we update γn and βn based on all the
available information from the first iteration to
the current iteration. So in each iteration, we use

the following accelerators:

γn =
−1

N ′
3n(xn)

,

βn = −
N ′′

3n+1(wn)

2N ′
3n+1(wn)

,

wn = xn + γnf(xn),

yn = xn − f(xn)

f [en, wn] + βnf(wn)
,

xn+1 = yn − f(yn)f [xn, wn]

f [xn, yn]f [yn, wn]
,

n = 0, 1, 2, . . . ,

(2.4)

where x0 and γ0 are given suitably.

Lemma 2.1. If γn =
1

N ′
3n(xn)

, and

βn =
−N ′′

3n+1(wn)

N ′
3n+1(wn)

, then

1 + γnf
′(α) ∼

n−1∏
k=0

ekek,yek,w,

c2 + βn ∼
n−1∏
k=0

ekek,yek,w, n = 1, 2, . . .

where

ek = xk − α, ek,y = yk − α, ek,w = wk − α.
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Proof. The proof is very similar to Lemma 4, [14]
and Lemma 1, [19].

The convergence order of the adaptive Method
(2.4) is given in the following theorem:

Theorem 2.3. If γn =
1

N ′
3n(xn)

and, βn =

−N ′′
3n+1(wn)

N ′
3n+1(wn)

then convergence order of method

(2.3) is obtained from solution of the following
nonlinear system of equations:

rn+1 − 3(1 + q + p)(1 + r + . . .+ rn−1)

−4rn = 0,

rnq − 2(1 + q + p)(1 + r + . . .+ rn−1)

−2rn = 0,

rnp− (1 + q + p)(1 + r + . . .+ rn−1)

−rn = 0, n = 1, 2, . . .

(2.5)

Proof. Let xn, yn and wn have convergent orders
r, p and q respectively, i.e.,

en+1 ∼ ern ∼ er
2

n−1 ∼ . . . ∼ er
n+1

0 , (2.6)

en,y ∼ eqn ∼ erqn−1 ∼ . . . ∼ er
nq

0 . (2.7)

en,w ∼ epn ∼ erpn−1 ∼ . . . ∼ er
np

0 . (2.8)

Also, considering Lemma (2.1), we have

1 + γnf
′(α) ∼

n−1∏
k=0

ekek,yek,w

= (e0e0,ye0,w)(e1e1,ye1,w) . . . (en−1en−1,yen−1,w)

= (e0e
q
0e

p
0)(e

r
0e

r
0qe

r
0p) . . . (e

r(n−1)
0 e

rq(n−1)
0 e

rp(n−1)
0 )

= e
(1+q+p)(1+r+r2+...+rn−1)
0 . (2.9)

Therefore,

en,w ∼(1 + γnf
′(α))en

=e
(1+q+p)(1+r+r2+...+rn−1)
0 er

n

0 , (2.10)

en,y ∼(1 + γnf
′(α))(c2 + β)e2n

=e
2(1+q+p)(1+r+r2+...+rn−1)
0 e2r

n

0 , (2.11)

and

en+1 ∼(1 + γnf
′(α))2(c2 + β)

(c2(β + 2c2)− c3)e
4
n

∼e
3(1+q+p)(1+r+r2+...+rn−1)
0 e4p

n

0 . (2.12)

Combining the right-hand-side (2.6)-(2.12),
(2.7)-(2.11) and (2.8)-(2.10) we have the following
system of nonlinear equations:



rn+1 − 3(1 + q + p)(1 + r + . . .+ rn−1)

−4rn = 0,

rnq − 2(1 + q + p)(1 + r + . . .+ rn−1)

−2rn = 0,

rnp− (1 + q + p)(1 + r + . . .+ rn−1)

−rn = 0

(2.13)

This complets the proof.

Remark 2.1. We have solved the nonlinear sys-
tem of equations (2.13) by varying n. If n = 1,
we use the information from the last iteration and
the convergence order is 7.0000, and for n = 2 the
convergence order is 7.40515, while if n = 3 the
convergence order is 7.45635, we use the infor-
mation from the last two iterations, and so on.

Now we consider the following two-step method
without memory by three parameters

wn = xn + γf(xn),

yn = xn − f(xn)

f [xn, wn] + βf(wn)
,

xn+1 = yn − f(yn)f [xn, wn]

b
.

n = 0, 1, 2, . . . ,

(2.14)

where
b = f [xn, yn]f [yn, wn] + λ(yn − xn)(yn − wn)
This method is optimal with convergence order 4.

Theorem 2.4. The error equation of method
(2.14) is given by

en+1 =
d

f ′(α)2
+ o(e5n).

where

d = (1 + f ′(α)γ)2(β + c2)(λ + f ′(α)2(c2(β +
2c2)− c3))e

4
n
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Table 3: Numerical results for f3(x) by the methods with memory

Methods |x1 − α| |x2 − α| |x3 − α| rc EI

Method (3.27) with (3.28) 0.1973(-1) 0.4185(-1) 0.7094(-3) 2.6296 1.3802
Method (3.27) with (3.29) 0.1973(-1) 0.2466(-1) 0.6695(-4) 2.8418 1.4164
Method (3.27) with (3.30) 0.1973(-1) 0.3578(-1) 0.5356(-5) 3.6013 1.5328
Method (3.27) with (3.31) 0.1973(-1) 0.7848(-1) 0.5077(-3) 4.3339 1.6303
Method (3.32) 0.1345 0.5325(-7) 0.1349(-51) 5.9941 1.8165
Method (2.4) 0.1921(-3) 0.5121(-22) 0.4932(-152) 7.0404 1.9166
Method (2.15) 0.1941(-3) 0.5593(-22) 0.8862(-168) 7.4334 1.9516

Table 4: Numerical results for f4(x) by the methods with memory

Methods |x1 − α| |x2 − α| |x3 − α| rc EI

Method (3.27) with (3.28) 0.1814(-1) 0.2164(-2) 0.3004(-9) 3.7760 1.5571
Method (3.27) with (3.29) 0.1814(-1) 0.5435(-2) 0.9601(-8) 4.0711 1.5965
Method (3.27) with (3.30) 0.1814(-1) 0.5592(-2) 0.3220(-8) 4.4546 1.6453
Method (3.27) with (3.31) 0.1814(-1) 0.1762(-1) 0.7697(-7) 5.29261 1.7427
Method (3.32) 0.1991 0.6470(-6) 0.5272(-44) 6.1360 1.8307
Method (2.4) 0.1441(-4) 0.1341(-34) 0.6462(-240) 7.2688 1.9371
Method (2.15) 0.1612(-2) 0.7771(-12) 0.2281(-51) 7.9733 1.9977

To derive an adaptive method with memory,

we suppose that γn = − 1

f ′(α)
≈ − 1

N ′
3n(xn)

,

βn = −c2 = − f ′′(α)

2f ′(α)
≈ −

N ′′
3n+1(wn)

2N ′
3n+1(wn)

and λn = f ′(α)c3 =
f ′′′(α)

6f ′(α)
≃

N ′′′
3n+2(yn)

6N ′
3n+2(yn)

,

where N ′
3n(xn), N ′′

3n+1(wn), and N ′′′
3n+2(yn)

are Newton ’s interpolation polynomials
around the nodes {xn, xn−1, wn−1, yn−1},
{wn, xn, xn−1, wn−1, yn−1} and
{yn, wn, xn, xn−1, wn−1, yn−1}, respectively.

So in each iteration, we use the following accel-
erators:

γn =
−1

N ′
3n(xn)

,

βn = −
N ′′

n+1(wn)

2N ′
3n+1(wn)

,

λn =
N ′′′

3n+2(yn)

6N ′
3n+2(yn)

,

wn = xn + γnf(xn),

yn = xn − f(xn)

f [en, wn] + βnf(wn)
,

xn+1 = yn − f(yn)f [xn, wn]

g
. n = 0, 1, 2, . . .

(2.15)
where

g = f [xn, yn]f [yn, wn] +λn(yn−xn)(yn−wn), x0
and γ0 are given suitably.

Lemma 2.2. If γn =
−1

N ′
3n(xn)

, βn =

−N ′′
3n+1(wn)

2N ′
3n+1(wn)

and λn =
N ′′′

3n+2(yn)

6N ′
3n+2(yn)

, then

1 + γnf
′(α) ∼

n−1∏
k=0

ekek,yek,w,

c2 + βn ∼
n−1∏
k=0

ekek,yek,w,

(λn + f ′(α)2(c2(βn + 2c2)− c3) ∼
n−1∏
k=0

ekek,yek,w.

where

ek = xk − α, ek,y = yk − α, ek,w = wk − α.

Proof. The proof is very similar to Lemma 4, [14]
and Lemma 1, [19].

The convergence order of the adaptive method
(2.15) is given in the following theorem:
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Theorem 2.5. If γn = −1
N ′

3n(xn)
,

βn =
−N ′′

3n+1(wn)

2N ′
3n+1(wn)

and λn =
N ′′′

3n+2(yn)

6N ′
3n+2(yn)

,

then convergence order of method (2.15) is ob-
tained from solution of the following nonlinear
system of equations:

rn+1 − 4(1 + q + p)(1 + r + . . .+ rn−1)

−4rn = 0,

rnq − 2(1 + q + p)(1 + r + . . .+ rn−1)

−2rn = 0,

rnp− (1 + q + p)(1 + r + . . .+ rn−1)

−rn = 0, n = 1, 2, . . .

(2.16)

Proof. Let xn, yn and wn have convergent orders
r, p and q respectively, i.e.,

en+1 ∼ ern ∼ er
2

n−1 ∼ . . . ∼ er
n+1

0 . (2.17)

en,y ∼ eqn ∼ erqn−1 ∼ . . . ∼ er
nq

0 . (2.18)

en,w ∼ epn ∼ erpn−1 ∼ . . . ∼ er
np

0 . (2.19)

Also, considering Lemma (2.2), we have

1 + γnf
′(α) ∼

n−1∏
k=0

ekek,yek,w

= (e0e0,ye0,w)(e1e1,ye1,w) . . . (en−1en−1,yen−1,w)

= (e0e
q
0e

p
0)(e

r
0e

r
0qe

r
0p) . . . (e

r(n−1)
0 e

rq(n−1)
0 e

rp(n−1)
0 )

= e
(1+q+p)(1+r+r2+...+rn−1)
0 , (2.20)

and

c2 + β ∼
n−1∏
k=0

ekek,yek,w

=e
(1+q+p)(1+r+r2+...+rn−1)
0 , (2.21)

and

λ+f ′(α)2(c2(β + 2c2)− c3) ∼
n−1∏
k=0

ekek,yek,w

=e
(1+q+p)(1+r+r2+...+rn−1)
0 . (2.22)

Therefore,

en,w ∼(1 + γnf
′(α))en

=e
(1+q+p)(1+r+r2+...+rn−1)
0 er

n

0 , (2.23)

en,y ∼(1 + γnf
′(α))(c2 + βn)e

2
n

=e
2(1+q+p)(1+r+r2+...+rn−1)
0 e2r

n

0 , (2.24)

and

en+1 ∼(1 + γnf
′(α))2(c2 + βn)

(λn + f ′(α)2(c2(βn + 2c2)− c3))e
4
n

∼e
4(1+q+p)(1+r+r2+...+rn−1)
0 e4p

n

0 . (2.25)

Incorporate the right-hand-side of the relations
(2.17)-(2.25), (2.18)-(2.24) and (2.19)-(2.23) , we
reach the following system of nonlinear equations

rn+1 − 4(1 + q + p)(1 + r + . . .+ rn−1)

−4rn = 0,

rnq − 2(1 + q + p)(1 + r + . . .+ rn−1)

−2rn = 0,

rnp− (1 + q + p)(1 + r + . . .+ rn−1)

−rn = 0

(2.26)

This complets the proof.

Remark 2.2. By solving the nonlinear system
of equations (2.26) by varying n. If n = 1, we
use the information from the last iteration and
the convergence order is 7.530 and n = 2, we use
the information from the last two iterations the
convergence order is 7.94449., while if n = 3 the
convergence order is 7.99315, and so on.

3 Numerical results and com-
parisons

In this section, the family of methods with mem-
ory (2.13) and (2.25) are tested using four exam-
ples of nonlinear equations. The errors | xk − α |
of approximations to the sought zeros, are given
in Tables where a(−b) shows a ∗ 10−b. Computa-
tional order of convergence COC, in Tables 1− 4
computed by follow expresssion [12]

rc =
log| f(xn)

f(xn−1)
|

log|f(xn−1)
f(xn−2)

|
.
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Moreover, the following test functions are used:

f1(x) = (x− 2)
(
x6 + x3 + 1

)
e(−x2),

x0 = 1.8, α = 2,

f2(x) = e(x
2−3x) sin(x) + log

(
x2 + 1

)
,

x0 = 0.35, α = 0,

f3(x) = sin(t)e(t
2+t cos(t)−1) + t log(t+ 1),

x0 = 0.6, α = 0,

f4(x) = e(t) sin(t) + log
(
t4 − 3t+ 1

)
,

x0 = 0.4, α = 0.

Also, we compare our methods to some of the
existing methods given as follows:

Example 3.1. Xiaofeng Wang method method
with order 2

√
6 ≈ 4.4495 [16]:

wn = xn + f(xn)

zn = xn − f(xn)

f [xn, wn]
,

yn = zn − λn(zn − xn)
2

1 + λn(zn − xn)
,

xn+1 = yn − f(yn)f [xn, wn]

f [xn, yn]f [yn, wn]
,

(3.27)

where

λn =
zn−1 − zn

(zn−1 − xn−1)2
. (3.28)

λn =
zn−1 − xn

(zn − xn−1)(xn − xn−1)
. (3.29)

λn =
(zn−1 − xn)(yn−1 − xn−1)

(xn − xn−1)3

×
{
2yn−1 − xn − wn−1

yn−1 − wn−1

}
+

2zn − xn − wn

(yn−1 − xn)(zn−1 − xn−1)

+
(zn − zn−1)

2(wn−1 − xn−1)

(zn−1 − xn−1)2(zn − wn−1)(wn−1 − zn−1)
,

(3.30)

λn =
(xn − zn−1)(2xn − yn−1 − zn−1)

(zn − xn−1)(zn−1 − xn−1)2

− 2zn − xn − wn

(xn − yn−1)(zn−1 − xn−1)

+
(wn−1 − yn−1)(xn − zn−1)

(xn − xn−1)(zn−1 − wn−1)(zn − xn−1)

− (zn − zn−1)
2(wn−1 − xn−1)

2

(zn−1 − wn−1)2(zn−1 − xn−1)3
. (3.31)

Example 3.2. Alicia Cordero et al. method
method with order 7 [2]:

x0, γ0, λ0 w0 = x0 + γ0f(x0),

γk = − 1

N ′
3(xk)

, λk = − N ′′
4 (wk)

2N ′
4(wk)

,

wk = xk + γkf(xk), k ⩾ 1,

yk = xk −
f(xk)

f [xk, wk] + λkf(wk)
,

xk+1 = yk −
f(yk)

f [yk, xk] + f [yk, xk, wk](yk − xk)
.

(3.32)

4 Conclusion

In this study, we introduced two adaptive meth-
ods with memory based on the variant of the
Cordero-Torregrosa method. The technique of
adaptive method uses all the available informa-
tion from the first to current iterations. Conse-
quently, it increases the efficiency index as high as
possible. The new derivative free methods have
possessed the swift convergence order 7.46315 and
7.99315, and they only use the information from
the last two iterations. Observing the tables and
examples, we found that the proposed new adap-
tive methods have higher convergence compared
to the Wang method [16] and other methods. For
the future work, similar to [6, 10], local and semi
local analysis of the proposed methods can be car-
ried out.
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