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Abstract

Dynamical systems with delay are widespread in nature. The study of time-delay induced changes
in the collective behavior of systems of coupled nonlinear oscillators is a subject of great interest,
both because of its fundamental importance from the point of view of dynamical systems and because
of its practical applications. In this paper, an explicit technique is proposed for numerical solution
of nonlocal dynamical systems with time delay. The proposed method is adopted quadratic spline
interpolation. Then, the error analysis of the developed method is discussed. It is exploited in the
discussion of nonlocal delay Ikeda and Hutchinson models. Finally, the performance of the presented
approach is verified by applying the error and convergence study for different values of fractional order
parameters.

Keywords : Fractional calculus; Fractional delay differential equation; Numerical method; Chaotic
attractor; Quadratic spline interpolation; Ikeda model; Hutchinson model.
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1 Introduction

F
ractional calculus (FC) is related to integrals

and derivatives of desired orders [11]. Over

past decades, FC has interested significant atten-

tion due to its extensive usages in a various of

fields such as bioengineering [14], signal process-

ing [21], mechanics [29], ecology [7] and physics

[26]. Furthermore, in recent years, remarkable
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contribution has been created in fractional in-

tegro or differential equations in the modeling

and numerical solutions very phenomenon for in-

stance studying of finance [19], dynamical sys-

tems [5], electrical circuit [20] and epidemic [12].

Fractional delay differential equations (FD-

DEs) are useful mathematical tools for modelling

phenomenons in very diverse fields in applied sci-

ences. The FDDEs are investigated in several

field including epidemic [13], astrophysics [23],

engineering [33]. The existence and uniqueness

theorems for FDDEs are studied in [15]. More-

over, various analysis and numerical methods for

solving different classes of FDDEs are presented

in many papers such as finite difference [16],

Chebyshev polynomials [3, 4], Hermite wavelet
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[24], Laguerre wavelet [27], reproducing kernel

[32], Jacobi collocation [1], Dickson polynomials

[22], and spline interpolations [17, 18] methods.

In this study, we inspect the following FDDE{
CDγ

0,tu(t) = G(t, u(t), u(t− λ)), t ∈ (0, T ]

u(t) = Λ(t), [−λ, 0],
(1.1)

where CDγ
0,tu(t) demonstrates Caputo fractional

derivative of γ ∈ R+ that is formularized as fol-

lows, [25],

CDγ
0,tu(t) =

1

Γ(1− γ)

∫ t

0

u′(ϕ)

(t− ϕ)γ
dϕ, (1.2)

where 0 ≤ γ ≤ 1, γ ∈ N, the unknown function,

u(t), is a continuously differentiable and a smooth

function determined on Ψ = [0, T ]. In addition,

λ represents the delay time, and the history func-

tion is stated by Λ(t) on the interval t ∈ [−λ, 0].

The structure of the rest of this discussion

is collocated as follows. In Section 2, we pro-

poses an explicit approximation manner via the

quadratic interpolation for discretizing and solv-

ing the FDDE (1.1). Moreover, we check the error

analysis of the developed approach in Section 2.

We examine the accuracy of this method consid-

ering the nonlocal Ikeda, Hutchinson and unified

chaotic systems with time delays in section 3. Fi-

nally, in Section 4, we summary the concluding

attentions.

2 Computational algorithm for
FDDE

In this section, we exhibit an explicit scheme to

solve FDDE (1.1). Furthermore, we study the

error and convergence analysis of the developed

manner. Thought the study, we presume tl = l∆,

where l ∈ {−k,−k + 1, . . . ,−1, 0, 1, . . . , ϱ}, and
∆ = ⌊Tϱ ⌋ means the uniform step size, k = ⌊ λ

∆⌋
and k, ϱ ∈ N.

Definition 2.1 ([25]). The left Riemann-

Liouville fractional integral of order γ ∈ R+, for

a function u(t) is stated as

J γ
0,tu(t) =

1

Γ(γ)

∫ t

0
u(ϕ)(t− ϕ)γ−1dϕ, (2.1)

Figure 1: Numerical results for (3.3) by the pre-
sented scheme u(t) versus t: for diverse values of γ
and δ = τ = 0.4, λ = 0.5 and ∆ = 0.05.

where t and ϕ ∈ R+ and Γ(·) explains the Gamma

function.

According to definitions (1.2) and (2.1), we ob-

tain:(
J γ
0,t

CDγ
0,t

)
u(t) = u(t)−

b−1∑
v=0

u(v)(0)tv

v!
,(

CDγ
0,tJ

γ
0,t

)
u(t) = u(t), (2.2)

for γ ∈ (b− 1, b].

Proposition 2.1. [28] Presume that u(t) ∈
C3(Ψ) be a function, γ > 0, |u′′(t)|≤ A

and |u′′′(t)|≤ B, where A,B > 0. The

approximation of the fractional-order integral,(
J γ
0,tϱ

[u(t)]
)
approx

, can be stated as

J γ
0,tϱ

[u(t)] ≈
(
J γ
0,tϱ

[u(t)]
)
approx

≡ ∆γ

Γ(γ + 2)

ϱ∑
l=0

σl,ϱul,

(2.3)

where

σl,ϱ =


βl,ϱ − δl+1,ϱ, l = 0
βl,ϱ + δl,ϱ − δl+1,ϱ, 1 ≤ l ≤ ϱ− 1
βl,ϱ + δl,ϱ, l = ϱ

,

(2.4)

such that

βl,ϱ =


(ϱ− 1)γ+1 − (ϱ)γ(ϱ− γ − 1), l = 0
(ϱ− l + 1)γ+1 − 2(ϱ− l)γ+1

+(ϱ− l − 1)γ+1, 1 ≤ l ≤ ϱ− 1
1, l = ϱ

,

(2.5)
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Figure 2: Time response (left) and phase-space solution (right) for Eq. (3.4), with γ = 0.5 (top) and γ = 0.95
(bottom), for α = 1.4 and ∆ = 0.05.

and

δl,ϱ = (ϱ− l + 1)γ+1 − (ϱ− l)γ+1

−γ+1
2

(
(ϱ− l + 1)γ + (ϱ− l)γ

)
, 1 ≤ l ≤ ϱ.

(2.6)

Further, the truncated error of relation

(2.3), Rϱ = J γ
0,tϱ

[u(t)]−
(
J γ
0,tϱ

[u(t)]
)
approx

,

is bounded, such as

|Rϱ|≤
A

8Γ(γ + 1)
∆γ+2 +

√
3B

9Γ(γ + 1)
∆γ+3. (2.7)

The Eq. (1.1), can be stated as

u(t) = Tb−1[u; 0](t) + J γ
0,t[G(t, u(t), u(t− λ)],

(2.8)

where

Tb−1[u; 0](t) =

b−1∑
m=0

Λ(m)(0)
tm

m!
,

and

J γ
0,t[G(t, u(t), u(t− λ)] =∫ t

0

(t− ϕ)γ−1

Γ(γ)
G(ϕ, u(ϕ), u(ϕ− λ)dϕ.

The discretized of (2.8) is obtained as

uϱ = Tb−1[u; 0](tϱ) + J γ
0,tϱ

[G(t, u(t), u(t− λ)].

(2.9)

Applying the formula (2.3), we get

uϱ = Tb−1[u; 0](tϱ)

+
∆γ

Γ(γ + 2)

ϱ∑
l=0

σl,ϱG(tl, ul, ul−k),

(2.10)

where σl,ϱ is described by (2.4). Furthermore,

the nonlinear source term G(t, ·, ·) is discretized

as:

|G(tϱ, uϱ, uϱ−k)−G(tϱ, uϱ−1, uϱ−k)|
≤ κh = O(h),

(2.11)

where κ ∈ R+ is Lipschitz constants for G(t, ·, ·).
Hence

uϱ = Tb−1[u; 0](tϱ)

+
∆γ

Γ(γ + 2)
σϱ,ϱG(tϱ, uϱ−1, uϱ−k)

+
∆γ

Γ(γ + 2)

ϱ−1∑
l=0

σl,ϱG(tl, ul, ul−k).

(2.12)
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Figure 3: Phase curves of nonlocal Lorenz system without (left) and with (right) delay-time for Eq. (3.5),
with δ = 0 and λu = 0.005, λv = 0.025 and λw = 0.25, for γ1 = 0.005, γ2 = 0.025, γ3 = 0.25, and ∆ = 0.005
in t ∈ [0, 10].
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Figure 4: Phase curves of nonlocal Lü system without (left) and with (right) delay-time for Eq. (3.5), with
δ = 0.8 and λu = 0.005, λv = 0.025 and λw = 0.25, for γ1 = 0.005, γ2 = 0.025, γ3 = 0.25, and ∆ = 0.005 in
t ∈ [0, 10].
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Figure 5: Phase curves of nonlocal Chen system without (left) and with (right) delay-time for Eq. (3.5), with
δ = 1 and λu = 0.005, λv = 0.025 and λw = 0.25, for γ1 = 0.005, γ2 = 0.025, γ3 = 0.25, and ∆ = 0.005 in
t ∈ [0, 10].
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Table 1: Example 3.1: The collation of Eϱ, ECO and CPU time (sec) results for Eq. (3.3) by the cubic spline
[30] and presented schemes for diverse values of γ and ∆, and δ = τ = 0.4, λ = 0.5, and T = 25.

Cubic spline scheme [30] Presented scheme
γ ∆ Eϱ ECO CPU time Eϱ ECO CPU time

0.1 1.80× 10−2 − 8.265 3.68× 10−3 − 6.203
0.25 0.05 8.50× 10−3 1.08 32.515 1.61× 10−3 1.20 24.578

0.025 3.80× 10−3 1.16 144.672 6.98× 10−4 1.21 103.984

0.1 1.34× 10−2 − 8.204 1.81× 10−3 − 6.047
0.5 0.05 4.99× 10−3 1.43 32.688 6.72× 10−4 1.43 24.796

0.025 1.84× 10−3 1.44 141.344 2.46× 10−4 1.45 104.172

0.1 7.65× 10−3 − 8.234 1.72× 10−3 − 6.172
0.75 0.05 2.39× 10−3 1.68 32.641 5.34× 10−4 1.69 24.812

0.025 7.52× 10−4 1.67 143.125 1.64× 10−4 1.70 105.781

0.1 6.29× 10−3 − 8.515 3.71× 10−3 − 5.969
0.95 0.05 1.74× 10−3 1.85 34.282 9.89× 10−4 1.91 24.891

0.025 4.75× 10−4 1.87 141.953 2.60× 10−4 1.93 104.297

Table 2: Example 3.2: The collation of Eϱ and ECO results for Eq. (3.4) by the presented scheme for diverse
values of γ and ∆, λ = 1, and T = 50.

γ = 0.5 γ = 0.95
α ∆ Eϱ ECO Eϱ ECO

0.1 2.12× 10−3 − 7.21× 10−5 −
0.3 0.05 7.61× 10−4 1.48 1.96× 10−6 1.88

0.025 2.78× 10−4 1.45 5.10× 10−6 1.94

0.1 3.17× 10−3 − 7.85× 10−3 −
1.4 0.05 2.20× 10−3 1.45 2.11× 10−3 1.90

0.025 4.59× 10−4 1.38 5.54× 10−4 1.93

At present, we peruse the error analysis of the

presented scheme for approximating the solution

of the Eq. (1.1).

Theorem 2.1. Suppose that u(t) ∈ C3(Ψ) and

ul, l = 0, . . . , ϱ, are the exact and approximate,

respectively, solutions of the Eq. (1.1). Moreover,

let the function G(t, ·, ·) Eq. in (1.1) satisfies the

Lipschitz condition with respect to its variables,

|G(t, ω1, ω̂1)−G(t, ω2, ω̂2)|
≤ S1|ω1 − ω2|+S2|ω̂1 − ω̂2|,

(2.13)

where S1 and S2 ∈ R+ are constants. Then

|E(tϱ)|≤ C∆γ+1, (2.14)

where E(tϱ) = u(tϱ)−uϱ and constant C ∈ R+ is

independent of γ and ∆.

Proof. Let E0 = 0. From (2.12), we get

|E(tϱ)| =

∣∣∣∣ 1

Γ(γ)

∫ tϱ

0
(tϱ − ϕ)γ−1G(ϕ, u(ϕ), u(ϕ− λ)dϕ

− ∆γ

Γ(γ + 2)

(
σϱ,ϱG(tϱ, uϱ−1, uϱ−k)

+

ϱ−1∑
l=0

σl,ϱG(tl, ul, ul−k)

)∣∣∣∣,
and hence,

|E(tϱ)|≤
∣∣∣∣ 1

Γ(γ)

∫ tϱ

0
(tϱ − ϕ)γ−1G(ϕ, u(ϕ), u(ϕ− λ)dϕ

− ∆γ

Γ(γ + 2)

ϱ∑
l=0

σl,ϱG(tl, ul, ul−k)

∣∣∣∣
+

∆γ

Γ(γ + 2)

ϱ−1∑
l=0

σl,ϱ

∣∣∣∣G(tl, u(tl), u(tl − λ)−G(tl, ul, ul−k)

∣∣∣∣
+

∆γ

Γ(γ + 2)
σϱ,ϱ

∣∣∣∣G(tϱ, u(tϱ), u(tϱ − λ)−G(tϱ, uϱ−1, uϱ−k)

∣∣∣∣.
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Accordingly, after some reductions, we gain

|E(tϱ)|≤
1

Γ(γ + 1)

(
A

8
∆γ+2 +

√
3B

9
∆γ+3

)
+
(S1 + S2)

Γ(γ + 2)
∆γ

ϱ−1∑
l=0

σl,ϱ

(
A∆2

8
+

√
3B∆3

9

)
+

(3− γ)κ

2Γ(γ + 2)
∆γ+1,

where

ϱ−1∑
l=0

σl,ϱ ≤ (2− γ)ϱ1−ϱ − 1 ≡ τ.

Thus, we have

|E(tϱ)|≤
{

1
Γ(γ+1)

(
A
8 +

√
3B
9

)
+ 1

Γ(γ+2)

(
(S1 + S2)τ

(
A
8 +

√
3B
9

)
+ (3−γ)κ

2

)}
max{∆γ+3,∆γ+2,∆1+γ}

= C∆γ+1

(2.15)

where constant

C =

{
1

Γ(γ+1)

(
A
8 +

√
3B
9

)
+ (S1+S2)

Γ(γ+2) τ

(
A
8 +

√
3B
9

)
+ (3−γ)κ

2Γ(γ+2)

)}

3 Numerical examples

In this section, we investigate the performance

and validate of presented scheme with some

examples. In order to analyse the accuracy

and computational efficiency of the presented

technique, we consider the mean absolute error

(MAE), Eϱ, and the experimental convergence or-

der (ECO), where stated as

Eϱ =
1

ϱ

ϱ∑
l=1

|uϱl − u2ϱ2l |, (3.1)

and

ECO = log2

(
E2ϱ

Eϱ

)
, (3.2)

where the approximate values of u(tl) are indi-

cated by uϱl and u2ϱ2l , and the number of interior

mesh points is represented by ϱ. All the numeri-

cal results are performed with Maple v2019 run-

ning in an Intel (R) Core (TM) i7-7500U CPU @

2.70 GHz machine.

Example 3.1. The nonlinear fractional Ikeda

system with time delay is defined as{
CDγ

0,tu(t) = δ sin(u(t− λ))− τu(t)

u(t) = π
2 , t ∈ [−λ, 0]

, (3.3)

where 0 < γ ≤ 1, u(t) indicates the phase delay

of the electric field during the amplifier, δ > 0

represents the light intensity injected in the sys-

tem, λ is the feedback lag time in the booster

and τ > 0 shows the relaxation factor. The Eq.

(3.1) with non-fractional and fractional terms,

i.e., with γ = 1 and γ ∈ (0, 1], was studied in

[8, 9, 10, 30].

Fig. 1 demonstrates the approximation results

of Eq. (3.3) for δ = τ = 0.4, and λ = 0.5,

in t ∈ [0, 25] diverse values of γ and ∆ = 0.05.

Moreover, Table 1 contrasts Eϱ, ECO and CPU

time (sec) of expression (3.3) by applying the cu-

bic spline [30] and presented schemes with vari-

ous step sizes of ∆ for γ = {0.25, 0.5, 0.75, 0.95},
in the interval t ∈ [0, 25]. The numerical results

show that for all amounts of γ, the approximation

errors of presented technique reduce by decreas-

ing ∆.

Example 3.2. The nonlinear fractional delay

Hutchinson equation is defined as{
CDγ

0,tu(t) = αu(t)(1− u(t− λ))

u(t) = 0.1, t ∈ [−λ, 0]
, (3.4)

where 0 < γ ≤ 1, α > 0 is the parameter and

the delay time λ expresses topological variations

in the society scale. The Eq. (3.1) with non-

fractional and fractional terms, i.e., with γ = 1

and γ ∈ (0, 1], was investigated in [2, 6, 30].

Fig. 2 illustrates the time history of oscillatory

and phase-space solutions of the Eq. (3.4) for

γ = 0.5 and γ = 0.95 with α = 1.4 and ∆ = 0.05.

Table 2 studies the performance indices Eϱ and

ECO of expression (3.4) for γ = {0.5, 0.95} and
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α = {0.3, 1.4}, with ∆ = {0.1, 0.05, 0.025} and

λ = 1 in the interval t ∈ [0, 50]. We confirm that

by reducing the step size, we get a high precision

approximation.

Example 3.3. Consider the following nonlocal

unified chaotic system ([31])

CDγ1
0,tu(t) = (25δ + 10)(v(t)− u(t− λu))

CDγ2
0,tv(t) = (28− 35δ)u(t)− u(t)w(t)

+(29δ − 1)v(t− λv)

CDγ3
0,tw(t) = u(t)v(t)− (8+δ)

3 w(t− λw)

u(t) = 2.2, t ∈ [−λu, 0]
v(t) = 2.4, t ∈ [−λv, 0]
w(t) = 3.8, t ∈ [−λw, 0]

,

(3.5)

where 0 < γ1, γ2, γ3 ≤ 1, the delay parame-

ters for the u, v and w variables are represent

λu, λv, λw ≥ 0, respectively. Moreover, we ex-

press
Nonlocal Lorenz system, δ = 0
Nonlocal Lü system, δ = 0.8
Nonlocal Chen system, δ = 1

.

In Figs. 3, 4 and 5, we plot the phase curves

of the system (3.5) by means of presented scheme

with ∆ = 0.005 and λu = 0.005, λv = 0.025 and

λw = 0.25, for γ1 = 0.96, γ2 = 0.9 and γ3 = 0.8

in t ∈ [0, 10]. We can observe delay effect on the

chaotic system (3.5) in these figures.

4 Conclusion

In this study, an explicit numerical method for

numerical solution of nonlocal differential equa-

tions with time delay based on quadratic in-

terpolation was presented. The efficiency of

the presented numerical technique in solving the

nonlocal delay models of Ikeda and Hutchinson

was investigated. Moreover, the nonlocal unified

chaotic systems with time delay were solved by

the proposed algorithms and the results were an-

alyzed using phase portraits. The results reveal

the feasibility of the presented algorithm for non-

linear systems with time delay.
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