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Abstract

In this paper, a class of nonlinear fractional partial differential equation is considerd and solved by
advanced analytical-numerical methods such as homotopy analytical and Adomian decomposition
Methods and Mittag-Leffler functions. The obtained approximate solutions show that these solutions
are same for the first three approximate terms u1, u2, u3.

Keywords : Nonlinear fractional differential equation; Mittag-Leffler functions; Adomian Decomposi-
tion Method(ADM); Homotopy Analytical Method(HAM).

—————————————————————————————————–

1 Introduction

T
ill now, various analytical methods, for ex-
ample, Laplace and Fourier transforms, have

been utilized to solve linear fractional differen-
tial equations [1, 2, 3, 4], but for solving non-
linear fractional differential equations, numerical
methods have been used solely. Considering that
Adomian decomposition method as an analytical
method has successfully been applied in a variety
of problems [5, 6, 7], also in the fourth section of
the book [8], it is proved that in general, the ho-
motopy analytical method logically contains Ado-
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mian decomposition method, so that the given so-
lution by Adomian decomposition method is just
a special case of the given solution by the homo-
topy analysis method. In this paper, we solve
a class of nonlinear fractional partial differential
equation, with both above-mentioned methods
and compare these solutions with Mittag-Leffler
functions as another method for two approximate
solutions:

Dα
t u(x, t) = u(x, t) + un(x, t). (1.1)

2 Preliminaries

we give some necessary definitions and math-
ematical preliminaries of the fractional calcu-
lus and the introduction of the above-mentioned
methods.
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2.1 Definition

The Riemann-Liouville fractional integral of or-
der α > 0 is difined as:

(Iαf)(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1f(τ)dτ, (2.2)

(I0f)(t) = f(t)

and its fractional derivative of orderα > 0 is writ-
ten as follows:

(Dα(t) = (
d

dt
)n(In−αf)(t) (n− 1 < α ≤ n)

(2.3)
where n is an integer number. Regard to this
paper, we consider the following modified Mittag-
Lefler function:

hp(x) =
∞∑
k=1

xkp−1

(kp− 1)!
= (2.4)

xp−1

(p− 1)!
+

x2p−1

(2p− 1)!
+

x3p−1

(3p− 1)!
+ ....

The function (2.4) as same as Taylor expansion
for erx is invariant with respect to ordinary dif-
ferentiation that means D(np)hp(x) = hp(x). We
will use the general form of this function to solve
fractional differential equations. Hence we con-
sider it with parameter r, that mean:

y(x) = hp(x, r) =
∞∑
k=1

rkxkp−1

(kp− 1)!
, (2.5)

It is easy to see that

y(n)(x) = D(n)hp(x, r) = rnhp(x, r), (2.6)

By using this function, we can solve the ordinary
fractional differential equations :

amy
(
m

n
)
(x) + am−1y

(
m− 1

n
)
(x) + ... (2.7)

+ a1y
(
1

n
)
(x) + a0y = 0.

by charactristic equations as same as ordinary
differential equation

amrm + am−1r
m−1 + ...+ a1r + a0 = 0, (2.8)

regarding the roots of this equation by
r1, r2, ..., rm then general solution of equa-
tion (2.6) is

y(x) = c1hp(x, r1) + c2hp(x, r2) + ... (2.9)

+ cmhp(x, rm)

where p =
1

n
is fractional step derivative and

m

n
,
m− 1

n
, ...,

1

n
show the fractional orders [9].

2.2 Adomian decomposition method

we give a brief presentation of the Adomian de-
composition method (ADM).The details of this
method is now well known, see for example
[10, 11, 12, 13, 14, 15]. The unknown function
u(x) for the solution of the equation is consid-
ered in the form of the following infinite series by
ADM

u(x) =
∞∑
i=1

ui(x) (2.10)

where the components ui(x) of the solution u(x)
will be determined recurrently, and the expansion
of the nonlinear terms like F (u(x))is written as
follows:

F (u(x)) =

∞∑
n=0

An (2.11)

wherein, An is the Adomian polynomials and ob-
tained according to the following phrase:

An =
1

n!

dn

dλn
F (

∞∑
i=0

λiui(x))|λ=0 n = 0, 1, 2, ...

(2.12)
We list the formulas of the first several Adomian
polynomials for the one-variable simple analytic
nonlinearity F (u) from A0 to A3, inclusively, for
convenient reference as

A0 = F (u0)
A1 = u1F

′(u0)
A2 = u2F

′(u0) +
1
2!u

2
1F

′′(u0)
A3 = u3F

′(u0) + u1u2F
′′(u0)+

1
3!u

3
1F

(3)(u0)

(2.13)

The Adomian polynomials can be generated by
using different algorithms such as in [10, 13, 16,
17, 15, 18, 19, 20].

For example, for the nonlinear function of u2,
we will have:

A0 = u20 A1 = 2u0u1 (2.14)

A2 = 2u0u2 + u21

A3 = 2u0u3 + 2u1u2

Now, by putting the series (2.10) and (2.11) in
the nonlinear differential equations and sorting
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and comparing series on both sides of the equa-
tion, a recursive equation for u is obtained that
subject to the initial condition u0(x, t) and recur-
sive equation, other terms of u(x) are obtained.

2.3 Homotopy analytic method

Consider two smooth functions f(x) and g(x) on
the real line. A linear homotopy of two such func-
tions is itself a function

H(f(x), g(x), q) = (1− q)f(x) + qg(x) (2.15)

which defined by homotopy parameter q. when
q = 0, H(f(x), g(x), q) = f(x), whereas when q =
1,H(f(x), g(x), q) = g(x). when we evolve q from
zero to one, the homotopy evolve continuously
from f(x) to g(x). Let’s consider the differential
equation governed by

N [u(x)] = a(x) (2.16)

where N is a nonlinear differential operator and
x ∈ D ⊆ Rl.

Consider an auxiliary linear differential opera-
tor L. let us construct a homotopy of the operator
H(N,L, q) st H(N,L, 0) = L and H(N,L, 1) =
N then, the homotopy itself is an operator for
all q ∈ [0, 1]. Now, we expand the solution as a
Taylor series, given by

φ(x, q) = u0(x) +
∞∑

m=1

um(x)qm (2.17)

that the series of the solution (2.17) gives a rela-
tion between the initial guess u0(x) and the exact
solution.

Furthermore, the exact solution will be given
by

u(x) = u0(x) +
∞∑

m=1

um(x) (2.18)

To obtain the um(x)’s, one recursively solve what
are known as the m-th order deformation equa-
tions, given by

L[um(x)− χmum−1(x)] = (2.19)

hRm(u0(x), ..., um−1(x), x)

where χm =

{
0 m ≤ 1
1 m > 1.

and

Rm(um−1(x), x) =

1

(m− 1)!

∂m−1N [φ(x, q)]

∂qm−1
|q=0

=
1

(m− 1)!
(
∂m−1

∂qm−1
N [

∞∑
m=0

um(x)qm])|q=0

(2.20)

3 Problem-solving with ADM

Consider the following nonlinear fractional differ-
ential equation

Dα
t u(x, t) = u(x, t) + u2(x, t) (3.21)

First, we convert the equation (3.21) to a frac-
tional integral equation, then we solve the inte-
gral equation with ADM. Now, By integrating
both sides of the equation (3.21), the order of
α− 1 ( with respect to time variable t) we have:

D1−α
t Dα

t u(x, t) = D1−αu(x, t) +D1−α
t u2(x, t)

(3.22)
So we have:

∂u

∂t
=

∂

∂t

∫ t

0

(t− τ)α−1

(α− 1)!
u(x, τ)dτ + (3.23)

∂

∂t

∫ t

0

(t− τ)α−1

(α− 1)!
u2(x, τ)dτ

Then, by integrating both sides of (3.23) the in
interval [0,1], we have:

u(x, t) = u(x, 0) + (3.24)∫ t

0

(t− τ)α−1

(α− 1)!
u(x, τ)dτ +∫ t

0

(t− τ)α−1

(α− 1)!
u2(x, τ)dτ

Now, we solve the above integral equation with
the initial condition u(x, 0) = φ(x).Due to the
nonlinear term u2, according to relation (2.14)
and (2.10), (2.11) in section (2.2), we have:

∞∑
n=0

un(x, t) = φ(x) +

∞∑
n=0

∫
(t− τ)α−1

(α− 1)!
[un(x, τ) +An(x, τ)]dτ

(3.25)
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In this case, we have:

un+1(x, t) = (3.26)∫ t

0

(t− τ)α−1

(α− 1)!
[un(x, τ) +An(x, τ)]dτ

Using (2.2) and (2.3), we have:

un(x, t) = Iα(un(x, t) +An(x, t)) (3.27)

So
u1(x, t) = Iα0 (u0(x, t) + A0(x, t)) =

I0(φ(x) + φ2(x)) = Iα0 (φ+ φ2)

u2(x, t) = Iα0 (u1(x, t) + A1(x, t)) =
Iα0 (I

α
0 (φ+ φ2) + 2φIα0 (φ+ φ2))

Due to the following relation [8]

Dq
a(aD

p
t f(t)) =a Dp+q

t f(t) (3.28)

Then u2(x, t) be obtained as follows:

u2(x, t) = I2α0 (φ+ φ2)

+2φI2α0 (φ+ φ2) =

(1 + 2φ)I2α0 (φ+ φ2) (3.29)

Simlarly

u3(x, t) = Iα0 (u2(x, t) +A2(x, t)) =

Iα0 ((1 + 2φ)I2α0 (φ+ φ2) +

2φ(1 + 2φ)I2α0 (φ+ φ2) + (Iα0 (φ+ φ2))2)

(3.30)

And as a result

u3(x, t) = (1 + 2φ)2I3α0 (φ+ φ2) + (3.31)

Iα0 (φ+ φ2)(Iα0 (φ+ φ2))2

4 Problem-solving with HAM

Consider the following problem

Dα
t u(x, t) = u(x, t) + u2(x, t) (4.32)

with initial condition

u(x, 0) = φ(x)

So the nonlinear operation N is as follows:

N [u(x, t)] = Dα
t u(x, t)− u(x, t)− u2(x, t) = 0

(4.33)

Also consider the linear operator L as follows:

L =
Dα

tα
so L[φ(x, t, q)] =

∂αφ(x, t, q)

∂tα
(4.34)

According to the relation (2.19), we have:

L[u1(x, t)] = hR1[u0(x, t)] (4.35)

let h = −1, u0(x, t) = u(x, 0) = φ(x) then

L[u1(x, t)] = −R1[u0(x, t)] (4.36)

Considering to the relation (2.20):

R1(u0(x, t)) = N [φ(x, t, q)]|q=0 =

∂αφ

∂tα
(x, t, q)− φ(x, t, q)− φ2(x, t, q)|q=0

(4.37)

Making use of (2.17) in (2.3), we have:

∂αφ(x, t, q)

∂tα
|q=0=

∂α

∂tα
u0(x, t) +

∞∑
m=1

∂αum(x, t)

∂tα
qm

(4.38)

where
∂αφ(x, t, q)

∂tα
|q=0= 0

It follows that

R1(u0(x, t)) = −[φ(x) + φ2(x)] (4.39)

From (4.36)we have:

L[u1(x, t)] = [φ(x) + φ2(x)] (4.40)

as a result:

u1(x, t) = −L−1[φ(x) + φ2(x)] (4.41)

Because L−1 = Iαt so we have:

u1(x, t) = Iαt [φ(x) + φ2(x)] (4.42)

Similarly, we obtain that

L[u2(x, t)− u1(x, t)] = R2[u0(x, t)− u1(x, t)]
(4.43)

Due to the linearly of the operator L, we have:

L[u2(x, t)] = L[u1(x, t)] +R2[u0(x, t), u1(x, t)]
(4.44)
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with making use of (2.20):

R2(u0(x, t), u1(x, t)) =

(
∂

∂q
[N(φ(x, t, q))]|q=0) =

(
∂αu1
∂tα

) + 2
∂αu2
∂tα

q + . . .− u1 − 2u2q...

− 2u0u1 − 2u21q − 4u0u1q + ..)|q=0=
∂αu1
∂tα

− u1 − 2u0u1

(4.45)

so we have:

u2(x, t) = u1(x, t)

−L−1(R2(u0(x, t), u1(x, t))

= u1(x, t)− u1(x, t) + Iα(u1(x, t))

+2u0(x, t)I
α(u1(x, t))

= (1 + 2u0(x, t))I
α(u1(x, t))

= (1 + 2u0)I
α(Iα(φ+ φ2))

(4.46)

According to the relation (2.6) from [8]

Iα(Iα(φ+ φ2)) = I2α(φ+ φ2)) (4.47)

So we have:

u2(x, t) = (1 + 2φ)I2α(φ+ φ2) (4.48)

Similary, we calculate u3(x, t) as follows:

L[u3 − u2] = −R3(u0, u1, u2)

⇒ L[u3] = L[u2]−R3(u0, u1, u2)

⇒ u3(x, t) = u2(x, t)− L−1(R3(u0, u1, u2)

(4.49)

Where

R3(u0, u1, u2) =

∂2

∂q2
(N(φ(x, t, q))|q=0

= 2
∂αu2
∂tα

− 2u2 − 2u21 − 4u0u2

(4.50)

So

u3(x, t) = −u2 +

2(1 + 2φ)Iα(u2) + 2Iα(u1)
2

= −(1 + 2φ)I2α + 2(1 + 2φ)2I3α

+2Iα(Iα)2)) (4.51)

Due to the that the given solution by the Ado-
mian decomposition method is just a special case
of the given solution by the homotopy analysis
method, the solution of the u3(x, t) in (3.31) is a
special case of the (4.51).

Example 4.1 Consider the problem (4.32) with
the initial condition u(x, 0) = φ(x). We see
that problem-solving with both two methods Ado-
mian decomposition and Homotopy analysis the
methods leads to obtain the fractional integrals
Iα0 , I

2α
0 , I3α0 . So, we obtain them, here. We calcu-

late Iα0 (φ+φ2), I2α0 (φ+φ2), I3α0 (φ+φ2) then by
putting these sentences into u1(x, t), u2(x, t), ...,
the approximate solution u(x, t) is obtained. Let

α =
1

2
, φ(x) = x, we have I

1
2 (x + x2) = I

1
2 (x) +

I
1
2 (x2) then with making use of the following re-

lation

Iαtλ =
Γ(λ+ 1)

Γ(λ+ α+ 1)
tλ+α, λ > −1, α > 0

(4.52)
And considering to the properties of the gamma
function, we have:

I
1
2 (x + x2) =

2(x+ x2)t
1
2

√
π

For I2.
1
2 (x + x2),

we have:

I2.
1
2 (x + x2) = I

1
2 (I

1
2 ) = I

1

2 (
2(x+ x2)t

1
2

√
π

) =

2(x+ x2)√
π

I

1

2 (t

1

2 ) by using of (4.52) we have

I

1

2 (t

1

2 ) =
1

2

√
πt.

So we have:

I
2
1

2 = (x+ x2)t For I3.
1
2 (x+ x2), we have:

I3.
1
2 (x + x2) = I

1
2 (I2.

1
2 )(x + x2) =

I

1

2 ((x+ x2)t) = (x+ x2)I

1

2 (t).

Similarly, we have:

I

1

2 (t) =
4

3
√
π
t
3
2 So I3.

1
2 (x + x2) =

4

3
√
π
(x+ x2)t

3
2
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Now, by putting the fractional derivative
obtained in (3.27), (3.31) of the sction 3, we
have:

u1(x, t) =
2(x+ x2)t

1
2

√
π

u2(x, t) = (1 +

2x)(x + x2)t u3(x, t) = [
4(1 + 2x)2(x+ x2)

3
√
π

+

8(x+ x2)3

π
√
π

]t

3

2 So the solution using the ADM is:

u(x, t) = x+
2(x+ x2)t

1
2

√
π

+

(1 + 2x)(x+ x2)t+

[
4(1 + 2x)2(x+ x2)

3
√
π

+
8(x+ x2)3

π
√
π

]t

3

2 (4.53)

Now, by putting the fractional derivative ob-
tained in (4.42), (4.48), (4.51) of the sction 4,
we have:

u1(x, t) =
2(x+ x2)t

1
2

√
π

u2(x, t) = (1 + 2x)(x +

x2)t u3(x, t) = [
8

3
√
π
(1+2x)2(x+x2)+

16

π
√
π
(x+

x2)3]t

3

2

So the solution using the HAM is:

u(x, t) = x+
2(x+ x2)√

π
t

1

2 +

8√
π
(1 + 2x)2(x+ x2) +

16

π
√
π
(x+ x2)3t

3

2

(4.54)

In the following example, we show that the form
of approximate solution for the problem (4.32) is
acceptable.

Example 4.2 Consider the following equation:

Dα
t u(x, t) = u(x, t) + u2(x, t) (4.55)

Regarding that, we have no any term of derivative
with respect to x, therefore we can consider the
equation (4.55) as an ordinary defferential equa-
tion like:

y(α) = y + y2 (4.56)

Figure 1: Graph of the solution using the Ado-
mian Decomposition Method

Figure 2: Graph of the solution using the Homo-
topy Analytic Method

where α is the fractional order derivative of y.

To find the approximate solution of (4.56), we
consider the following expressions:

Iα
tkα

(kα)!
=

t(k+1)α

(k + 1)α!
+ c

t−1+α

(−1 + α)!
(4.57)

This expression is chosen by considerations
about modified Mittag-Leffler function which has
been introduced in [21].

We have:

Iα
∞∑
k=o

tkα

(kα)!
=

∞∑
k=o

t(k+1)α

(k + 1)α!
+ c

t−1+α

(−1 + α)!

(4.58)
Where the operation Iα is the fractional integral
andDα is the fractional derivative which has been

applied in the section 2, whereDα(c
t−1+α

(−1 + α)!
) =

0.

We can choose a finite term from infinite series
as an approximate solution:

y(t) =
∑N

k=o

tkα

(kα)!
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Figure 3: Graph of comparison of the obtained
solutions of the above two methods

Figure 4: Graph of the solution using by three
methods ADM, HAM, Mittag-Leffler function

We consider the term of y2will be:

(

N∑
k=o

tkα

(kα)!
)2 =

(1 +
tα

α!
+

t2α

(2α! )
+ ...+

tNα

(Nα! )
)2 =

1 + 2
tα

α!
+

(
1

α!2
+

2

(2α)!
)t2α + (

2

α! (2α)!
+

2

(3α)!
t3α + ...+

t2Nα

(Nα)!2
=

1 + 2
tα

α!
+ (

(2α)!

α!
+ 2)

t2α

(2)!
+

(
2(3α)!

α! (2α)!
+ 2)

t3α

(3α)!

+...+
(2Nα)!

(Nα)!2
t2Nα

(2Nα)!
(4.59)

Note that the following basic formula is used:
(a+ b+ c)2 = a2 + 2ab+ (b2 + 2ac) + 2bc+ c2

Similar to [21, 22], we consider the approximate
solution of equation (4.52) in form of:

u(x, t) = α0(x) + α1(x)
tα

α!
+ α2(x)

t2α

(2α)!
(4.60)

Regarding the initial condition u(x, 0) =
φ(x) = α0(x), by getting fractional integral Iαt
from 4.55, we have:

u(x, t) = φ(x) + Iα(α0(x)
t0α

0!
+

α1(x)
tα

α!
+ α2(x)

t2α

(2α)!
) +

Iα[α2
0 + 2α0(x)α1(x)

tα

α!

+(2α)! (α1(x)
2 1

(α)α!2
+

2α0(x)
α2(x)

(2α)!
)
t2α

(2α)!
+

2α1(x)α2(x)
(3α)!

α! (3α)!

t3α

(3α)!
+

α2(x)
2 (4α)!

(2α)!2
t4α

(4α)!
] (4.61)

Therefore by considaring the oparator Iα ac-
cording to 4.57, we have:

u(x, t) = α2
0

tα

α!
+ 2α0(x)α1(x)t

2α(2α! ) +

(α1(x)
2 (2α)!

(α! )2
+ 2α0(x)α2(x))

t3α

(3α)!
+

2α1(x)α2(x)
(3α)!

α! (2α)!

t4α

(4α)!
+

α2(x)
2 (4α)!

(2α)!2
t5α

(5α)!

(4.62)

Finally, the following resulted for the unknown
coefficients αj(x), j = 0, 1, 2 are:

α0(x) = φ(x), α1(x) = α0(x) + α0(x)
2

α1(x) = φ(x) + φ2(x) + 2φ(x)[φ(x) + φ2(x)]

α2(x) = α1(x) + 2α0(x)α1(x)

Hence the approximate solutionu(x, t) is:

u(x, t) = φ(x) + [φ(x) + φ2(x)]
tα

α!
+

(φ+ φ2)(1 + 2φ)
t2α

(2α)!

(4.63)

Remark 4.1 from the obtained solutions for
u1, u2 in section 3, 4 we have:
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u1(x, t) = I0(φ(x) + φ2(x)) = (φ(x) +
φ2(x))Iα(t0)

u2(x, t) = (1 + 2φ)I2α0 (φ(x) + φ2(x)) =
(1 + 2φ)(φ+ φ2)I2α(t0)

according to the (4.52):

Iα(t0) =
tα

α!
, I2α(t0) =

t2α

(2α)!

In fact, the obtained solutions with the (ADM)
and (HAM) methods, corresponding to the
solution of the (4.63).

Note that in the previous graphs, x ∈
interval[0 3], t ∈ interval[1 3].

5 Conclusion

In this paper, we solved the nonlinear fractional
partial differential equation of (1.1) in three ways.
Solving the equation with these methods leads
to the obtaining of fractional integrals of Iα(φ+
φ2), I2α(φ + φ2), I3α(φ + φ2), ... due to remark
(4.1), the solution of the problem is in the form
of 4.63 series. In fact, the problem-solving con-
vert to the obtaining of fractional integrals that
can be calculated using existing software. in
the test example, we saw that the approximate
termsu0, u1, u2 are same by the mentions three
methods.
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