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Abstract

Multiple testing is one of the methods to analyze such data. We apply multiple testing methods in
profile monitoring. Profile monitoring is a relatively new method of quality control, which is best used
when data processing is performed using curves or profiles within a given period. In this research, we
introduce different multiple testing methods for outlier profile detection. We compare the performance
of these methods by simulations.
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1 Introduction

P
rofile monitoring is one of the most impor-
tant subjects in statistical process monitor-

ing (SPM) that has been recently developed by
researchers. A profile is created when an impor-
tant performance quality indicator depends on
one or more independent variables. Instead of
observing a measurement in each product, a set
of values is considered and by drawing them, a
curve is obtained. In the other words, there is
a response variable y and one or more explana-
tory variables x1, x2, , xn , similar to conditions
used in Regression Analysis. The fundamental
idea for profile monitoring is modeling profiles
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by parametric, nonparametric or semi paramet-
ric methods. A specific model is later utilized to
determine whether the variations exist in profiles.
The profile monitoring methods can be performed
in phase I or II. In Phase I, by historical data, in-
formation about variation of profiles over time,
evaluating the stability of profiles and estimating
in control parameters of model, are obtained. In
Phase II, the task is to detect rapid shifts from
parameters of model base upon designed in phase
I. In phase I, a constant value is considered for the
probability of type I error and the performance of
proposed method is examined by its power func-
tion. Instead, in Phase II the ARL1 control charts
are used to measure the performance.

[17] and [21] have conducted studies in the field
of simple linear profile monitoring. [22] and [25]
studied VDP2s of the particle boards to show
there are so many situations in which the pro-

1Average run length
2Vertical density profile
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file cannot be represented by linear model. Non-
linear profiles are to be used under such condi-
tions. [24] suggested three general methods for
nonlinear profile monitoring. [14] represented two
types of chart scheme for phase I and II profile
monitoring. One of them multiple T 2 Hotelling
chart and the other combined EWMA3 chart with
variation chart. [14] used the combination three
EWMA chats to detect changes in intercept slope
and standard deviation simultaneously in Phase
II. They also used Shewhart control charts for
simple linear profile monitoring. [16] suggested a
univariate control chart for monitoring standard
deviation error and with F test for monitoring
regression coefficient, in Phase I. Also [13] pro-
posed Phase I monitoring of polynomial profiles.
[9] compared the performance of control charts
proposed by [5] and [14] for simple linear profiles
monitoring in Phase II, and concluded that the
proposed method by [14], has more desirable per-
formance.

Parametric models have some underlying as-
sumptions, in most studies concerning profile
monitoring. In practice, however, these may not
be reasonable assumptions. Therefore, nonpara-
metric models which are not predetermined func-
tion can be partially solved the profile monitor-
ing problems. [29] considered the nonparametric
modeling of profiles for Phase II profile monitor-
ing. [28] treated profiles as vectors in a high-
dimensional space and applied a 2-type control
chart to identify outliers by comparing each pro-
file to a central vector. Also, [23] developed a
nonparametric L1 location-scale model to screen
shapes of profiles in Phase II analysis. Likewise,
[18] described within-profile correlation by using
a nonparametric mixed-effect model. They pro-
posed Phase II control chart for nonparametric
profiles based on the local linear kernel smoothing
of profiles and an EWMA weighting scheme. Re-
cently, [1] introduced parametric, nonparametric
and mixed model robust profile monitoring, based
on a version of Hotellings T 2 statistics which is
employed in Phase I analysis for identifying out-
lying profiles.

Furthermore, high dimensional data studies in
which evaluating more than one question at the
same time are abundant. Simply multiple test-

3Exponentially Weighted Moving Average

ing is about a set of statistical hypotheses that
are tested simultaneously. Clearly there needs to
be analysis of complex sets of data in the form
of thousands hypotheses tests simultaneously in-
stead of analysis the large set of data individually.
In terms of simultaneous testing, the probability
of one or more false rejections is called Family-
Wise Error Rate (FWER). When testing several
hypotheses, the FWER, should not exceed a nom-
inal level (e.g. at the α level) for all possible sets
of true and false hypotheses. Hence, the following
requirement:

FWER ≤ α

is needed. This notion is called strong error
control. For controlling FWER, the first classic
single-step procedure proposed by [4]. [20] pro-
posed a method similar to the Bonferroni method.
[11] and [12] then introduced other methods to
improve Bonferroni procedure. In order to fur-
ther improve the special case of stepdown proce-
dure that proposed by Holms and find the opti-
mal method among the classes of multiple testing
problems step-downMaxT (Maximin) procedures
were presented by [15]. [7] used nonparamet-
ric estimation with multiple testing for detect-
ing outliers, also [2] applied linear and polyno-
mial profile monitoring by Bonferroni correction
in multiple testing. [8] defined a simple statis-
tic to detect outliers and [19] proposed two new
methods for detecting outlying profiles in phase
I nonparametric profiles within step-down MaxT
procedure in multiple testing. In this paper, we
compare two methods in multiple testing, step-
down MaxT and Bonferroni method for control
FWER in phase I nonparametric profile monitor-
ing.

This article is organized as follows: Section 2
provides a detailed description of the proposed
methodology; Section 3 investigates the perfor-
mance of our proposed method in comparison
with each other via simulation studies. Section
4 presents concluding remarks and a discussion.



M. Rajabi et al., /IJIM Vol. 11, No. 3 (2019) 213-221 215

2 The NonparametricMixed
Effect Profiles Monitoring
Approach in Phase I

According to [18], nonparametric mixed-effects
(NME) models consist of m profiles, and the ith

profile has been observed in ni design points.
Let (xi1 , yi1), (xi2 , yi2), . . . , (xini

, yini
) denote

the pairs of sample points collected on the ith

profile. Then the following in control (IC) pro-
cess is:

Yij = g(xij) + fi(xij) + ϵij (2.1)

j = 1, 2, . . . , ni i = 1, 2, . . . ,m

Here, g is the IC population profile function,
called the fixed-effect term, fi is the random-
effect term which explains the profile deviation of
the ith profile from the population average profile
g and the errors ϵij are i.i.d. random variables
with mean 0 and variance σ2 which are assumed
to be independent from the random effects fi. In
addition, we assume that the random effects fi
are realizations of a process with the mean 0 and
the common covariance function

γ(x1, x2) = E[fi(x1), fi(x2)], (2.2)

i = 1, 2, . . . ,m.

Without loss of generality, we assume that the
design points xij ∈ [0, 1], for all i and j.

2.1 Proposed Methodology and Pa-
rameter Estimation Model

[3] indicated that outliers are observations ap-
pearing to deviate markedly from other members
of the sample in which they occur. Similarity [27]
defined outliers in a functional dataset as the ob-
servations whose means are signicantly different
from the others. Our proposed for phase I profile
monitoring based on [27] definition.

According to this definition, we can state the
case of no outlying profile or curve in the samples,
as the following null hypothesis

H : gi(t) = g0(t) ∀ t, i = 1, 2, . . . ,m (2.3)

Against the existence of some outlying profile
among data, that can be stated as the following

alternative hypothesis:

K : ∃Am

⊆ {1, . . . ,m}

{
g
k
(t) = g0(t) ∀ t ∀ k /∈ Am

g
k
(t) ̸= g0(t) ∃ t ∀ k ∈ Am

(2.4)

In both H and K assumptions, g0(t) is the IC com-
mon fixed effect term that considers unknown.
g
k
(t), for any k ∈ Am, is kth out of control (OC)

outlying population profile function and Am is
the set of outlying profiles.

Under the null hypothesis H, there is no out-
lying profile, therefor under this assumption; the
model (2.1) is reduced to:

Yij = g0(xij) + fi(xij) + ϵij (2.5)

j = 1, 2, . . . , ni, i = 1, 2, . . . ,m,

Against, under K the observation follow the
model:

Yij =

{
gi(xij) + fi(xij) + ϵij i ∈ Am

g0(xij) + fi(xij) + ϵij i /∈ Am

(2.6)

To fit the model (2.1), using local linear mixed
effect smoothing method that proposed by [26].
Let zTij = (1, xij − s),βT = (g0(s), g

′
0
(s)) and

bT
i = (fi(s), f

′
i(s)) replace in (2.1) within the

neighborhood of s ∈ [0, 1] and g′ and f ′
i are the

derivatives of the functions g and fi, respectively.
By minimizing the following penalized weighted
sum of squares, estimate β,D and σ2

m∑
i=1

{
1

σ2

ni∑
i=1

[yij − zTij(β + bi)]
2Kh(xij − s)

+ bT
i D

−1bi + ln(|D|) + ni ln(σ
2)

}
Where Kh is a symmetric kernel density function,
define Kh(t) = h−1K(t/h) for t ∈ R where h is
the bandwidth. It is assumed that the vectors of
random effects bi are independent and identically
distributed (Normal) with a mean of 0 and 2× 2
covariance matrix D = E[bib

T
i ]. [19] presented

detailed information and the solution of an it-
erative algorithm in detail. Then the estimates
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Table 1: The proportion of true signal (shifts) for out-of-control profiles. Data are generated with m = 50, n =
40 and type I error α = 0.05

Shifts Methods FCC Specificity Sensitivity FNR

2* 0.05 MaxT 0.83576 0.91232 0.89861 0.276748
Bonferroni 0.863255 0.887213 0.79344 0.332401

2* 0.1 MaxT 0.82598 0.91343 0.87918 0.264098
Bonferroni 0.873256 0.88983 0.78974 0.312061

2* 0.15 MaxT 0.82657 0.912212 0.87918 0.274128
Bonferroni 0.87567 0.88543 0.78974 0.322061

2* 0.2 MaxT 0.82877 0.91323 0.912218 0.25328
Bonferroni 0.87998 0.88785 0.80000 0.342122

2* 0.25 MaxT 0.82904 0.91413 0.91305 0.2588
Bonferroni 0.87891 0.88851 0.80072 0.303222

2* 0.3 MaxT 0.92384 0.96302 0.93259 0.29898
Bonferroni 0.97844 0.89251 0.812881 0.30435

Table 2: Empirical FWER of the proposed Methods with m = 50 and n = 20, 40 at the nominal levels α = 0.05

2*b 2* Methods m = 50
n = 20 n = 40

2* 0.1 MaxT 0.0465 0.0430
Bonferroni 0.0295 0.0265

2* 1 MaxT 0.0480 0.0450
Bonferroni 0.0305 0.0312

2* 1.1 MaxT 0.0490 0.0470
Bonferroni 0.0325 0.0322

Table 3: Decision and Actual set in multiple testing

Actual set Decision Out of control process In control process

Out of control process A B
In control process C D

obtain as:

ĝ0(s) = eT1 β̂(s)

f̂i(s) = eT1 b̂i(s)

γ̂(s1, s2) =
1

m

m∑
i=1

f̂i(s1)f̂i(s2)

for any s1, s2 ∈ [0, 1], (2.7)

Where e1 = (1, 0)T . [18] suggested the following
nonparametric estimator

σ̂2 =
1

m

m∑
i=1

1

ni

ni∑
j=1

[yij − ĝ0(xij)− f̂i(xij)]
2, (2.8)

similar to that of [10], for σ2 parameter.

As mentioned before, identifying an outlying
profile is a test problem with the assumption that
profiles are a realization of a process with average
g0(x) or it is from a process with a different aver-
age gi(x). Since this test must be performed for
all observations, it is appropriate to assume this
assumption test as a multiple assumption testing

Hoi : gi(xij) = g0(xij), ∀j = 1, 2, . . . , ni

H1i : gi(xij) ̸= g0(xij), ∃j = 1, 2, . . . , ni (2.9)

The H assumption is rejected if and only if the
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first assumptions of Hois is rejected. Let

dij = Yij − ĝ0(xij)− f̂i(xij),

i = 1, 2, . . . ,m, j = 1, 2, . . . , ni

Where ĝ0(xij) and f̂i(xij) are obtained from (2.7).
If there is no outlying profile in phase I, all as-
sumptions H01, . . . , H0m are true, and therefore
equation (2.5) must hold true where all values
|dij | are expected to be small. Hence we define

Ti =

ni∑
j=1

d2
ij i = 1, 2, . . . ,m (2.10)

It is clear that the large values of such statistics
can be evidence of the rejection of the assump-
tion Hoi. Note Ti represents the deviation value
of the ith observed profile from the respective fit-
ted profile. A test statistic is based on the order
statistic Ti, i.e.

T(1) ≤ T(2) ≤ . . . ≤ T(n) (2.11)

2.2 Multiple Testing Approaches

Consider multiple hypothesis testing consisting
of m null hypothesis Hoi versus H1i according
to (2.9). The most important Type I error rate
is FWER4 which indicates the probability of at
least one Type I error. The most common ap-
proach for controlling FWER in multiple testing
is Bonferroni method that controls FWER for the
joint distribution of the test statistics correspond-
ing to the null hypotheses. For controlling FWER
in a nominal significant level of α single-step Bon-
ferroni method, reject null hypothesis Hoi when-
ever the corresponding p-value is less or equal to
the single-step α

m cut-off point (determine rejec-
tion regions for every null hypotheses). Note that
if

m0
m is very small, Bonferroni method will yield

a conservative result.
In order to further improvement and find

the more convenient way among one class of
multiple testing problems, [15] presented step-
down MaxT (Maximin) procedure. Suppose
test statistics Ti ordered as T(1) ≤ T(2) ≤
. . . ≤ T(m) and also null hypotheses correspond-
ing to test statistics as H0(1), H0(2), . . . ,H0(m).
Reject null hypothesis H0(m), corresponding to

4Family Wise Error Rate

the mth most signicant test statistic T(m), if
T(m) ≥ C1 and T(m−1) < C2. For a given
i = 1, 2, . . . ,m and 0 < α < 1, let Ci be the
threshold determined by P (T(i) ≥ Ci) = α.

Not rejecting any of the null hypotheses
H0(1),H0(2), . . . , H0(m) if T(m) < C1.

As pointed out in Lemma 9.2.1 by [15], this
procedure controls the FWER at level α.

2.3 Determining cut-off points of
MaxT method by Bootstrap Tech-
nique

In order to obtain threshold Ci, the test statis-
tic distribution under null hypothesis is required,
however, since the distribution of these tests are
complicated, we can use parametric bootstrap
procedure to estimate the threshold points corre-
sponding to test statistics. Parametric bootstrap
procedure in the following algorithm shows how
to obtain these points.

Step1. Apply equations (2.7) and (2.8) to esti-
mate, g0 , fi and σ2 by ĝ0, f̂i and σ̂2, respec-
tively and generate B independent bootstrap
samples of m profiles from model (2.5) under
null hypothesis based on ĝ0 , f̂i and σ̂2.

Step2. For rth(r = 1, 2, . . . , B) bootstrap sam-

ple, let ĝ(r)
0

, f̂
(r)
i and σ̂2(r) denote the respec-

tive bootstrap estimates that are obtained
from equations (2.7) and (2.8).

Step3. For rth(r = 1, 2, . . . , B) boot-
strap sample, compute test statistics

T
(r)
1 , T

(r)
2 , . . . , T

(r)
m from (2.10) and then

obtain maximum statistic for each bootstrap

sample S
(r)
i = max

(
T
(r)
1 , T

(r)
2 , . . . , T

(r)
i

)
i =

1, 2, . . . ,m.

Step4. For any i = 1, 2, . . . ,m, approximate the
threshold Ci by ⌊αB⌋ largest value among

S
(1)
i , S

(2)
i , . . . , S

(B)
i , where ⌊αB⌋ denotes the

greatest integer less than or equal to α B
(e.g. B=200 and α = 0.05 equals to 10).
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3 Simulation of Bonferroni and
MaxT for controlling FWER
in Phase I profile monitoring

In this section, in order to compare the perfor-
mance of two procedures in multiple testing for
controlling FWER in Phase I profile monitoring,
we present amount of simulation study in dif-
ferent situations. Using different in-control or
out-of-control designs, reporting empirical exper-
imental and representing power test of proposed
statistics indicate the superiority of MaxT than
Bonferroni procedure in multiple testing. For this
purpose, first consider nonparametric mixed ef-
fect model which pursues an in-control process
and then compare type I error and finally obtain
power test of two methods MaxT and Bonfer-
roni in the case of model contaminated by out-of-
control design to show the efficiency of two meth-
ods to detect outlying profile.

3.1 The Empirical Size of Tests

According to (2.5) consider:

Yij = g0(xij) + fi(xij) + ϵij

j = 1, 2, . . . , ni, i = 1, 2, . . . ,m

For determining the false alert rate in Phase I
profile monitoring, we consider the following one
scenario (second degree) under in-control model
that considered above for g0:

g0(x) = 1 + 2(x− 0.5)2 (3.12)

For simplicity, it can also be assumed that the
number of sample points in each profile is equal
(i.e. ni = n). Furthermore, designed points
xi1, xi2, . . . , xini , are the same for all profiles
x1, x2, . . . , xn. For all the proposed schemes,
the random effect is fi(xj) = bαixj in which
α1, α2, . . . , αm is a random sample with standard
normal distribution and b is a constant value that
can be selected from {0.1, 1, 1.8}. Then we have

Yij = 1 + 2(x− 0.5)2 + bαixj + ϵij

j = 1, 2, . . . , n, i = 1, 2, . . . ,m

In order to estimate the parameters of the model
(2.5) by the local linear kernel smoothing method,

we use the following Epanechnikov kernel func-
tion

K(x) =
3

4
(1− x2) for − 1 < x < 1. (3.13)

This function has optimal properties expressed in
detail [26].

For bandwidth selection, first we apply cross
validation procedure for choosing the best band-
width and then compare it by [26] proposed,
that is a combination of leave-one-subject-out
and leave-one-point-out cross-validation schemes.
However, we found the empirical bandwidth sug-
gested by [18] more suitable for our purpose in
the current paper. The empirical bandwidth of
[18] is given by

hE = cn− 1
5

(
n∑

i=1

(xi − x̄)2

n

) 1
2

, (3.14)

where n is the number of fixed design points in
(2.5). c is any value in the interval [1, 2] and x̄
is the mean of x1, x2, . . . , xn (i.e. x̄ =

∑n
i=1

xi
n ).

Additionally, we assume the fixed design points
x1, x2, . . . , xn are randomly chosen from the Uni-
form (0, 1) distribution and consider the number
of profiles and design points as m = 50, n =
20 and n = 40. Thus, proles represent from
the in-control process. Based on the paramet-
ric Bootstrap method defined by algorithm 2.3,
the thresholds are obtained by Monte Carlo sim-
ulation study via performing 5, 000 replications.
This method computes the FWER at the nominal
level of α = 0.05 for proposed scenario in Bonfer-
roni and MaxT procedures. For empirical FW-
ERs in Phase I of a control chart, the proportion
of remote misconfigured profiles is shown in Table
2. Note that these values are very close to the sig-
nificant nominal level, especially when n increases
in two ways. However, in Bonferroni method usu-
ally the FWER is much less than nominal level
due to its conservative properties.

3.2 Power Study

As mentioned in the single hypothesis test, the
power function is a measure or a criterion for
determining the ability of a test to truly reject
a null hypothesis. However, in the multiple hy-
pothesis tests, there is no single unit power mea-
sure; therefore, the power of a test is evaluated
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by several different measures or criteria. The two
methods have the ability to detect better outliers
by computing the following performance metrics:
fraction correctly detected (FCD), false positive
rate (FPR), and false negative rate (FNR). The
definitions of these terms are given below. In
Table 3, “A” represents the number of profiles
from the out-of-control process that are correctly
identified as from the out-of-control process and
“D” represents the number of profiles from the in-
control process that are correctly identified as the
in control process after the Phase I analysis. The
value “B” represents the number of profiles that
are obtained from the out-of-control process but
mistakenly identified as in-control process while
“C” represents the number of profiles that are ob-
tained from the in-control process but are identi-
fied as out-of-control process.

Considering table 3, the FCD can be defined as

FCD =
(A+D)

(A+B + C +D)
(3.15)

The specificity, on the other hand, represents the
ability to identify those profiles obtained from
the in-control process correctly as profiles derived
from the in-control process and is defined as

Specificity =
D

(C +D)
(3.16)

The Sensitivity is the fraction of those profiles
identified as from the out-of-control process that
are actually from the out-control process. The
FPR is the fraction of those profiles identified as
out-of-control process that are actually in-control
process. The Sensitivity and FNR values are de-
fined as

Sensitivity =
A

(A+B)
(3.17)

and

FNR =
C

(A+ C)
(3.18)

It is easy to show that all these metrics are
bounded by 0 and 1 and that a method will per-
form well in Phase I analysis by achieving large
values for FCD, Specificity and Sensitivity but
small values for FPR. Because FCD, Sensitivity
and Specificity are three power measures that are
adopted in the present performance study of the
proposed Phase I profile monitoring. FPR are
error measure.

Simulations are based on different in-control
and out-of-control models. In accordance with
the two models under the control of the preceding
section, as well as with (3.12) and (3.13), we con-
sider the following model for out-of-control pro-
files:

gi(x) = 1 + 2(x− 0.5)2 + i, i = 1, 2, . . . ,m.
(3.19)

Note that in the case of out of control, each out-
lying profile follows its specific model. Then we
have

Yij = ρ(1 + 2(x− 0.5)2 + i+ bαixj + ϵij)

+ 1 + 2(x− 0.5)2 + bαixj + ϵij

j = 1, 2, . . . , n, i = 1, 2, . . . ,m (3.20)

Since the performance of the tests depends on
the proportion of outlying profiles, in order to
investigate this effect in simulation study, com-
pare two methods (Bonferroni and MaxT) to ap-
plying different proportions of outlying profiles.
Suppose ρ is the ratio of profiles. In the simula-
tion study of the power under each of the values
of ρ(0.05, 0.1, 0.15, 0.2, 0.25, 0.3) the out of con-
trol model (3.20) was carried out. The speci-
ficity, the FCD and the Sensitivity to the pro-
posed two methods under the model (3.20) for
m = 50, n = 40 and b = 1 were calculated.

4 Conclusions

In this paper, we proposed 2 multiple testing
methods for outlier detection in profile monitor-
ing. These methods are based on the nonpara-
metric mixedeffect model, specifically LLME ap-
proach. Indeed, these methods are adopted the
phase II nonparametric profile monitoring pro-
posed by [18] and according to [19] in phase I pro-
file monitoring, with differences that in this arti-
cle we compare Bonferroni method with MaxT
proposed in [19]. We determined the p-values of
these methods according to Ti =

∑ni
j=1 d

2
ijs by

a parametric bootstrap technique. Our simula-
tion studies demonstrated that the MaxT method
outperform, in three performance criteria, than
Bonferroni method. We discuss Sidaks procedure
with step-down MaxT later. We suggest other
multiple testing procedures such as adaptive mul-
tiple testing and multiple testing under the de-
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pendency conditions be applied for outlier detec-
tion in profile monitoring, and a comprehensive
study of their performance is to be conducted.
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