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Abstract

The aim of this paper is to present an algebraic method which is called Wu’s method for solving fuzzy
complex systems of linear equations. Wu’s method is used as a solution procedure for solving the crisp
polynomial equations system. This algorithm leads to solving characteristic sets that are amenable
to easy solution. First, the system of fuzzy complex systems of linear equations is transformed to
an equivalent crisp polynomial equations system. Then, using Wu’s method an algorithm for finding
fuzzy solutions of original system is introduced. One of the great benefits of our approach is that
gives all solutions at a time. To illustrate the easy application of the proposed method, numerical
examples are given and the obtained results are discussed.
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1 Introduction

S
olving systems of fuzzy equations has been
challenge to researcher in many fields. The

initial work focused on solving a fuzzy linear
equation [5]. Many approaches have been pro-
posed to solve fuzzy linear systems in different
form [1, 11, 12, 24, 28, 37]. However, such
techniques cannot easily be applied to complex
systems (involving many variables, implicit vari-
ables, and high nonlinear degrees), and results
are difficult to evaluate. In these method, it is
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necessary to know that solutions are negative or
positive. Otherwise, we cannot use the methods.
The determination of a suitable initial point for
the methods is not easy. In these methods, we can
only find some of the approximate solutions. In
the methods, we have no criteria or necessary and
sufficient conditions to recognize the solution ex-
istence of the fuzzy systems. The methods do not
give information about the number of solutions of
the fuzzy systems and if the fuzzy systems have
no solutions, then the methods can be misleading.
To overcome the drawbacks, we are motivated to
propose efficient algebraic approaches for the res-
olution of fuzzy polynomial equations and fuzzy
polynomial equations systems [13, 14, 15, 16, 30].
Complex system of linear equations plays a vi-
tal role in real life problems such as optimization,
current flow, economics and engineering. Hence,
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its resolution has an essential role in the fields. A
general complex system of linear equations may
be written as CZ = W , where C and W are
standard complex matrices and Z is the unknown
complex vector. For the sake of simplicity, vari-
ables and parameters of these systems are defined
exactly in the modeling. But in actual practice,
the parameters and variables may be uncertain or
vague and those are found, in general, by some ex-
periment or experience. Hence, to overcome the
uncertainty, one may use the complex numbers
as fuzzy. Accordingly, fuzzy complex system of
linear equations is considered as

[C]{Z̃} = {W̃},

where the coefficient matrix [C] is an usual
complex matrix, {W̃} is a column vector of fuzzy
complex number and {Z̃} is the vector of fuzzy
complex unknown.

Fuzzy complex number was first proposed by
Buckley [4]. Qiu et al. [26, 27] discussed the
sequence and series of fuzzy complex numbers
and their convergence. Solution of fuzzy complex
system of linear equations was described by
Rahgooy et al. [29] and applied to circuit
analysis problem. Jahantigh et al. [21] developed
a numerical procedure for complex fuzzy linear
systems. Behera and Chakraverty [2] proposed a
new and simple center and width based method
for solving fuzzy real and complex system of
linear equations. Solution sets of complex linear
interval systems were investigated by Hladik [20].
Householder method was used by Djanybekov
[10] for the solution of interval complex linear
systems. In interval complex linear systems, the
coefficient matrix was also taken as interval by
the authors [10]. Further, Candau et al. [6]
analyzed the complex interval arithmetic using
polar form. Fuzzy modeling and identification
procedure was implemented by Cao et al. [7]
for the analysis and design of complex control
systems. Filev [18] applied fuzzy approach to the
control of nonlinear systems. Further Petkovic
and Petkovic [25] investigated the complex
interval arithmetic and applied it to various
example problems. The authors [25], presented
a circular form of the interval complex number.
Complex interval arithmetic was also studied

by Rokne and Lancaster [31]. Recently, Behera
and Chakraverty [3] proposed a new method for
solving general fuzzy complex system of linear
equations. In the original system, the elements
of unknown variable vector and right hand side
vector are considered as complex fuzzy number.
Initially the general system is solved by adding
and subtracting the left and right bounds of
the fuzzy complex unknown and right hand side
fuzzy complex vector respectively. Subsequently
above obtained solutions are used to get the final
solution of the general fuzzy complex system
of linear equations. Recently, Farahani et al.
[17] proposed an approach to solve the fuzzy
complex system of linear equations based on the
eigenvalue method. In the eigenvalue method,
the computation of solutions of a system is done
independently with respect to each other. In the
proposed method, the computation of solutions
of a fuzzy complex system of linear equations
leads to finding the eigenvalues of a matrix.
Hence, the useful tools can be used in the linear
algebra such as converting the matrix into a
triangular matrix via elementary row operations
and applying the determinant properties.

Our method is based on the Wu’s algorithm to
solve fuzzy complex systems of linear equations.
Since 1980, Wu Wen-Tsun has considerably
improved Ritt’s theory and developed some
efficient algorithms for zero decomposition of
arbitrary polynomial systems [32, 34]. Ritt-
Wu’s method successfully was applied to many
problems in science and engineering [35]. This
method is more efficient than approach for
solving real polynomial equation systems in
some cases such as [8, 19, 22]. Using Wu’s
algorithm to solve polynomial equation systems
leads to solving characteristic sets. As these sets
have triangular structure, finding the variety
of these sets can be simply done by a forward
substituting. The main idea of the proposed
approach is based on converting the fuzzy
complex system of linear equations into a crisp
system and getting a polynomial system of
8n equations and 6n unknowns such that the
solutions of the new system may be obtained by
a successful scheme of solving systems. Thus
solving a system of fuzzy polynomial equations is
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converted to a system of univariate polynomial
equations where finding the roots of these poly-
nomials is easier than solving the original system.

The rest of the paper is set out as follows. In Sec-
tion 2, preliminaries on fuzzy arithmetic, fuzzy
complex arithmetic, polynomials and fuzzy com-
plex system of linear equations are introduced.
The main algorithm to find solutions of the fuzzy
complex system of linear equations is presented in
Section 3. The proposed method is illustrated by
solving some examples in Section 4. Last section
includes the conclusion.

2 Preliminaries

This section contains two subsections. Prelim-
inaries on fuzzy arithmetic and fuzzy complex
arithmetic are introduced in the first subsection.
In the second subsection, fuzzy complex system
of linear equations is explained.

2.1 Fuzzy arithmetic and fuzzy com-
plex arithmetic

In this subsection, fuzzy arithmetic and fuzzy
complex arithmetic are reviewed.

Definition 2.1 A fuzzy subset ũ of R is defined
by its membership function

µũ : R −→ [0, 1],

which assigns a real number in the interval [0, 1]
to each element x ∈ R and the value µũ(x) shows
the grade of membership of x in ũ.

Definition 2.2 A fuzzy number ũ is a fuzzy set
as µũ : R −→ [0, 1] which satisfies:

1. µũ is normal, i.e., there exists an element t0
such that µũ(t0) = 1;

2. µũ is quasi-concave, i.e., µũ(λt1+(1−λ)t2) ≥
min{µũ(t1), µũ(t2)},∀t1, t2 ∈ R, ∀λ ∈ [0, 1];

3. µũ is upper semi-continuous, i.e., ũ(r) =
{x ∈ R : µũ(x) ≥ r} is closed subset for
each r ∈ (0, 1];

4. The 0-level set of ũ0 is compact subset of R.

The set of all fuzzy numbers is denoted by E1.

Definition 2.3 A popular fuzzy number is the
triangular fuzzy number that is presented by ũ =
(a1, a2, a3), where, a1 ≤ a2 ≤ a3 and its member-
ship function is as follows:

µũ(x) =



0 x ≤ a1,

x−a1
a2−a1

a1 ≤ x ≤ a2,

a3−x
a3−a2

a2 ≤ x ≤ a3,

0 x > a3.

With regard to Definition 2.2 and the above
points, it is concluded that the r-cut ũ(r) of ũ
is a compact and convex subset of R for each
r ∈ [0, 1], i.e., ũ(r) is a closed interval in R for
each r ∈ [0, 1].
The r-cut of fuzzy number (2.3) is as follows:

ũ(r) = [u(r), u(r)] = [a1+(a2−a1)r, a3+(a2−a3)r)].
(2.1)

Using the concept of r-level sets, the relationship
between ordinary sets and fuzzy sets can be char-
acterized by the following theorem.

Theorem 2.1 [23] (Decomposition Theorem) A
fuzzy set ũ can be represented by ũ =∪

r∈[0,1] r.ũ(r) denotes the algebraic product of a
scaler of r with the r-level set of ũ(r).

The arithmetical operations on fuzzy numbers,
based on Zadeh’s extension principle [36] and de-
composition theorem [23] are numerically per-
formed on level sets, i.e., r-cuts. From the inter-
val arithmetic [23], the arithmetical operations on
fuzzy numbers are written for their r-level sets as
follows.

Definition 2.4 For arbitrary fuzzy numbers ũ, ṽ,
and real number k, we have:

1. ũ = ṽ if and only if u(r) = v(r) and u(r) = u(r),
for all r ∈ [0, 1],

2. u(r) + v(r) = [u(r), u(r)] + [v(r), v(r)] =
[u(r) + v(r), u(r) + v(r)],
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3.

k.u(r) =

 [k.u(r), k.u(r)] k ≥ 0,

[k.u(r), k.u(r)] k < 0.

Definition 2.5 According to [2], an arbitrary
fuzzy complex number may be represented as z̃ =
p+ iq, where p = [p(r), p(r)] and q = [q(r), q(r)],
for all 0 ≤ r ≤ 1.

As such the above can be written as

z̃ = [p(r), p(r)] + i[q(r), q(r)].

Definition 2.6 For any two arbitrary fuzzy com-
plex number z̃1 = x1 + iy1 and z̃2 = x2 + iy2
(where, x1, y1, x2 and y2 are fuzzy numbers), the
fuzzy complex arithmetic is written for addition
and multiplication as

1. z̃1 + z̃2 = (x1 + x2) + i(y1 + y2),

2. z̃1 × z̃2 = {(x1 × x2) − (y1 × y2)} + i{(x1 ×
y2) + (y1 × x2)}.

2.2 Fuzzy complex system of linear
equations

The n × n fuzzy complex system of linear equa-
tions is written as

c11z̃1 + c12z̃2 + ...+ c1nz̃n = w̃1,
c21z̃1 + c22z̃2 + ...+ c2nz̃n = w̃2,
...
cn1z̃1 + cn2z̃2 + ...+ cnnz̃n = w̃n.

(2.2)

In matrix notation we may then write the above
as [C]{Z̃} = {W̃}, where the coefficient matrix
[C] = (ckj), 1 ≤ k ≤ n, j ≤ n is a complex n × n
matrix, {W̃} = {w̃k}, 1 ≤ k is a column vector
of fuzzy complex number and {Z̃} = {z̃j} is the
vector of fuzzy complex unknown. System (2.2)
can be represented as

n∑
j=1

ckj z̃j = w̃k, k = 1, 2, ..., n. (2.3)

The complex coefficient matrix, fuzzy complex
unknown and the right hand fuzzy complex num-
ber vector may be written respectively as

ckj = akj + ibkj ,

Z̃ = z̃j = pj + iqj = [pj(r), pj(r)] + i[qj(r), qj(r)]

and

W̃ = w̃k = uj+ivj = [uk(r), uk(r)]+i[vk(r), vk(r)].

Next, the following equation is obtained by
substituting Z̃ and W̃ in Eq. (2.3)∑n

j=1(akj + ibkj)([pj(r), pj(r)] + i[qj(r), qj(r)])

= [uk(r), uk(r)] + i[vk(r), vk(r)], k = 1, 2, ..., n.
(2.4)

Eq. (2.4) can now be written as∑n
j=1 akj([pj(r), pj(r)] + i[qj(r), qj(r)])

+i
∑n

j=1 bkj([pj(r), pj(r)] + i[qj(r), qj(r)])

= [uk(r), uk(r)] + i[vk(r), vk(r)],

(2.5)

for k = 1, 2, ..., n. Then, Eq. (3.9) is equivalent
to the following equation:∑n

j=1 akj [pj(r), pj(r)] +
∑n

j=1−bkj [qj(r), qj(r)]

+i
∑n

j=1 akj [pj(r), pj(r)] +
∑n

j=1 bkj [qj(r), qj(r)]

= [uk(r), uk(r)] + i[vk(r), vk(r)]
(2.6)

for k = 1, 2, ..., n. Here, akj and bkj both may
be positive and/or negative. To handle the posi-
tive and negative values of akj and bkj the above
equation is written as below∑

akj≥0 akj [pj(r), pj(r)]+∑
bkj<0−bkj [qj(r), qj(r)]+∑
akj<0 akj [pj(r), pj(r)]+∑

bkj≥0−bkj [qj(r), qj(r)] + i

∑
akj≥0 akj [pj(r), pj(r)]+∑
bkj≥0−bkj [qj(r), qj(r)]+∑
akj<0 akj [pj(r), pj(r)]+∑
bkj<0 bkj [qj(r), qj(r)]

= [uk(r), uk(r)] + i[vk(r), vk(r)],

(2.7)
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for k = 1, 2, ..., n. So, with regard to Definition
2.4, the parametric form of system (2.2) can be
presented in the following form:

uk(r) =
∑

akj≥0 akjpj(r) +
∑

bkj<0−bkjqj(r)

+
∑

akj<0 akjpj(r) +
∑

bkj≥0−bkjqj(r),

uk(r) =
∑

akj≥0 akjpj(r) +
∑

bkj<0−bkjqj(r)

+
∑

akj<0 akjpj(r) +
∑

bkj≥0−bkjqj(r),

vk(r) =
∑

akj≥0 akjpj(r) +
∑

bkj≥0−bkjqj(r)

+
∑

akj<0 akjpj(r) +
∑

bkj<0 bkjqj(r),

vk(r) =
∑

akj≥0 akjpj(r) +
∑

bkj≥0−bkjqj(r)

+
∑

akj<0 akjpj(r) +
∑

bkj<0 bkjqj(r).

(2.8)

Theorem 2.2 The systems of (2.2) and (2.7)
have the same solutions.

Proof. Since all of the coefficients and all of
the unknowns in the polynomial functions of
fk(z̃1, ..., z̃n) =

∑n
j=1 ckj z̃j , for k = 1, ..., n,

are fuzzy complex numbers, according Definition
(2.6), the values of fk(z̃1, ..., z̃n), for k = 1, ..., n,
are fuzzy complex numbers. With regard to
Definition (2.4), two fuzzy complex numbers of
fk(z̃1, ..., z̃n) and w̃k , for k = 1, ..., n, are equal
when Eq. (2.8) hold for 1 ≤ k ≤ n, j ≤ n.

3 Resolution of fuzzy complex
systems of linear equations
via Wu’s method

In this section, an approach based on Wu’s algo-
rithm is presented for solving a system of fully
fuzzy polynomial equations.

3.1 Wu’s Algorithm and Varieties

In this subsection, the characteristic sets are in-
troduced at first. Then, Wu’s Algorithm and
its relation with varieties will be explained. Let
Γ = K[x1, . . . , xn] be the polynomial ring in n
variables over a field K of characteristic zero. We
assume the variables x1, . . . , xn ordered so that
xi < xj for i < j. If the variable xm is selected,

then a polynomial f ∈ Γ can be written as a uni-
variate polynomial in variable xm as

f = Itx
t
m + It−1x

t−1
m + · · ·+ I0,

where t, the degree of f with respect to xm, is
denoted by degxm

(f), and

Ii ∈ K[x1, . . . , xm−1, xm+1, . . . , xn],

for 0 ≤ i ≤ t. We denote by lc(f, xm) the
leading coefficient It. The class of f is defined
as the greatest subscript c of x appearing in f
and is denoted by class(f). The class of a con-
stant is defined to be zero. The variable xc and
lc(f, xc) are called leading variable and initial of
f and are denoted by lv(f) and ini(f), respec-
tively. A polynomial g ∈ Γ is said to be reduced
with respect to f if degxc

(g) < degxc
(f) where

c = class(f) ̸= 0. The polynomial g is reduced
with respect to F ⊂ Γ if g is reduced with re-
spect to any f ∈ F . We define a partial order on
polynomials as follows. Let f, g ∈ Γ. The poly-
nomial g has a higher rank than f and is denoted
by f < g if one of the following hold;

1. class(f) < class(g).

2. class(f) = class(g) = c and degxc
(f) <

degxc
(g).

If class(f) = class(g) = c and degxc
(f) =

degxc
(g) or both polynomials are constant, then

we say f and g are equivalent, denoted by f ∼ g.
An ordered polynomial set F = {f1, f2, . . . , fr}
is a triangular set if either r = 1 or class(f1) <
class(f2) < · · · < class(fr). The triangular set F
is called an ascending set if fj is reduced with
respect to fi for i < j. Now we extend the
partial order on polynomials to provide a partial
order for ascending sets. Let F = {f1, . . . , fr}
and G = {g1, . . . , gk} be ascending sets. We say
F < G if one of the following two cases holds;

1. There is j ⩽ min{r, k} such that fi ∼ gi for
i < j, but fj < gj .

2. r > k and fi ∼ gi for all i ⩽ k.

For incomparable ascending sets we write F ∼
G. When F < G we say that F has a lower rank
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than G. An ascending set of lowest rank consist-
ing of polynomials chosen from F is called basic
set of F . Now, we introduce an interesting divi-
sion for multivariable polynomials that is known
as the pseudo division.

Proposition 3.1 [9] Let f, g ∈ Γ and class(f) =
c. Then there is an equation

Imc g = qf + r,

where q, r ∈ Γ, Ic = ini(f), m ⩾ 0, and either
r = 0 or r is reduced with respect to f .

The polynomial r in Proposition 3.1 is known
as a pseudo remainder of g on pseudo division by
f is denoted by prem(g, f). Given an ascending
set F = {f1, . . . , fr} and g ∈ Γ. By successive
pseudo divisions, we get the following remainder
formula

Is11 Is22 · · · Isrr g =
∑

qifi +R (3.9)

where Ii = ini(fi), si ⩾ 0, qi ∈ Γ and R is re-
duced with respect to F . If we choose each si
to be as small as possible, then R is unique and
is denoted by prem(g, F ). For a finite subset G
from Γ we put

prem(G,F ) = {prem(g, F ) | g ∈ G}.

The ideal generated in Γ by F is denoted by ⟨F ⟩.

Definition 3.1 An ascending set B in Γ is called
a characteristic set of a non-empty polynomial set
F ⊂ Γ if B ⊂ ⟨F ⟩ and prem(F,B) = {0}.

Let F ⊂ Γ. The set

V (F ) = {(a1, . . . , an) ∈ Kn | f(a1, . . . , an) = 0,
∀f ∈ F}

is the variety defined by F . For a polynomial set
G ⊂ Γ, we define V (F/G) = V (F )\V (G), called
quasi-algebraic variety. The main properties of
characteristic sets are summarized in the follow-
ing theorem.

Theorem 3.1 [32] (Wu’s Well-ordering Princi-
ple) Let B be a characteristic set of F ⊂ Γ. Then

V (F ) = V (B/IB)
∪

∪b∈BV (F ∪B ∪ {ini(b)})

where IB =
∏

b∈B ini(b).

Based on Wu’s Well-ordering Principle Theorem,
Wu’s algorithm is presented to give all character-
istic sets that are needed for computing V (F ).

Algorithm [33] (Wu’ s Method)
Input: F ⊂ Γ, a non-empty set
Output: Z, a set of characteristic sets such that

V (F ) =
∪

B∈Z V (B/IB),
where

IB =
∏

b∈B ini(b).

1. Z := ∅, D := {F}

2. While D ̸= ∅ Do

2.1. Pick an element F
′
from D

2.2. D := D\{F ′}
2.3. Choose a characteristic set B of F

′

2.4. If B ̸= {1} then

2.4.1. Z := Z ∪ {B}
2.4.2. D := D

∪
∪b∈B{F

′ ∪ B ∪ {ini(b) |
ini(b) ̸= 1}}

3. Return Z

By Wu’s algorithm, we can write the V (F ) as a
union of quasi-algebraic variety of characteristic
sets. Therefore, we can find V (F ) easily because
these sets are easy to solve.

Example 3.1 Apply Wu’s algorithm to F =
{xy+x+y, xy2+x+y} with y < x. Put F ′ := F ,
then D = ∅. The set B = {y3 − y2, xy + x + y}
is a characteristic set. Thus Z := {B}. We have
ini(xy + x + y) = y + 1 and ini(y2 − y3) = 1,
therefore, D := {F ′ ∪ {y + 1}}. Now put F ′ :=
{xy + x + y, xy2 + x + y, y + 1}. The set {1} is
a characteristic set of F ′ and D = ∅. Therefore,
the output is Z = {{y3 − y2, xy + x+ y}} and

V (F ) = V ({y3 − y2, xy + x+ y})\V (y + 1)
= {(x = 0, y = 0), (x = −1

2 , y = 1)}.

3.2 Main idea

In this section we propose a new method to
solve a fuzzy complex system of linear equations.
Considering the fuzzy complex system of linear
equations as (1), where pj and qj in the fuzzy
complex unknown z̃j = pj + iqj and uk and vk
in the right hand fuzzy complex number vector
w̃k = uk + ivk, 1 ≤ k ≤ n, j ≤ n are represented
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by triangular fuzzy numbers (pj1, pj2, pj3),
(qj1, qj2, qj3), (uk1, uk2, uk3) and (vk1, vk2, vk3).
Then, with regard to Eq. (2.1), we have

pj(r) = pj1 + (pj2 − pj1)r,

pj(r) = pj3 + (pj2 − pj3)r,
qj(r) = qj1 + ((pj2 − pj1)r,

qj(r) = qj3 + (qj2 − qj3)r,

and
uj(r) = uj1 + (uj2 − uj1)r,

uj(r) = uj3 + (uj2 − uj3)r,
vj(r) = vj1 + ((vj2 − vj1)r,

vj(r) = vj3 + (vj2 − vj3)r.

Now, if we substitute

pj(r), pj(r), qj(r), qj(r), uj(r), uj(r), vj(r)

and vj(r) in (9), with attention to Definition 2.4,
system (1), may be converted into a crisp system
which is a polynomial system with 8n equations
and 6n unknowns. Now, Wu’s algorithm gives all
characteristic sets that are needed for computing
the variety defined by crisp system in the ring

R = R[p11, p12, p13, p21, p22, p32, ...pn1,
pn2, pn3, q11, q12, q13, q21, q22, q32, ...qn1, qn2, qn3],

So, we can find the solution of the crisp system
by a forward substitution. On the other hand,
according to Theorem 2.2, the original system
and the crisp system have the same solutions.
So, all of the solutions of the original system is
obtained.
Now, we express the resolution processes of a
fuzzy complex system of linear equations using
the basis in terms of the following algorithm.

Algorithm (Main Algorithm)

Input: The fuzzy complex system of linear equa-
tions F
Output: The set of solutions, i.e., S for F

1. Compute the parametric form of F

2. Compute the crisp form of system F from the
parametric system, i.e., F′

3. S := WuMethod(F′
)

4. End

4 Applications and numerical
examples

In this section, we study some examples of the
fuzzy complex systems of linear equations and
solve them with the proposed approach in this pa-
per. Then, their results are compared with other
methods. The applied fuzzy numbers in the fol-
lowing examples are the triangular fuzzy numbers
with the linear membership function (see Defini-
tion 2.3 in Subsection 2.1).

Example 4.1 [21] Let us consider 2×2 complex
fuzzy linear system as{

z̃1 − z̃2 = [r, 2− r] + i[1 + r, 3− r],
z̃1 + 3z̃2 = [4 + r, 7− 2r] + i[r − 4,−1− 2r].

We solve this system by our algorithm. Let
z̃1 = p1+ iq1 = (p11, p12, p13)+ i(q11, q12, q13) and
z̃2 = p2 + iq2 = (p21, p22, p23) + i(q21, q22, q33).
Now, the above system may be converted into
the following equivalent system that is called
parametric system:

([p11 + (p12 − p11)r, p13 + (p12 − p13)r]+
i[q11 + (q12 − q11)r, q13 + (q12 − q13)r])−
([p21 + (p22 − p21)r, p23 + (p22 − p23)r]+
i[q21 + (q22 − q21)r, q23 + (q22 − q23)r])
= [r, 2− r] + i[1 + r, 3− r],

([p11 + (p12 − p11)r, p13 + (p12 − p13)r]+
i[q11 + (q12 − q11)r, q13 + (q12 − q13)r])+
3([p21 + (p22 − p21)r, p23 + (p22 − p23)r]+
i[q21 + (q22 − q21)r, q23 + (q22 − q23)r])
= [4 + r, 7− 2r] + i[r − 4,−1− 2r].

The above system can be rewritten as follows:

([p11 + (p12 − p11)r, p13 + (p12 − p13)r]+
i[q11 + (q12 − q11)r, q13 + (q12 − q13)r])+
([−p23 + (−p22 + p23)r,−p21 + (−p22+
p21)r] + i[−q23 + (−q22 + q23)r,−q21+
(−q22 + q21)r])
= [r, 2− r] + i[1 + r, 3− r],

([p11 + (p12 − p11)r, p13 + (p12 − p13)r]+
i[q11 + (q12 − q11)r, q13 + (q12 − q13)r])
([3p21 + (3p22 − 3p21)r, 3p23+
(3p22 − 3p23)r] + i[3q21 + (3q22 − 3q21)r,
3q23 + (3q22 − 3q23)r])
= [4 + r, 7− 2r] + i[r − 4,−1− 2r].
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The above system can be rewritten as follows:

([p11 − p23 + (p12 − p11 − p22 + p23)r,
p13 − p21 + (p12 − p13 − p22 + p21)r]
+i[q11 − q23 + (q12 − q11 − q22 + q23)r,
q13 − q21 + (q12 − q13 − q22 + q21)r])+
= [r, 2− r] + i[1 + r, 3− r],

([p11 + 3p21 + (p12 − p11 + 3p22 − 3p21)r,
p13 + 3p23 + (p12 − p13 + 3p22 − 3p23)r]
+i[q11 + 3q21 + (q12 − q11 + 3q22 − 3q21)r,
q13 + 3q23 + (q12 − q13 + 3q22 − 3q23)r])
= [4 + r, 7− 2r] + i[r − 4,−1− 2r].

The equivalent crisp polynomial equation sys-
tem is obtained from the above system as follows:

F
′
:



p11 − p23 = 0,
p12 − p11 − p22 + p23 = 1,
p13 − p21 = 2,
p12 − p13 − p22 + p21 = −1,
q11 − q23 = 1,
q12 − q11 − q22 + q23 = 1,
q13 − q21 = 3,
q12 − q13 − q22 + q21 = −1,
p11 + 3p21 = 4,
p12 − p11 + 3p22 − 3p21 = 1,
p13 + 3p23 = 7,
p12 − p13 + 3p22 − 3p23 = −2,
q11 + 3q21 = −4,
q12 − q11 + 3q22 − 3q21 = 1,
q13 + 3q23 = −1,
q12 − q13 + 3q22 − 3q23 = −2.

Using Wu’s algorithm, the set of characteristic
sets for F

′
is

Z =
{
z1 = {−11 + 8p11, p12 − 2, 8p13 − 23,

−1 + 8q11, 4q12 − 3, 8q13 − 13, 8p21 − 7,

p22 − 1, 8p23 − 11, 8q21 + 11, 4q22 + 5, 8q23 + 7}
}
.

By Wu’s Well-ordering Principle Theorem, we
have

V (F
′
) = (V (z1)\V (a)) = (V (z1)\V (268435456)).

Therefore,

V (F
′
) =

{p11 = 11
8 , p12 = 2, p13 =

23
8 , p21 =

7
8 , p22 = 1,

p23 =
11
8 , q11 =

1
8 , q12 =

3
4 , q13 =

13
8 , q21 = −11

8 ,
q22 = −5

4 , q23 = −7
8}.

Finally, the equations corresponding to this basis
are solved, and the solution set of the system is
as:

z̃1 = p1 + iq1

= (1.375, 2, 2.875) + i(0.125, 0.75, 1.625)

= [1.375 + 0.625r, 2.875− 0.875r]+

i[0.125 + 0.625r, 1.625− 0.875r]

and

z̃2 = p2 + iq2

= (0.875, 1, 1.375) + i(−1.375,−1.25,−0.875)

= [0.875 + 0.125r, 1.375− 0.375r]+

i[−1.375 + 0.125r,−0.875− 0.375r].

Finally, we should mention that the proposed
method and the presented method in [3, 17] find
the same solution. But, the presented method in
[21] finds the solution

z̃1 = [1.375 + 0.625r, 2.875− 0.875r]

+i[0.125 + 0.625r, 1.625− 0.875r]

and

z̃2 = [0.875 + 0.125r, 1.375− 0.375r]

+i[1.375 + 0.125r, 0.875− 0.375r]

.

Example 4.2 A linear time invariant electric
circuit with complex coefficient and fuzzy complex
sources may be modeled as fuzzy complex system
of linear equations (Eq. (1)). Here, (ckj) is com-
plex coefficient matrix, {w̃k} is a fuzzy complex
source and {z̃j} may be current or voltage in the
system.

An example problem of a simple RLC circuit [29]
with fuzzy current and fuzzy source as shown in
Fig. 1 is considered. Corresponding fuzzy com-
plex system of linear equations for this circuit
problem may be represented as
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Figure 1: A RLC circuit with fuzzy current and
fuzzy source.


(10− i7.5)z̃1 − (6− i5)z̃2
= [4 + r, 6− r] + i[−1 + r, 1− r],

−(6− i5)z̃1 + (16 + i3)z̃2
= [−2 + r,−r] + i[−3 + r,−1− r].

Let

z̃1 = p1 + iq1 = (p11, p12, p13) + i(q11, q12, q13)

and

z̃2 = p2 + iq2 = (p21, p22, p23) + i(q21, q22, q33).

If we apply the proposed method in this paper,
the parametric form of the original system is as
follows:

(10− i7.5)([p11 + (p12 − p11)r, p13+
(p12 − p13)r] + i[q11 + (q12 − q11)r, q13+
(q12 − q13)r])− (6− i5)([p21+
(p22 − p21)r, p23 + (p22 − p23)r] + i[q21+
(q22 − q21)r, q23 + (q22 − q23)r])
= [4 + r, 6− r] + i[−1 + r, 1− r],

−(6− i5)([p11 + (p12 − p11)r, p13+
(p12 − p13)r] + i[q11 + (q12 − q11)r, q13+
(q12 − q13)r]) + (16 + i3)([p21+
(p22 − p21)r, p23 + (p22 − p23)r] + i[q21+
(q22 − q21)r, q23 + (q22 − q23)r])
= [4 + r, 6− r] + i[−1 + r, 1− r].

As mentioned in Subsection 2.2, the crisp
polynomial system can be written as



10p11 + 7.5q11 − 6p23 − 5q23 = 4,
10p12 − 10p11 + 7.5q12 − 7.5q11 + 6p23
−6p22 + 5q23 − 5q22 = 1,
10p13 + 7.5q13 − 6p21 − 5q21 = 6,
10p12 − 10p13 + 7.5q12 − 7.5q13+
6p21 − 6p22 + 5q21 − 5q22 = −1,
10q11 − 7.5p13 − 6q23 + 5p21 = −1,
10q12 − 10q11 + 7.5p13 − 7.5p12+
6q23 − 6q22 + 5p22 − 5p21 = 1,
10q13 − 7.5p11 − 6q21 + 5p23 = 1,
10q12 − 10q13 + 7.5p11 − 7.5p12+
6q21 − 6q22 + 5p22 − 5p23 = −1,
−6p13 − 5q13 + 16p21 − 3q23 = −2,
6p13 − 6p12 + 5q13 − 5q12 + 16p22
−16p21 + 3q23 − 3q22 = 1,
−6p11 − 5q11 + 16p23 − 3q21 = 0,
6p11 − 6p12 + 5q11 − 5q12 + 16p22
−16p23 + 3q21 − 3q22 = −1,
−6q13 + 5p11 + 16q21 + 3p21 = −3,
6q13 − 6q12 + 5p12 − 5p11 + 16q22
−16q21 + 3p22 − 3p21 = 1,
−6q11 + 5p13 + 16q23 + 3p23 = −1,
6q11 − 6q12 + 5p12 − 5p13 + 16q22
−16q23 + 3p22 − 3p23 = −1.

Using Wu’s algorithm, the set of characteristic
sets for F

′
is

Z =
{
z1 = {51288327p11 −

16225328, 121249p12 − 42944,−20105296 +
51288327p13,−3630080 +
51288327q11, 121249q12 − 13168,−7510048 +
51288327q13,−1778153 +
51288327p21, 121249p22 − 7930, 51288327p23 −
4930627, 12204112 + 51288327q21,

25125 + 121249q22, 9051638 + 51288327q23}
}
.

By Wu’s Well-ordering Principle Theorem, we
have

V (F
′
) = (V (z1)\V (a)) = (V (z1)\V (10349)).

Therefore,

V (F
′
) = {p11 = 0.3164, p12 = 0.3542,

p13 = 0.3920, p21 = 0.0347, p22 = 0.0654,
p23 = 0.0961, q11 = 0.0708, q12 = 0.1086,



144 H. Farahani et al., /IJIM Vol. 12, No. 2 (2020) 135-146

q13 = 0.1464, q21 = −0.2379, q22 = −0.2072,
q23 = −0.1765}.

Finally, the equations corresponding to this ba-
sis are solved, and the solution set of the system
is as:

z̃1 = p1 + iq1

= (0.3164, 0.3542, 0.3920)

+ i(0.0708, 0.1086, 0.1464)

= [0.3164 + 0.0378r, 0.3920− 0.0378r]

+ i[0.0708 + 0.0378r, 0.1464− 0.0378r]

and

z̃2 = p2 + iq2

= (0.0347, 0.0654, 0.0961)

+ i(−0.2379,−0.2072,−0.1765, )

= [0.0347 + 0.0307r, 0.0961− 0.0307r]

+ i[−0.2379 + 0.0307r,−0.1765− 0.0307r].

It follows that the proposed method and the
presented methods in [3, 17, 29] find the same
solution.

5 Conclusion

In this paper, the fuzzy complex systems of linear
equations are investigated and a new approach
was proposed to find all the solutions of these
system based on the Wu’s method. In this ap-
proach, the fuzzy complex systems of linear equa-
tion is converted to an equivalent crisp polyno-
mial equations system and the crisp system is
solved using Wu’s method. Wu’s algorithm leads
us to solve triangular systems that are easy to
solve. The proposed method is independent from
a suitable initial point and all solutions can be
obtained simultaneously. Example problems are
solved by the present method and are compared
with known solutions to show efficiency and ef-
fectiveness of the methodology.
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