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Abstract

In this study, we used a deterministic mathematical model to investigate the dynamics of typhoid
disease in a community. Different control strategies were used to determine efficient control strategies
that help to reduce the incidence of typhoid disease. Stability theory of differential equations is used
to study the qualitative behavior of the system. The basic reproduction number that represents the
epidemic indicator is obtained by using the condition of endemicity. A local stability and global
stability conditions for disease free equilibrium is established. Uniqueness of endemic equilibrium
point and global stability conditions are also proved. Finally we used Pontryagins maximum principle
in order to determine optimal control strategies for the spread of the disease. The numerical simulation
revealed that applying prevention has a significant impact in minimizing the incidence of the disease.
If all the interventions strategies are implemented the disease will be eradicated in short period of
time. However, this result agrees with global result in [22], in the present study drug resistant cases
are not considered.
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1 Introduction

T
yphoid disease is caused by the gram negative
bacterium Salmonella enterica subspecies en-

terica serovar Typhi (S. Typhi). It is a disease
that can be transmitted faeco-orally which is con-
sidered exclusive to humans and may present with
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prolonged fever, influenza-like-illness, headache,
malaise, anorexia and abdominal symptoms. The
most frequent species of Salmonella that cause ty-
phoid disease are Salmonella paratyphi A, B, and
C and Salmonella paratyphi D [22]. This disease
is a life threatening illness with both ill persons
and carriers shed salmonella Typhi in faeces or
stool. Human being can get infected with typhoid
fever by eating or drinking food or water contam-
inated with Salmonella Typhi.
Typhoid fever is a major problem in many de-
veloping countries where lack of clean water and
contaminated food are common feeding practice.
Flies can also move the bacteria onto food, espe-
cially when garbage and faeces are not disposed
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of properly. The bacterial pathogens can also be
released from the infectious individuals or carri-
ers and then contaminate food or drinking wa-
ter as a consequence of unsafe hygiene practices.
As a result, typhoid fever is a common disease
in developing countries in Africa particularly in
Ethiopia. The data taken from Ethiopia during
the years 2008 − 2016 as shown in Figure 1, in-
dicates that in each year the disease is increasing
in alarming rate.
Typhoid incidence is considered high if greater

Figure 1: Reported cases of typhoid in Ethiopia.

than100 per 100,000 population, medium if 10
to 100 per 100,000 and low if less than10 [21].
From the Figure 1 we can observe that typhoid
incidence is high in Ethiopia. In Western Eu-
rope and North America, typhoid fever has been
largely eliminated or controlled, with water qual-
ity improvements and other public health reforms
variously attributed to the disease decline [4]. Ty-
phoid fever following ingestion of food or water
that has been contaminated by the faeces of a
case or carrier may dominate contemporary dis-
course [11]. Variation in factors that influence
these modes of transmission, such as host behav-
ior or environmental factors can result in fluctu-
ating or complex seasonal dynamics [8].
Recently there have been a lot of case-control
studies and other epidemiological investigations
associated with the transmission of typhoid.
Mathematical modeling of the spread of infec-
tious diseases continues to become a vital tool
in understanding the dynamics of diseases and
it helps in decision making processes during the
selection of intervention programs. For exam-
ple, Getachew et al. developed a mathematical
model to investigate dynamics of typhoid fever

and used different control methods with cost-
effective strategies [7]. In [15] a mathematical
model is developed to study the effect of carriers
on the transmission dynamics of typhoid fever.
In his model he studied the dynamics of typhoid
fever by incorporating vaccination rate as a con-
trol measure [17]. Some of the researcher who has
contributed in this area is [1], [2], [3], [9], [16], [18]
and [20]. In present study we considered the case
of populations groups who are immune against
the disease in the course of the disease transmis-
sion process.

2 Description and Formulation
of Model

The compartments used in this model consist
of six classes: E(t) is the compartment used for
those who are immune against the disease over a
period of time due to immunoprophylaxis. S(t) is
used to represent the number of individuals who
are prone to the disease at time t. C(t) denotes
the number of individuals which are infected and
are capable of transmitting the disease without
showing the disease symptom, I(t) denotes the
number of individuals who have been infected
with the disease and are capable of spreading
the disease to those in the susceptible categories.
R (t) denote the number of individuals who
are recovered from the disease. B (t) denotes
the number of Salmonella bacteria at a time
t. Immune populations are recruited into the
population at per capita rate pπ. These immune
population groups are assumed to lose protection
due to imperfect vaccine thus a fraction of
them will join susceptible class. Susceptible
individuals are recruited into the population at
per capita rate (1 − p)π. Susceptible individuals
acquire typhoid fever at per capita rate λ.
The susceptible class is increased by birth or
emigration at a rate of (1 − p)π and also from
Immune class by imperfect vaccine with φ rate.
λ is the force of infection. γ is the rate at
which carrier individuals become symptomatic
infectious. µ is the natural mortality rate, d1
is the disease induced mortality rate due to
asymptomatic infection, d2 is the disease induced
mortality rate due to symptomatic infectious. β
is the rate of recovery of symptomatic infectious
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due to natural immunity and joining recovered
class, θ is the rate of recovery of asymptomatic
infectious due to natural immunity. The carriers
(asymptomatic infectious) subclass is increased
from susceptible subclass by ρλ screening rate.
The infectious (symptomatic infectious) subclass
is increased from susceptible subclass by (1−ρ)λ
screening rate. Those individuals in the carriers
subclass can get recovered with a rate of θ and
join recovered subclass. And those individuals in
the infectious (symptomatic infectious) subclass
can get recovered and join recovered subclass
with a rate of β. The assumption of this model
is that there is re-infection once an individual is
recovered.
The above model description can be written in

Figure 2: Flow diagram of the model.

six system of differential equation below.
dE
dt = pπ − (φ+ µ)E ...................................(1)
dS
dt = (1− p)π + φE + αR− (λ+ µ)S..........(2)
dC
dt = ρλ S − (γ + θ + d1 + µ)C.....................(3)
dI
dt = (1− ρ)λ S + γ C − (β + d2 + µ)I.........(4)
dR
dt = θ C + β I − (α+ µ)R.............................(5)
dB
dt = r(1− B

M )B................................................(6)

Where λ = νB(t)
K+B(t) is force of infection, ν is in-

jestion rate and K is concentration of bacteria in
food or water.
Here B(t)

K+B(t) is the probability of an individ-
ual getting infected by typhoid disease. M is
the carrying capacity of the environment for the
pathogens.
N = E + S + C + I + R with initial condi-
tions E(0) = E0, S(0) = S0, C(0) = C0, I(0) =
I0, R(0) = R0

3 Model Analysis

It is assumed that the initial condition of the
model is non-negative, and now we will show that
the solution of the model is positive.

3.1 Positivity of Solutions

Theorem 3.1 Let Ω =
(S,E,C, I,R,B) ∈ ℜ6

+ : E0 ≥ 0, S0 ≥ 0
C0 ≥ 0, I0 ≥ 0, R0 ≥ 0, B0 ≥ 0} then the
solutions { E,S,C, I,R,B} are positive for
t ≥ 0.

Proof. From the system (1-6), taking the first
equation

dE
dt = pπ − (φ+ µ)E

⇒ dE
dt ≥ −(φ+ µ)E

⇒ dE
E ≥ −(φ+ µ)dt

⇒
∫

dE
E ≥ −

∫
(φ+ µ)dt

⇒ lnE ≥ −(φ+ µ)t+ c1 where
c1 is integration constant i.e. E(0) = c1
Therefore, E(t) ≥ 0 for all t ≥ 0

Similarly we can show for the remaining state
variables
This completes the theorem.
Therefore, the solution of the model is positive.

3.2 Invariant Region

Theorem 3.2 The total population N of the sys-
tem of model equation (1-6) is bounded in the
invariant region Ω. That is the size of N(t) is
bounded for all t.

Proof. In the given model total population (N)
is
N = E + S + C + I +R................................(7)
Using the technique in [14] we differentiate N
both sides with respect to t to get

dN
dt = dE

dt + dS
dt + dC

dt + dI
dt +

dR
dt .................(8)

By substituting (1-6) into (8) we get
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dN
dt = π − µN − (d1C + d2I)....................(9)

In the absence of mortality due to typhoid
disease i.e. d1 = d2 = 0 equation (9) becomes

dN
dt ≤ π − µN..........................................(10)

Rearrenging and integrating both sides of (10),
we get∫

dN
π−µN =

∫
dt

⇒ −1
µ ln(π − µN) ≤ t+ c2 where c2 is integra-

tion constant.

⇒ ln(π − µN) ≥ −µt+ c3 where c3 = −µc2

⇒ π − µN ≥ Ae−µt where A = ec3

By applying the initial condition N(0) = N0,
we get A = π − µN0

⇒ π − µN ≥ (π − µN0)e
−µt

⇒ N ≤ π
µ − π−µN0

µ e−µt.........................(11)

As t → ∞ in (11), the population size
N → π

µ .

Thus, the total population of the model remain
in the region:

Ω = {(E,S,C, I,R) ∈ ℜ5
+ : N ≤ π

µ}

Therefore, the basic model is well posed.
Hence, it is sufficient to study the dynamics of
the basic model in Ω.

Lemma 3.1 Solution of the model equation (1-
6) together with initial conditions E(0) ≥
0, S(0) ≥, C(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, B(0) ≥
exists in ℜ6

+. i.e. the solution of the model
E(t), S(t), C(t), I(t), R(t) and B(t) exists for all
t and will remain in ℜ6

+.

Proof. The RHS of the system (1-6) can be ex-
pressed as follows
f1(E,S,C, I,R,B) = pπ − (φ+ µ)E
f2(E,S,C, I,R,B) = (1−p)π+φE+αR−(λ+µ)S
f3(E,S,C, I,R,B) = ρλS − (γ + θ + d1 + µ)C

f4(E,S,C, I,R,B) = (1−ρ)λ S+γC− (β+d2+
µ)I
f5(E,S,C, I,R,B) = θC + βI − (α+ µ)R
f6(E,S,C, I,R,B) = r(1− B

M )B
According to [5] theorem, let Ω denote the region
Ω = {(E,S,C, I,R,B) ∈ ℜ6

+ : N ≤ π
µ}

Then the system (1-6) has a unique solution if
fi for i = 1, 2, 3, 4, 5, 6 w.r.t the state variables
are continuous and bounded in Ω Using simple
mathematical computation of partial derivatives
we can show the partial derivative exists.
Hence, by the theorem in [5], the solution for the
model (1-6) exists and is unique.

3.3 Disease Free Equilibrium (DFE)

To find the disease free equilibrium we consider
the steady state of the system (1-6) which is
pπ − (φ+ µ)E = 0

(1− p)π + φE + αR− (λ+ µ)S = 0

ρλ S − (γ + θ + d1 + µ)C = 0.................(12)

(1− ρ)λS + γC − (β + d2 + µ)I = 0

θC + βI − (α+ µ)R = 0

r(1− B
M )B = 0

Equating (12) at C = I = R = B = 0 and
solving the non-infected state variables we get
the following

E0 = pπ
φ+µ

S0 = p(φ+µ−pµ)
µ(φ+µ)

Therefore, the disease free equilibrium point E0

becomes
E0 = ( pπ

φ+µ ,
p(φ+µ−pµ)
µ(φ+µ) , 0, 0, 0, 0)

3.4 Endemic Equilibrium Point

To find the endemic equilibrium point F0 we con-
sidered the steady state of the system (1-6) for
all state variables. After applying some laborous
and tidy calculation we get the following endemic
equilibrium point
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F0 = (E∗, S∗, C∗, I∗, R∗, B∗) where

E∗ = pπ
φ+µ

S∗ = π(γ+θ+d1+µ)[(1−p)(φ+µ)+pπ]
(λ+µ−aρλα)(φ+µ)

C∗ = ρλπ[(1−p)(φ+µ)+pπ]
(λ+µ−aρλα)(φ+µ)

I∗ = λ[(1−ρ)(γ+θ+d1+µ)+ργ][π(1−p)(φ+µ)+pφπ]
(φ+µ)(β+d2+µ)(λ+µ−aρλα)

R∗ = aπρλ[(1−p)(φ+µ)+pπ]
(λ+µ−aρλα)(φ+µ)

a = θρ(β+d2+µ)+β[(1−ρ)(γ+θ+d1+µ)+ργ]
ρ(β+d2+µ)(α+µ)

B∗ = M

3.5 Basic Reproduction Number (ℜ0)

The basic reproduction number is the average
number of secondary cases a typical infectious
individual will cause in a completely susceptible
population. In this section we obtained the basic
reproduction number which is the threshold
parameter that governs the spread of the disease.
For the given model the endemic equilibrium F0

exists in the feasible region Ω the necessary and
sufficient condition is that:

0 < S∗ ≤ S0

Or 0 < S∗ ≤ p(φ+µ−pµ)
µ(φ+µ)

Equivalently p(φ+µ−pµ)
µ(φ+µ)S∗ ≥ 1

Define ℜ0 =
p(φ+µ−pµ)
µ(φ+µ)S∗ implies

ℜ0 =
p(φ+µ−pµ)(λ+µ−aρλα)

µπ(γ+θ+d1+µ)[(1−p)(φ+µ)+pπ]

3.6 Local Stability of Disease Free
Equilibrium

Proposition 3.1 The disease free equilibrium
point is locally asymptotically stable if ℜ0 < 1
and unstable if ℜ0 > 1.
Proof. To proof the proposition we first con-
struct a Jacobean matrix for the system (1-6) at
disease free equilibrium.

J =



a1 0 0 0 0 0
φ −µ 0 0 α a2
0 0 a3 0 0 a4
0 0 γ a5 0 a6
0 0 θ β a7 0
0 0 0 0 0 −µ

 ...........(13)

Where a1 = − (φ+ µ), a2 =
−νS0

K

a3 = −(γ + θ + d1 + µ), a4 =
ρνS0

K

a5 = − (β + d2 + µ), a6 =
(1−ρ)νS0

K

a7 = − (α+ µ), S0 = p(φ+µ−pµ)
µ(φ+µ)

Now we compute the Jacobean matrix at dis-
ease free equilibrium and investigate its stability
effect due to reproduction number ℜ0.

From the Jacobean matrix (13) we obtained a
characteristic polynomial by evaluating
det(J − λ∗I) = 0. Where λ∗ is the eigen value of
the characteristic polynomial.

∣∣∣∣∣∣∣∣∣∣∣∣

a1 − λ∗ 0 0 0 0 0
φ −µ− λ∗ 0 0 α a2
0 0 a3 − λ∗ 0 0 a4
0 0 γ a5 − λ∗ 0 a6
0 0 θ β a7 − λ∗ 0
0 0 0 0 0− µ− λ∗

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Solving the determinant of the above matrix we
obtained the following eigen values:

λ∗
1 = − (φ+ µ), λ∗

2 = −µ
λ∗
3 = − (φ+ θ + d1 + µ), λ∗

4 = − (β + d2 + µ)
λ∗
5 = − (α+ µ), λ∗

6 = −µ
Since all the eigen values are negative the

disease free equilibrium point is locally asymp-
totically stable.

Therefore, the disease free equilibrium point
E0 is locally asymptotically stable if and only if
ℜ0 < 1.

3.7 Global Stability of Disease Free
Equilibrium

In this section we analyzed global stability of dis-
ease free equilibrium point by applying the tech-
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niques used in [14]. We write the model equation
(1-6) in the form:

dXs

dt
= A(Xs −XDFE,s) +A1Xs

Xi

dt
= A2Xi

Where Xs is the vector representing the non
transmitting compartment andXi is a vector rep-
resenting the transmitting compartment. The
disease free equilibrium is globally asymptomati-
cally stable if a matrix A has negative eigen values
and A2 is Metzler matrix (i.e. the off-diagonal el-
ement of A2 are non-negative).
For the model (1-6), we have

Xs = (E,S,R)T

and

Xi = (C, I,B)T

Where T refers to transpose of a matrix.
We need to check whether a matrix A for non-
transmitting compartments has real negative
eigen values and A2 is Metzler matrix. From the
equation for non-transmitting compartments in
the model we obtained:

A =

−(φ+ µ) 0 0
φ −(λ+ µ) α
0 0 −(α+ µ)


From the matrix A we get the eigen val-
ues
λ1 = −(φ+ µ), λ2 = −(λ+ µ)
and λ3 = −(α + µ) all the eigen values are real
and negative. Now it remains to show that A2 is
Metzler.

Using suitable re-arrangement we can get

A2 =

−(γ + θ + d1 + µ) 0 0
γ (λ+ µ) α
0 0 −(α+ µ)


and A1 =

0 0 0
0 0 0
θ β 0

 Since the off-diagonal ele-

ments of A2 are non-negative so it is a Metzler
matrix.

Hence, the disease free equilibrium point is
globally asymptotically stable.

3.8 Global Stability of Endemic Equi-
librium Point

Theorem 3.3 If ℜ0 > 1, then the endemic equi-
librium point F0 is globally asymptotically stable.

Proof. To prove global asymptotic stability
of the endemic equilibrium point we used the
method of Lyapunov function below
Define L(E∗, S∗, C∗, I∗, R∗, B∗) =

(E − E∗ − E∗lnE∗

E ) + (S − S∗ − S∗lnS∗

S )+

(C − C∗ − C∗lnC∗

C ) + (I − I∗ −
I∗ln I∗

I ) + (R − R∗ − R∗lnR∗

R ) + (B − B∗ −
B∗lnB∗

B )......................................................(14)

In (14) taking the derivative on both sides
with respect to t and re-arrenging the terms we
get
dL
dt = (E−E∗

E )dEdt + (S−S∗

S )dSdt + (C−C∗

C )dCdt +

( I−I∗

I )dIdt + (R−R∗

R )dRdt + (B−B∗

B )dBdt ..........(15)

Substituting the system (1-6) in (15) we get

dL
dt = A−B Where

A = (φ + µ)E∗ + (λ + µ)S∗ + (γ + θ + d1 +
µ)C∗ + (β + d2 + µ)I∗ + (α+ µ)R∗

and

B = (γ + d1)C − d2I − r(1− B
M )− pπE∗

E +

[αR+ (1− p)π]S
∗

S + ρλS C∗

C + (1− ρ)λS I∗

I +

(θC + βI)R
∗

R + r(1− B
M )B

∗

B

Thus, if A < B, the dL
dt ≤ 0

Note that dL
dt = 0 if and only if

E = E∗, S = S∗, C = C∗, I = I∗, R = R∗, B =
B∗

Therefore, the largest compact invariant set in
Ω = (E,S,C, I,R,B) ∈ Ω : dL

dt = 0 is the single-
ton E∗.
Hence, by the principle in [10] we can infer that
the endemic equilibrium point is globally asymp-
totically stable in Ω if A < B.
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4 Sensitivity Analysis

The total mortality and morbidity attributed
to typhoid disease can be best reduced by
investigating the relative importance of the
parameters featuring in the basic reproduction
number ℜ0. In order to reduce mortality and
morbidity due to typhoid disease, it is crucial
to know the relative importance of different
factors responsible for its transmission and
prevalence. We calculate the sensitivity indices
of the basic reproduction number ℜ0. This
allows us to measure the relative change in the
state variable when a parameter changes. When
a state variable is a differentiable function of
the parameter, the sensitivity index may be
alternatively defined using partial derivatives.
Thus, the values obtained for sensitivity indexes
indicate which parameters should be targeted
most for intervention purposes.

Numerical values of sensitivity indices of ℜ0

to parameter values for the typhoid model,
evaluated using the parameter values listed in
Table 2.

Table 1 shows the sensitivity indices of ℜ0 to
the parameter for typhoid model, evaluated based
on the values on table 2. The parameters are or-
dered from the most sensitive to the least sensi-
tive. This result shows that, when the parameter
values of π, µ, K, γ, φ and ρ increases while the
other are kept constant they increase the value
of ℜ0 which implies these parameters increases
the endemicity of typhoid disease. Whereas the
parameters µ, d1, d2, θ, β decreases the value of
ℜ0 while the other are kept constant which im-
plies these parameters decrease the endemicity of
typhoid disease.

5 Characterization of an Opti-
mal Control

In this section we apply optimal control method
for the system (1-6) by using Pontryagin’s
maximum principles in [19]. The optimal control
model is an extension of typhoid model in (1-6)
by incorporating the following three controls
mensioned below.

1. u1 is the prevention effort for susceptible
population.

2. u2 is treatment used for infectious class.

3. u3 is screaning used for carrier class.

After incorporating u1, u2 and u3 in typhoid
model (1-6), we get the following model.

dE
dt =pπ − φ(1− u1)E − µE
dS
dt =(1− p)π + φ(1− u1)E

+αR− (1− u1)λS − µS
dC
dt =ρ(1− u1)λS − (γ + u3)C

−(θ + u2)C − (d1 + µ)S...................................(16)
dI
dt=(1− ρ)(1− u1)λS + (γ + u3)C

−(β + u2)I − (d2 + µ)I
dR
dt =(θ + u2)C + (β + u2)I − (α+ µ)R
dB
dt =r(1− B

M )B
The control functions u1, u2 and u3 are bounded,
Lebesgue integrable functions, which is defined
as
U={(u1(t), u2(t), u3(t)) : 0 ≤ u1(t) < 1,
0 ≤ u2(t) < g, 0 ≤ u3(t) < 1, 0 ≤ t ≤ T}

Where g is the drug efficacy for typhoid
infected individual. We need to obtain a control
U, E, S, C, I, R and B that can minimize
the proposed objective function J where the
objective functional is taken from the literature
on epidemic model [7], and it is given by

J = minu1,u2,u3

∫ tf
0 (b1C+b2I+

1
2

∑3
i=1wiu

2
i )dt

Where b1, b2 and wi are positive. The expres-
sion 1

2wiu
2
i represents costs which is associated

with the controls ui and tf is the final time. The
coefficients are balancing cost factors. Now we
seek to find an optimal triple u∗1, u

∗
2, u

∗
3, such that

J(u∗1, u
∗
2, u

∗
3) = min{J(u1, u2, u3) : u1, u2, u3 ∈

U} ..................................(17)

Where U = {J(u1, u2, u3)} is a measurable set
and t ∈ [0, tf ] for the control set.
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Table 1: Parameter values for typhoid model.

Parameters Descriptions values source

π Recruitment rate 100 [7]
φ Proportion of populations which loses immunity 0.8 [17]
µ Natural mortality rate 0.004 Assumed
K Concentration of Salmonella bacteria in food and water 10,000 Assumed
ν Injestion rate of Salmonella 0.9 [7]
M Carrying capacity of salmonnella 100,000 Assumed
d1 = d2 Typhoid induced death rate 0.052 [7]
γ Rate at which carrier population enter into infectious class 0.36 Assumed
β Recovery rate of infectious class by natural immunity 0.02 [7]
α Removal rate from recovered class to susceptible class 0.000904 [2]
θ Recovery rate of carriers by natural immunity 0.03 Assumed
ρ Probability of susceptible population joining the carrier state 0.42 Assumed
p Probability of immune population joining susceptible class 0.3 Assumed

Table 2: Sensitivity indeces.

Parameters Sensitivity index

π +ve
ν +ve
K +ve
γ +ve
ρ +ve
φ +ve
µ -ve
d1 -ve
d2 -ve
θ -ve
β -ve

5.1 Existence of an Optimal Control

The necessary condition that an optimal solution
is guaranteed under [19]. The existence of an op-
timal control can be proved by the result in [6].
The system of equation (1-6) is bounded by a lin-
ear system for a finite time interval the detail of
the prof is given in [6].
For the optimal control problems we need to
check the following properties are satisfied.

1. The set of controls and corresponding state
variables is non-empty.

2. The control set U is convex and closed.

3. The RHS of the system (1-6) is bounded by
the linear function in the state and control.

4. The integrand of the objective functional is
concave on U .

5. The function is bounded below by a2 −
a1(u

2
1 + u22 + u23)

α
2 where a1 > 0, a2 > 0

and α > 1.

The existence result in [13] for the system (1-6)
with bounded coefficients is used to satisfy the
condition under (1).
The control set U is convex and is closed by def-
inition.
The RHS of the state variables in (1-6) satisfies
condition (3) as the state solutions are a priori
bounded.
The integrand in the objective functional
b1C + b2I +

1
2

∑3
i=1wiu

2
i is clearly concave on U .

Finally, there are a1 > 0, a2 > 0 and α > 1 satis-
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fying
b1C+ b2I+

1
2

∑3
i=1wiu

2
i ≤ a2−a1(u

2
1+u22+u23)

α
2

because the state variables are bounded. Hence,
there exist an optimal control (u1, u2, u3) that
minimize the objective functional, J(u1, u2, u3).

5.2 Hamiltonian and Optimality Con-
dition

The necessary condition for the optimal triple is
obtained using the principle in [19]. Therefore,
using this principle we get a Hamiltonian which
is defined as:

H(E,S,C, I,R,B, t) = L(C, I, u1, u2, u3) +
λ1

dE
dt + λ2

dS
dt + λ3

dC
dt + λ4

dI
dt + λ5

dR
dt + λ6

dB
dt

Where

L(C, I, u1, u2, u3) = b1C + b2I +
1

2

3∑
i=1

wiu
2
i ,

λi is adjoint variable to be determined using Pon-
tryagin’s Maximum Principle.

Theorem 5.1 For an optimal control set u1, u2
and u3 that minimizes J over U there are adjoint
variables λ1, λ2, ...λ6 such that:

dλ1
dt = λ1[φ(1− u1) + µ]− λ2φ(1− u1)
dλ2
dt = λ2[

(1−u1)νB
K+B + µ]− λ3ρ(1− u1)

νB
K+B−

λ4(1− ρ)(1− u1)
νB

K+B
dλ3
dt = −b1 + λ3(γ + u3 + θ + u2 + d2 + µ)−
λ4(γ + u3)− λ5(θ + u2)
dλ4
dt = −b2 + λ4(β + u2 + d2 + µ)− λ5(θ + u2)
dλ5
dt = −λ2α+ λ5(α+ µ)
dλ6
dt = λ6(−r + 2rB

M )

With transversality conditions, λi(tf ) = 0
for i = 1, 2, ...6.

Furthermore, we obtained the control set
(u∗1, u

∗
2, u

∗
3) characterized by ∂H

∂u∗
i

= 0 for

i = 1, 2, ..., 6. Hence, we obtained

u∗1(t) = max{0,min(1, σ1)}

u∗2(t) = max{0,min(0.85, σ2)}

u∗3(t) = max{0,min(1, σ3)}

Where σ1 =
(−λ1+λ2)φE+[−λ2+λ2ρ+λ4(1−ρ)]λS

w1

σ2 =
(λ3−λ5)C+(λ4−λ5)I

w2
and σ3 =

(λ3+λ4)C
w3

Proof. The adjoint variables and transversality
conditions are standard results of Potryagin’s
maximum principle in [19]. To obtain the adjoint
equations we differentiate the Hamiltonian H
w.r.t the state variables E,S,C, I,R and B
respectively and the we obtain:

dλ1
dt = −∂H

∂E = λ1[φ(1− u1) + µ]− λ2φ(1− u1)
dλ2
dt = −∂H

∂S = λ2[(1− u1)
νB

K+B + µ]

−λ3ρ(1− u1)
νB

K+B − λ4(1− ρ)(1− u1)
νB

K+B
dλ3
dt = −∂H

∂C = −b1 + λ3(γ + u3 + θ + u2 + d2 + µ)

−λ4(γ + u3)− λ5(θ + u2)
dλ4
dt = −∂H

∂I = −b2 + λ4(β + u2

+d2 + µ)− λ5(θ + u2)
dλ5
dt = −∂H

∂R = −λ2α+ λ5(α+ µ)
dλ6
dt = −∂B

∂B = λ6(−r + 2rB
M )

Again using the method in [19] we obtain the
controls by solving ∂H

∂u∗
i
= 0 for i = 1, 2, 3 then

u∗1 =
(−λ1+λ2)φE+[−λ2+λ3ρ+λ4(1−ρ)]λS

w1

u∗2 =
(λ3−λ5)C+(λ4−λ5)I

w2
and u∗3 =

(λ3+λ4)C
w3

Thus, writing u∗1, u
∗
2 and u∗3 using standard con-

trol arguments involving the bounds.

u∗1 =


σ1, if 0 < σ1 < 1;

0, if σ1 ≤ 0;

1, if σ1 ≥ 1

u∗2 =


σ2, if 0 < σ2 < 0.85;

0, if σ2 ≤ 0;

1, if σ2 ≥ 1

u∗3 =


σ3, if 0 < σ3 < 1;

0, if σ3 ≤ 0;

1, if σ3 ≥ 1

Hence, the following optimality system is formed.
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

dE
dt = pπ − φ(1− u1)E − µE
dS
dt = (1− p)π + φ(1− u1)E + αR− (1− u1)λS

−µS
dC
dt = ρ(1− u1)λS − (γ + u3)C − (θ + u2)C−
(d1 + µ)C
dI
dt = (1− ρ)(1− u1)λS + (γ + u3)C − (β + u2)I

−(d2 + µ)I................................(18)
dR
dt = (θ + u2)C + (β + u2)I − (α+ µ)R
dB
dt = r(1− B

M )B
dλ1
dt = λ1[φ(1− u1) + µ]− λ2φ(1− u1)
dλ2
dt = λ2[µ+ (1− u1)λ]− λ3ρ(1− u1)λ

−λ4(1− ρ)(1− u1)λ
dλ3
dt = −b1 + λ3(γ + θ + u3 + u2 + d2 + µ)

−λ4(γ + u3)− λ5(θ + u2)
dλ4
dt = −b2 + λ4(β + u2 + d2 + µ)− λ5(θ + u2)
dλ5
dt = −λ2α+ λ5(α+ µ)
dλ6
dt = λ6(−r + 2rB

M )

λi(tf ) = 0, fori = 1, 2, ...6, E(0) = E0, S(0) = S0,

C(0) = C0, I(0) = I0, R(0) = R0, B(0) = B0

6 Numerical Simulations

In the present work, we have used an extension of
SIR epidemic model with control measures. The
simulations are carried out in order to determine
the impact of control measures on the typhoid
disease dynamics. Following parameter values
are used in the model for simulation purpose.

π = 100, α = 0.000904, µ = 0.004, d1 =
0.052, β = 0.02, θ = 0.0003, ρ = 0.42, ν = 0.9, γ =
0.36, p = 0.3, φ = 0.8,K = 10, 000, T = 4, b1 =
2, b2 = 1, w1 = 2, w2 = 3, w3 = 5 and initial
values

E(0) = 100, S(0) = 400, C(0) = 180, I(0) =
120, R(0) = 100, B(0) = 5000

The optimal solution is obtained by solving
the optimality system (18) consisting the state
system, the adjoint system and transversality
condition.

To solve the state system we use a forward
fourth order Runge-Kutta method and solve the

adjoint system using a backward fourth order
Runge-Kutta method. The solution iterative
scheme involves making a guess of the controls
and solves the state system using forward fourth
order Runge-Kutta scheme. Due to the transver-
sality condition (18), the adjoint equations are
then solved by the backward fourth order Runge-
Kutta scheme using the current iteration solu-
tions of the state equations. The controls are then
updated using a convex combination of the pre-
vious controls and the values obtained using the
characterizations. The updated controls are then
used to repeat the solution of the state and ad-
joint systems. This process is repeated until the
values in the current iteration are close enough to
the previous iteration values in (17).

In this section we investigate numerically the
effect of the following optimal control strategies
on the spread of the disease in the population.

1. Using prevention effort (u1), that protect
susceptibles from contracting the disease
(u2 = 0, u3 = 0)

2. Using treatment effort (u2), for infectious in-
dividuals (u1 = 0, u3 = 0)

3. Using screaning effort (u3), for carrier indi-
viduals (u1 = 0, u2 = 0)

4. Using prevention (u1) for susceptible popu-
lation and treatment (u2) for infectious indi-
viduals (u3 = 0)

5. Using prevension (u1) and screening (u3) ef-
fort (u1 = 0)

6. Using treatment (u2) and screening (u3) ef-
fort. (u1 = 0)

7. Using all the three controls.

6.1 Control with prevention only

In figure 3 we observe that using prevention sig-
nificantly affect the number of carriers and infec-
tious population as the case compared without
control. From this we can infer that applying
prevention measure on infected population leads
to a faster reduction of the proportion of both
carrier and infected population as compared to
the case without a control measure. This result
agrees with result in [7].
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6.2 Control with treatment only

u2 is a treatment used to optimize the objective
functional J ; the other controls (u1 and u3) re-
lated to typhoid fever are set to zero. When a
treatment is imposed on infectious population the
simulation on figure 4 shows there will be a slight
decline of the proportion of infectious population.
As a result it is possible to deduce that applying
a treatment for typhoid infected population has a
slight effect in minimizing the spread of the dis-
ease. A similar result is obtained in [16].

6.3 Controls with screening only

The control measure with screening (u3) is used
to optimize the objective functional J ; the other
controls (u1 and u2) related to typhoid fever are
set to zero. From figure 5 it is observed that
the proportion of carrier population significantly
decreased with time and there is a slight reduc-
tion of the proportion of infectious population.
Therefore, using screening of the carrier popula-
tion helps to reduce the rate of carrier populations
as compared to the case without control.

Figure 3

6.4 Controls with prevention and
treatment

The controls u1 and u2 are used to optimize the
objective functional J ; while the control u3 is set
to zero. The simulation diagram in figure 6 shows
that applying the controls prevention and treat-
ment on typhoid infected population has a con-
siderable impact in minimizing the incidence of
typhoid cases in a community. From this we can

Figure 4

Figure 5

infer that optimized prevention and treatment re-
duces the transmission of typhoid disease as com-
pared to the case without control.

6.5 Controls with prevention and
screening

The controls u1 and u3 are used to optimize the
objective functional J ; while the control u2 is set
to zero. From the simulation diagram on figure 7
we observe that this strategy shows there is higher
reduction of the proportion of both carrier and
infectious population.

6.6 Controls with treatment and
screening

The controls u2 and u3 are used to optimize the
objective functional J ; while the control u1 is set
to zero. From the simulation diagram on figure
8 we observe that this strategy shows that there
is a reduction of the proportion of both symp-
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Figure 6

Figure 7

tomatic and asymptomatic populations. This re-
sult agrees with the results of some of the studies
[2], [3], [8] and [17].

6.7 Controls with prevention, treat-
ment and screening

Here we used all the intervention strategies which
enable to minimize the objective functional J .
From simulation diagram in figure 9 we observe
that the proportion of both carriers and infec-
tious population rapidly decline to zero before
two months. Therefore, applying this strategy
helps to eradicate typhoid disease from the com-
munity.

7 Discussions and Conclusions

In this study a deterministic mathematical model
of typhoid fever consisting of immune, carrier and
infectious stage has been established. The model
consists of the assumption that certain popula-
tion groups exists who are immune due to im-

Figure 8

Figure 9

muno prophylaxis against typhoid fever. Since
vaccines are not 100% effecient a certain fraction
of these population group will lose immunity and
join susceptible class. A qualitative and numer-
ical analysis of the model was done. We have
shown that there exist a feasible region where
the model is well posed biologically meaningful
in which a unique disease free equilibrium point
exists. The steady state point were obtained and
the local and global stability conditions were in-
vestigated. The model has disease free equilib-
rium point if ℜ0 < 1 and has a unique endemic
equilibrium point if ℜ0 > 1. Sensitivity analysis
of the model parameter was done. The expres-
sion for the basic reproduction number ℜ0 shows
ingestion rate of Salmonella bacteria has a direct
effect either in increasing or decreasing the en-
demicity of the disease. If this is the case sani-
tation is expected to be a public health improve-
ment priority.
For the given model an optimal control problem
is formulated by incorporating different control
strategies The optimality condition was estab-
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lished by Pontryagin’s Maximum Principle. A
numerical simulation of the model was conducted
and different combinations of control strategies
were compared. It was observed that prevention
has a significant impact in minimizing the inci-
dence of the disease. It was also shown that a
treatment given for infected group and screening
of the carriers minimizes the transmission of the
disease. Finally from the simulation diagram it
was observed that a combination of the three con-
trol strategies rapidly eradicates typhoid disease
before two months time. This result agrees with
the global result in [22] only if drug resistant cases
are not considered.
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