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Abstract

The problem of resource-constrained project scheduling(RCPSP) and the problem of time-cost trade-
off (DTCTP) are two mathematical optimization problems that have long mattered in project man-
agement in such a way that reducing the completion time of a project, which is achieved through
increasing the resources required for executing the activities, usually turns into a necessity in prac-
tice. The existing methods and algorithms for solving this problem, considering the cost-slope of the
activities as a pivotal index, have been defined differently to date. Yet, this paper aims to present
a framework whereby project scheduling and time-cost tradeoff can be addressed under the circum-
stances that several modes of execution exist for each activity. Apart from the renewable resources,
the non-renewable resources have also been taken into consideration for each activity. Hence, initially,
a mathematical optimization model based on the assumptions of the problems is proposed, and then,
via changing the variables and other mathematical modelling techniques, the problems are integrated
and developed in form of a mixed-integer linear mathematical programming model. Eventually, the
model is solved using the branch and bound method and the results are studied with sensitivity
analysis.

Keywords : Reliability; Redundancy allocation problem; Series-parallel systems; Heuristic methods;
Hybrid algorithm.

—————————————————————————————————–

1 Introduction

S
uccinctly, ‘spending the least possible’ can be
regarded as the overarching objective of any
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time-crashing model. As a result, it is a must to
scrutinize the factors that inflict a cost or elevate
the total cost, and to incorporate them into the
model. Since the time-value of money is a very
influential factor in the total cost of the projects,
especially in the capital-intensive ones, incorpo-
rating this factor into the model is deemed nec-
essary.

Hardly a project can be found where the need
for expediting the completion exists not. As men-
tioned, such an expedition would entail higher
costs and any wrong decision made in this regard
would translate into a higher total cost for the
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project. Due to the fact that the total cost of the
project plays a fundamental part in the revenues
of the operators, the applied models of Discrete
Time-Cost Tradeoff (DTCTP) seem appealing to
them and have become popular. Therefore, it can
be envisaged that the proposed model in this pa-
per, which analyzes the costs of time crashing in
a more feasible way, would be of significance to
the employers of capital-intensive mega-projects
in that it empowers them for today’s competitive
world.

The other aspect of the topic is the issue of
scheduling. Over the past decades, resource-
constrained project scheduling problem (RCPSP)
has been a major research area as one of the opti-
mization procedures with various types in objec-
tive functions, diverse assumptions for executing
the activities, different resource constraints and
the like. Generally, the prime focus in such prob-
lems is on the minimization of the makespan of
the project which, in turn, has led to develop-
ing numerous exact, heuristic, and meta-heuristic
methods for implementing projects with limited
renewable resources among which the well-known
RCPSP is a clear instance. This type of problem,
regarded as an NP-hard one, attempts to mini-
mize the overall duration of a project in light of
precedence relations among the activities as well
as the availability of constrained renewable re-
sources. The extended version of this problem-
with different objective functions (such as net
present value optimization), different resource
constraints (both renewable and non-renewable),
multi-mode activities, etc.- can be often seen in
complex optimization problems and has been re-
viewed by many authors in the related literature.

In many researches, RCPSP has been extended
to multi-mode problems where each activity can
be executed under a different duration of time
and renewable/non-renewable resource use. Due
to the complex nature of the problem, only a
handful of algorithms have been proposed in the
literature for solving such problems.

Through considering the execution of the activ-
ities under various technologies, this paper tends
to deal with the procedure to select technolo-
gies for executing the activities. In doing so,
awareness about the status quo and the pro-
cesses of the project is the very first step in de-
cision and policy making for an optimal man-
agement of the activities. Not being an excep-

tion, any decision-making about and investment
on a project is tantamount to investing on equip-
ment, manpower, and knowledge. The composi-
tion of the said factors, known as technologies,
continually requires a well-planned management,
which, without knowledge about the status and
functions of the technologies in hand and evalu-
ating them, would result in a low-efficient man-
agement, if not impossible. Technology evalua-
tion models serve as a means for technology man-
agement whereby organizations can appropriately
manage their technological details and, eventu-
ally, achieve a favorable organizational efficiency.

2 Literature Review

The problem of Discrete Time-Cost Tradeoff
(DTCTP) has had prevailing applications to date
and numerous researches have been conducted
in this regard. On the one hand, the cus-
tomers’ need for receiving services in a shorter
span of time, and the necessity to reduce the
cost of project execution on the other have no-
ticeably heightened the significance of such prob-
lems among the business owners and researchers
as well.

2.1 Discrete Time-Cost Tradeoff
Problem

DTCTP was first coined in 1979 by Hindelang
and Muth [1] drew a lot of attention. Prabuddha
et al. [2], and Vladimir et al. [3] showed that this
problem is a non-deterministic polynomial-time
hard one (NP-hard) and difficult to solve.

A fundamental assumption that is considered
in many studies on such problems is that the cost
of activities is a function of the duration of their
execution. Here, duration is counted as a decision
variable, with the lower and upper limit deter-
mined as crash duration, and normal duration,
respectively. Of the linear mathematical mod-
els proposed in this respect, one can refer to the
studies by Kelley and Walker [4], Fulkerson [5],
Kelley [6], Ford and Fulkerson [7], Siemens [8],
Goyal [9], and Elmaghraby and Salem [10]. Fur-
ther to them, Moder et al. [11] considered the
function of activities cost as a continuous one.

Hitherto, DTCTP has been solved via var-
ious methods such as exact methods like dy-
namic programming by Hindelang and Muth [1],
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enumeration algorithm by Patterson [12], or the
branch and bound method by (Demeulemeester,
Erenguc, [13-15]). However, none of the exact
methods could solve the DTCTP in a large-scale
problem. Hence, a tendency towards adopting
other methods was formed among the researchers.
Akkan [16]’s work is an instance of a heuristic
method to solve such problems within an AoA
network based on Lagrangian relaxation method.
Liu et al. [17], and Peng et al. [18] made
use of a genetic algorithm for solving DTCTP.
Elmaghraby and Kamburowski [19] assigned a
penalty or reward for the objective functions in
DTCTP.

The crashing of the activities was put forth
by Ann et al. [20] and Van Slyke [21] was the
first to adopt Monte Carlo simulation in the field
of crashing. Of his many achievements, one can
touch on the project length estimation with more
precision, the flexibility in a selecting distribu-
tion function for the time of the activities as well
as the ability to calculate the criticality level of
the path. Elsewhere, DTCTP was studied con-
sidering the time-switch constraint by Vanhoucke
[22]. Nikoomaram et al. [23] presented a math-
ematical model for time cost trade-off Problem
with considering concept of time value of money
and budget limitation. Shahriari [24] developed a
two-objective mathematical model for balancing
compressing the project time with activities de-
lay to prepare a suitable tool for decision makers
caught in available facilities and due to the time
of projects.

2.2 Resource-Constrained Project
Scheduling Problem

In this section, we aim to provide a concise re-
view of the related literature regarding project
management and control so as to highlight the
various aspects of the field as well as the research
gaps. The problem of scheduling has been widely
researched lately. In the following, a number of
the studied topics and issues have been reviewed.

Brucker et al. [25] have studied the lower
limits of multi-mode RCPSP and have used the
concepts of minimum and maximum delays and
also renewable and renewable resources in de-
veloping the scheduling. Wuliang and Chengen
[26] have considered the possibility of executing
the project activities in various modes with the
end of studying the balance of cost and com-

pletion time. They have studied the impact
of crashing on scheduling as well. In order to
solve the model, they made use of a genetic al-
gorithm whose results were compared with the
corresponding results taken from the branch-and-
limitation method.

Coelho and Vanhoucke [27], too, addressed the
multi-mode resource-constrained project schedul-
ing. With the aid of the SAT software, they ini-
tially studied the possible modes and then im-
proved the feasible solutions with a genetic al-
gorithm. In fact, the strongpoint of their study
is in the concomitant application of SAT and a
meta-heuristic algorithm. Lova et al. [28] used a
hybrid genetic algorithm for solving the problem.
To display, encode, and decode the solutions, they
used the method of listing activities in forward,
backward, serial, and parallel generation schemes.
Also, they assigned a penalty in the fitness func-
tions for those members of the population that vi-
olated the predefined resource amount. Besides,
in their proposed method, the fitness function de-
picts a number between 0 and 1 for the least and
most completion durations. Yet, this number ex-
ceeds 1 for those members that have surpassed
the resource capacity. The final point about this
approach is that the criterion of the least nor-
malized resources has been used for selecting the
mode of executing an activity in such a way that
those modes that enjoy lesser resources are more
likely to be selected so as to refrain from gener-
ating infeasible members.

Kyriakidis et al. [29] made use of mixed-integer
linear programming (MILP) models to formulate
single-mode and multi-mode project scheduling
problems. They adopted a task-resource net-
work approach which is used in process schedul-
ing problems. Deblaere et al. [30] studied the
conditions under which there were the likelihood
of failure or disruption, for certain reasons, in
the execution of the activity/activities. Accord-
ingly, further to the taboo search method, they
analyzed the performance of a number of exact
scheduling procedures that are based on reaction
to failure in activity execution.

Van Peteghem and Vanhoucke [31], in their
proposed model, utilized a genetic algorithm to
see if it was possible to simultaneously study the
failure/non-failure of the activities. Mori et al.
[32] dealt with a non-preemptive general model of
multi-mode resource-constrained project schedul-
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ing problems where the duration of the activity
depends upon the amount of renewable resources.
To solve this problem, a genetic algorithm has
been suggested and compared with the other ex-
isting models in the domain in terms of efficiency
level.

To address the makespan minimization in MR-
CPSPs, Alcaraz et al. [33] innovatively pro-
pound novel operators for genetic models and a
novel fitness function for the infeasible solutions.
Upon comparison with the older models in the
field, the efficiency of this model has been proven.
Kolisch et al. [34] consider MRCPSP with a non-
preemptive structure. There, the activity dura-
tion is a discrete function of the allocated renew-
able resources and the other resources. Present-
ing a zero and one formulation, they model the
studied problem. This reveals how significant and
applicable such a formulation is in the production
and operations management models. In consider-
ation of the difficulty in solving such problems in
a large scale, a meta-heuristic method has been
presented in the research for coming up with qual-
ity solutions. This method addresses the gener-
ation of feasible solutions wherever the problems
have limited resources to a great extent. The pro-
posed model initially seeks the feasible solutions
via a local search and then moves to a neigh-
borhood search in order to improve the objective
function.

De Reyck [35] attends to the problem of
scheduling the completion time of the project un-
der generalized preemptive relations and several
renewable and non-renewable resources. Kolisch
[36] engages in a method to solve project schedul-
ing problems with resource constraints and pre-
emptive relations. In this model, concepts such
as resource factors (depicting resources density
matrix), problem constraints, and availability
of the resources were taken into consideration.
Reddy [37] studies the multi-mode, multi-activity
RCPSP using PERT network charts for formulat-
ing a model. To attain better solutions, they ap-
plied an algorithm similar to genetic algorithms
(GAs) as well as heuristic methods.

To date, several different methods have been
put forth for solving multi-activity MRCPSPs
that can be classified under three general cat-
egories of “exact”, “heuristic”, and “meta-
heuristic”. Of the models that have been solved
under the exact method category, one can men-

tion the following scholars. The first method to
solve the problem, which is a single and dual
linear programming approach, was presented by
S lowiński et al. [38]. Talbot [39] and Patterson
et al. [40] proposed an enumeration scheme for
solving the problem. Sprecher et al. [41] and
Hartmann and Drexl [42] made use of branch-
and-bound algorithms. Zhu et al. [43], Montoya
[44], and Shirzadeh et al. [45] have put forward
the methods of branch-and-bound, branch-and-
price, and branch-and-cut, which lack efficiency
in solving large-sized problems.

From among the models that used heuristic
methods, Boctor [46] presented a heuristic for
critical path, Kolisch and Drexl [36] utilized a
three-phased local search method, Lova et al. [47]
devised a multi-path method based on priority-
rules.

There are many meta-heuristic methods used
in the field from which the following ones have
been shortlisted. S lowiński et al. [38] tried a
simulated annealing method to solve a multi-
objective, multi-resourced project scheduling.
Bouleimen and Lecocq [48] and Józefowska et al.
[49] applied the simulated annealing method for
minimizing the project completion duration in
MRCPSPs. Ozdamar [50] presents a genetic al-
gorithm for a multi-activity, multi-mode RCPSP
with the aim of bringing down the duration of
project implementation to the least. Their initia-
tive lies in proposing a novel method for encoding
the chromosomes regarding the problem. Hart-
mann [51] and Alcaraz et al. [33] propounded a
new crossover and mutation genetic algorithm for
the same problem and end. Van Peteghem and
Vanhoucke [31] presented a genetic algorithm for
a RCPSP with and without prioritization among
the activities. Of the recent researches in this do-
main, one can name Van Peteghem [52], Tavana
[53], and Cheng [54].

3 Statement of the problem

Project delays are among the most conventional
problems in project management. A delay in the
project can stem from several factors which can
be controlled with a proper management. One
of the indices of a project success is the timely
implementation of the schedule. At every orga-
nization, the capabilities and constraints in per-
forming the project are continually and dynam-
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ically undergoing changes. Moreover, the envi-
ronmental and technological changes that arise in
the course of time might contribute to changes in
the organizational strategies. Although numer-
ous studies have been conducted to control the
delays in the project management, it seems that
the major reason behind the delays does not lie
in the nature of the projects but in the organiza-
tional and managerial capabilities and maturity.
Project management is regarded as adopting the
necessary knowledge, skills, tools, and techniques
for managing the implementation of the activities
in order to meet the needs and expectations of
the project’s client via the materialization of the
initiating, planning, executing, controlling, and
closing processes.

Upon presenting a combinatorial (hybrid)
mathematical model that considers various tech-
nologies for executing the activities, this paper at-
tempts to simultaneously optimize the problems
of project scheduling and time-and-cost tradeoff.
The studied problem is analyzed in consideration
of resource constraint. It goes without saying
that the efficiency of the technologies at avail has
an influential part in project scheduling and the
leads and lags in the execution of the activities;
hence, it is a must to heed the necessary require-
ments for identifying the efficiency of the to-be-
used technologies prior to designing the model.
The need for this research lies in the relation-
ship between the concepts of scheduling, crashing
and/or activities deferment. In a mathematical
model, such a relationship would create a sort of
correlation among the variables of the time-cost
tradeoff and those of the scheduling that, in or-
der to clarify them, we firstly need to explain the
problem of time-cost tradeoff.

In time-cost tradeoff or crashing, the main
question is that the duration of which activity
needs to be shortened upon using extra resources.
Crashing in CPM network is done to select one
(or more) of the activities with the least cost for
reducing the project duration. This process con-
tinues as long as the project meets the crashing
objectives or the crashing cost does not exceed
the benefits gained from it.

Another noteworthy point in this paper is
considering the duration of the funds engage-
ment in the crashing of the activities which is
of great importance especially in the long-run
projects. When the initial activities of a project

are crashed, the required funds for crashing would
be engaged to the end of the project. This is
while crashing the finishing activities would entail
a lesser duration of funds engagement. The same
effect can be seen in connection with the savings
attained from delaying the execution of activities
as compared to implementing them at their nor-
mal time in the course of the project. Hence, the
time-value of money would be an influential fac-
tor in this regard and this paper seeks to propose
a model that considers this factor in the time-and-
cost tradeoff problems. Accordingly, the cost of
crashing is added to the function of total cost and
the savings gained from delaying the activities
would be deducted from it so that the DTCTP
is accomplished in Program Evaluation Review
Technique (PERT) Network charts in a more re-
alistic way incorporating the time-value of money.

As stated earlier, we aim to combine the con-
cepts of DTCTP and RCPSP for our formulation
and, here, after giving an account of the former,
a description of the latter will follow.

RCPSP, a major research topic for several
decades, is known as an NP-hard problem that
attempts to minimize the duration of the project
completion in consideration of the precedence re-
lations among the activities as well as the avail-
ability of the constrained, renewable resources. In
many related studies, RCPSP has been extended
to multi-mode activities where each activity can
be executed at a different duration of time and
renewable/non-renewable resource use.

In the extensive, recent researches con-
ducted on the subject of multi-mode resource-
constrained project scheduling problems, it is as-
sumed that the activities are implemented under
ideal conditions and simply a fixed finishing time
is determined for the project. In other words, the
project handover time is counted as a point in
time.

In this paper, the proposed project scheduling
model assumes two types of renewable and non-
renewable resources. Non-renewable resources
are allocated for the project only once, whereas
the renewable ones can be renewed at any given
time. Also, there is the likelihood of executing ev-
ery activity via multiple modes with every mode
representing a certain technology for carrying out
the activity. Such an assumption would be practi-
cally conducive to flexibility in selecting the tech-
nologies and decision making.
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Nowadays, technology is the golden key for un-
locking the competition in the world of business
and work, and a must for the economic growth
of the organizations and nations. Scholars like
Joseph Schumpeter and Robert Solow raised the
concept of the need for investing on the applica-
tion and expansion of technologies.

Modern technologies create more efficient
methods for performing the affairs and, thus,
introduce newer aspects in the activities of
mankind. Accordingly, they bring up the possi-
bility of improving the quality of products and
services, boosting productivity, shortening the
duration of supplying the new products, and sat-
isfying the open-ended human needs. Implemen-
tation of the project activities, technological de-
velopments, changes in the methods to plan, ex-
ecute, and control, as well as evaluation of tech-
nical changes each provide an opportunity for
promoting the capabilities, competitiveness, and
growth. As a result, proper application of tech-
nology is regarded as the suitable ground for reap-
ing socio-economic benefits. Today, with the the-
ories that consider the possibility of continuous
growth and improvement on the basis of technol-
ogy development, this need seems dire more than
ever before. Therefore, the organization or com-
pany’s strategies, decisions, and measures for at-
tracting, adapting, and developing technologies
form the core of its socio-economic growth pro-
cess. Provided that an organization can steer
this process in a systematic way, it would, un-
doubtedly, create the ground for its continuous
growth and development, and hence, the hope to
weather the tumultuous, competitive storm of the
modern world. In this study, upon assuming the
execution of the project activities using different
technologies, we strive to enable the possibility
of selecting the best technology to execute under
multi-mode conditions.

Figure 1 shows the blending of the three con-
cepts of DTCTP, RCPSP, and technology selec-
tion for the activities of a project.

4 Proposing a Non-linear Math-
ematical Model

At the outset, the indices, parameters, and vari-
ables used in the mathematical optimization
model are presented.

Indices:

Figure 1: Blended DTCTP, RCPSP, and Technology
Selection

i : activities (i=1,2,3,. . . ,n)

m: modes (m=1,2,3,. . . ,Mi)

t : time period (t=1,2,3, . . . , T)

Parameters:

Df(im) : Minimum allowed time for executing ac-
tivity i in mode m

Dn(im) : Normal time of activity i in mode m

Dm(im) : Maximum allowed time for executing
activity i in mode m

H : Indirect (overhead) cost of the project

Kn : Direct cost of the project

Cim : Coefficient of crashing cost for activity i in
mode m

C ′
im : Coefficient of thrift attained from delaying

activity i in mode m

CMax : Maximum budget at avail

I0 : Interest rate

rrimk : Amount of renewable resource k for activ-
ity i in mode m

rniml : Amount of non-renewable resource l for ac-
tivity i in mode m

ark : Maximum allowed renewable resource k use

anl : Maximum allowed non-renewable resource
l use
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Variables:

yim :=1, if the activity i in mode m is crashed,
0, otherwise.

yim : =1, if the activity i in mode m is executed
with delay, 0, otherwise.

y′′im :=1, if the activity i in mode m is executed
in normal time, 0, otherwise.

ximt :=1, if the activity i in mode m started at
the time t, 0, otherwise.

dim : The (feasible) scheduled duration for the
activity i in mode m

Now, here the assumptions governing the mathe-
matical model are given.

• Both renewable and non-renewable resources
are being used.

• The duration time of the activities is deter-
mined as fixed.

• The required resources for each activity are
fixed.

• There exists the possibility of crashing the
activities.

• There exists the possibility of delaying the
activities.

• The duration time of the activities can be
reduced to integers of time unit. In other
words, where the unit of time is “day”, re-
ducing the time to decimals would not be
possible.

• The multi-mode scheduling project has been
taken into consideration.

Using the notations and assumptions above, the

following mathematical model is proposed.

Min Z =

lsn+1∑
t=esn+1

t.xn+1,1,t (4.1)

yim.Df(im) ≤ yim.dim ≤ yim.
(
Dn(im) − ε

)
;

i = 1, .., n;m = 1, ..,Mi. (4.2)

y′im.
(
Dn(im) + ε

)
≤ y′im.dim ≤ y′im.Dm(im);

i = 1, .., n;m = 1, ..,Mi. (4.3)

y′′im.dim = Dn(im).y
′′
im;

i = 1, .., n;m = 1, ..,Mi. (4.4)

Mi∑
m=1

yim + y′im + y′′im = 1; ∀i = 1, .., n. (4.5)

H

 lsn+1∑
t=esn+1

t.xn+1,1,t

 + Kn

+

n∑
i=1

Mi∑
m=1

Cim

{{
yim.Dn(im) − yim.dim

}
+

( lsn+1∑
t=esn+1

t.yim.xn+1,1,t−
lsn+1∑

t=esn+1

t.yim.ximt

)
I0

}

+

n∑
i=1

Mi∑
m=1

C ′
im

{{
y′im.Dn(im) − y′im.dim

}
+

( lsn+1∑
t=esn+1

t.y′im.xn+1,1,t−
lsn+1∑

t=esn+1

t.y′im.ximt

)
I0

}
≤ CMax. (4.6)

dim ≤ M
T∑
t=1

ximt i = 1, .., n;m = 1, ..,Mi

(4.7)

Mi∑
m=1

lsi∑
t=esi

(t + dim)ximt ≤
Mj∑
m=1

lsj∑
t=esj

t.xjmt;

∀ (i, j) ∈ A. (4.8)

Mi∑
m=1

lsi∑
t=esi

ximt = 1 i = 1, ..., n. (4.9)

n∑
i=1

Mi∑
m=1

rrimk

min(t−1,lsi)∑
s=max(t−Dm(im),esi)

xims ≤ ark;

k = 1, .., Rk; t = 1, .., T. (4.10)
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n∑
i=1

Mi∑
m=1

rniml

lsi∑
t=esi

ximt ≤ anl l = 1, .., Rn;

ximt, yim, y′im, y′′′im ∈ {0, 1};

∀i, ∀m, ∀tdim ∈ Z;∀i,∀m. (4.11)

In the mathematical model above, (4.1) expresses
the objective function of the model. As stated,
the objective function tends to minimize the total
project makespan or the completion time of the
project.

Constraint (4.2) is the controlling restriction for
crashing the activities in such a way that, if an
activity is crashed (yim = 1), then the lower limit
of this crashing would be equal to Df(im). On
the other hand, if an activity is crashed, owing to
the existence of in the upper bound of constraint
(4.2), then (yim = 1).

Constraint (4.3) is the controlling restriction for
delaying the activities in such a way that, if an
activity is delayed (y′im = 1), then the upper limit
of this delay would be equal toDm(im). On the
other hand, if an activity is delayed, owing to
the existence of in the lower bound of constraint
(4.3), then (y′im = 1).

Constraint (4.4) is the controlling restriction for
executing an activity over the normal time in
such a way that, if an activity is executed over
the normal time (y′′im = 1), then the time would
be equal to Dn(im)On the other hand, with re-
gard to constraint (4.4), the implementation of
the activity over the time Dn(im)would definitely
be (y′′im = 1).

Constraint (4.5) guarantees that each activity is
executed merely in one mode. It also expresses
that, on the whole, there exist three modes for the
duration of any activity, out of which one mode
shall be selected:

• The activity is crashed

• The activity is delayed

• The activity is executed over the normal
time.

Constraint (4.6) expresses the total amount of the
project’s direct and indirect costs, the costs in-
flicted by crashing the activities, and the savings
gained from delaying the activities. The note-
worthy point in this constraint is taking the time

value of money into account in calculating the
costs of crashing and the savings from delaying.
All in all, this constraint can be broken down
to the following segments, where their aggregate
shall stand lower than the budget at hand.

• Costs inflicted by crashing the activities:

n∑
i=1

Mi∑
m=1

Cim

{{
yim.Dn(im) − yim.dim

}
+

( lsn+1∑
t=esn+1

t.yim.xn+1,1,t−
lsn+1∑

t=esn+1

t.yim.ximt

)
I0

}
(4.12)

• Savings gained from delaying the activities

n∑
i=1

Mi∑
m=1

C ′
im

{{
y′im.Dn(im) − y′im.dim

}
+

( lsn+1∑
t=esn+1

t.y′im.xn+1,1,t−
lsn+1∑

t=esn+1

t.y′im.ximt

)
I0

}
(4.13)

• Direct and indirect costs of the projects

H

 lsn+1∑
t=esn+1

t.xn+1,1,t

 + Kn (4.14)

Constraint (4.7) represents that the duration time
of executing an activity in a certain mode can
bear a numerical value only if that activity has
started to be executed in that mode.
Constraint (4.8) has been suggested in order to
observe the precedence relations among the ac-
tivities in such a way that, if activity B precedes
activity A, then the starting time of activity A
equals the starting time of activity B plus the
duration time of executing activity B.
Constraint (4.9) represents that an activity can
be, only and in the least, implemented in one of
the potential modes. Constraint (4.10) expresses
the restrictions in the capacity of the renewable
resources. Constraint (4.11) represents the re-
strictions in the capacity of the non-renewable
resources.

5 Linearization of the Mathe-
matical Model

In the mathematical model given in the previous
section, a number of the raised constraints are
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non-linear. This would dramatically add to the
intricacies of solving the problem in the model.
Therefore, in this section, we attempt to linearize
the non-linear constraints through using vari-
able change and other mathematical modelling
techniques so that we would eventually have a
mathematical model under the classification of
Mixed-Integer Linear Programming (MILP). To
this end, let us firstly take constraint (4.2) into
account wherein the expression yim.dimis a non-
linear one. For Linearization, we make use of
fim = yim.dimvariable change, in which fimis a
continuous variable, in a way that, if yim = 1,
then fim = dim, and if yim = 0, then fim = 0.
Consequently, the following constraints replace
the constraint (4.2).

yim.Df(im) ≤ fim ≤ yim.
(
Dn(im) − ε

)
;

i = 1, .., n;m = 1, ..,Mi (5.15)

fim ≤ dim + (1 − yim)M ;

i = 1, .., n;m = 1, ..,Mi (5.16)

fim ≥ dim − (1 − yim)M ;

i = 1, .., n;m = 1, ..,Mi (5.17)

fim ≤ yim.M ; i = 1, .., n;m = 1, ..,Mi (5.18)

Similarly, for constraints (4.3) and (4.4), too,
variable changes of f ′

im = y′im.dimand f ′′
im =

y′′im.dimare used, and the following constraints are
introduced for constraints (4.3) and (4.4).

y′im.
(
Dn(im) + ε

)
≤ f ′

im ≤ y′im.Dm(im);

i = 1, .., n;m = 1, ..,Mi (5.19)

f ′
im ≤ dim +

(
1 − y′im

)
M ;

i = 1, .., n;m = 1, ..,Mi (5.20)

f ′
im ≥ dim −

(
1 − y′im

)
M ;

i = 1, .., n;m = 1, ..,Mi (5.21)

f ′
im ≤ y′im.M ; i = 1, .., n;m = 1, ..,Mi (5.22)

f ′′
im = Dn(im).y

′′
im;

i = 1, .., n;m = 1, ..,Mi (5.23)

f ′′
im ≤ dim +

(
1 − y′′im

)
M ;

i = 1, .., n;m = 1, ..,Mi (5.24)

f ′′
im ≥ dim −

(
1 − y′′im

)
M ;

i = 1, .., n;m = 1, ..,Mi (5.25)

f ′′
im ≤ y′′im.M ; i = 1, .., n;m = 1, ..,Mi (5.26)

Further, in constraint (4.6), where there are sev-
eral non-linear expressions, we can apply the
above-mentioned variable changes and alterna-
tive restrictions on the expressions yim.dimand

y′im.dimin order to linearize them. However,
for the first time, there arises a new non-
linear expression like yim.xn+1,1,tin this con-
straint. Unlike the previous expressions which
comprised the multiplication of a binary vari-
able by a continuous variable, this expression
consists of the multiplication of two binary vari-
ables. To linearize this expression, the himt =
yim.xn+1,1,tvariable change is applied. As a bi-
nary variable, himtequals 1 only if both variables
of yim and xn+1,1,t are 1, otherwise himt would
be 0. Consequently, the following restrictions are
added to the model.

himt ≥ yim + xn+1,1,t − 1;

i = 1, .., n;m = 1, ..,Mi; t = 1, .., T. (5.27)

himt ≤ yim;

i = 1, .., n;m = 1, ..,Mi; t = 1, .., T. (5.28)

himt ≤ xn+1,1,t;

i = 1, .., n;m = 1, ..,Mi; t = 1, .., T. (5.29)

Similarly, we can do the same for linearizing
the other existing non-linear expressions in con-
straint (4.6), i.e. yim.ximt, y′im.xn+1,1,t, and
y′im.ximtsince all of these expressions are mul-
tiplications of two binary variables. In the
same vein, upon applying the variable changes
of gimt = yim.ximt, h′imt = y′im.xn+1,1,t, and
g′imt = y′im.ximton the expressions, the following
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restrictions are added to the model.

gimt ≥ yim + ximt − 1; i = 1, .., n;

m = 1, ..,Mi; t = 1, .., T. (5.30)

gimt ≤ yim; i = 1, .., n;m = 1, ..,Mi;

t = 1, .., T. (5.31)

gimt ≤ ximt; i = 1, .., n;m = 1, ..,Mi;

t = 1, .., T. (5.32)

g′imt ≥ y′im + ximt − 1; i = 1, .., n;

m = 1, ..,Mi; t = 1, .., T. (5.33)

g′imt ≤ y′im; i = 1, .., n;m = 1, ..,Mi;

t = 1, .., T. (5.34)

g′imt ≤ ximt; i = 1, .., n;m = 1, ..,Mi;

t = 1, .., T. (5.35)

h′imt ≥ y′im + xn+1,1,t − 1; i = 1, .., n;

m = 1, ..,Mi; t = 1, .., T. (5.36)

h′imt ≤ y′im; i = 1, .., n;m = 1, ..,Mi;

t = 1, .., T. (5.37)

h′imt ≤ xn+1,1,t; i = 1, .., n;m = 1, ..,Mi;

t = 1, .., T. (5.38)

To continue with the linearization process of the
model, in constraint (4.8), the multiplication of
the continuous variable dimin the binary variable
of ximthas resulted in another non-linear expres-
sion, which is similar to the formerly linearized
expression yim.dim. Through the variable change
of Bimt = ximt.dimas well as the replacement of
constraint (4.8) with the following restrictions, we
wrap up the process of linearizing our proposed
model.

Mi∑
m=1

lsi∑
t=esi

(t.ximt + Bimt) ≤
Mj∑
m=1

lsj∑
t=esj

t.xjmt;

∀ (i, j) ∈ A. (5.39)

Bimt ≤ dim + (1 − ximt)M ;

i = 1, .., n;m = 1, ..,Mi; t = 1, .., T (5.40)

Bimt ≥ dim − (1 − ximt)M ;

i = 1, .., n;m = 1, ..,Mi; t = 1, .., T (5.41)

Bimt ≤ ximt.M ;

i = 1, .., n;m = 1, ..,Mi; t = 1, .., T (5.42)

In the wake of applying the above modifications
in the proposed mathematical model, we come up
with a mixed-integer linear programming (MILP)

which can be illustrated as follows.

Min Z =

lsn+1∑
t=esn+1

t.xn+1,1,t

yim.Df(im) ≤ fim ≤ yim.
(
Dn(im) − ε

)
;

i = 1, .., n;m = 1, ..,Mi.

fim ≤ dim + (1 − yim)M ;

i = 1, .., n;m = 1, ..,Mi.

fim ≥ dim − (1 − yim)M ;

i = 1, .., n;m = 1, ..,Mi.

fim ≤ yim.M ; i = 1, .., n;m = 1, ..,Mi.

y′im.
(
Dn(im) + ε

)
≤ f ′

im ≤ y′im.Dm(im);

i = 1, .., n;m = 1, ..,Mi.

f ′
im ≤ dim +

(
1 − y′im

)
M ;

i = 1, .., n;m = 1, ..,Mi.

f ′
im ≥ dim −

(
1 − y′im

)
M ;

i = 1, .., n;m = 1, ..,Mi.

f ′
im ≤ y′im.M ; i = 1, .., n;m = 1, ..,Mi.

f ′′
im = Dn(im).y

′′
im; i = 1, .., n;m = 1, ..,Mi.

f ′′
im ≤ dim +

(
1 − y′′im

)
M ;

i = 1, .., n;m = 1, ..,Mi.

f ′′
im ≥ dim −

(
1 − y′′im

)
M ;

i = 1, .., n;m = 1, ..,Mi.

f ′′
im ≤ y′′im.M ; i = 1, .., n;m = 1, ..,Mi.
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Mi∑
m=1

yim + y′im + y′′im = 1; i = 1, .., n.

H

 lsn+1∑
t=esn+1

t.xn+1,1,t

 + Kn

+
n∑

i=1

Mi∑
m=1

Cim

{{
yim.Dn(im) − fim

}
+

( lsn+1∑
t=esn+1

t.himt −
lsn+1∑

t=esn+1

t.gimt

)
I0

}

+

n∑
i=1

Mi∑
m=1

C ′
im

{{
y′im.Dn(im) − f ′

im

}
+

( lsn+1∑
t=esn+1

t.h′imt −
lsn+1∑

t=esn+1

t.g′imt

)
I0

}
≤ CMax

gimt ≥ yim + ximt − 1; i = 1, .., n;

m = 1, ..,Mi; t = 1, .., T.

gimt ≤ yim; i = 1, .., n;m = 1, ..,Mi;

t = 1, .., T.

gimt ≤ ximt; i = 1, .., n;m = 1, ..,Mi;

t = 1, .., T.

himt ≥ yim + xn+1,1,t − 1; i = 1, .., n;

m = 1, ..,Mi; t = 1, .., T

himt ≤ yim; i = 1, .., n;m = 1, ..,Mi;

t = 1, .., T.

himt ≤ xn+1,1,t; i = 1, .., n;

m = 1, ..,Mi; t = 1, .., T.

g′imt ≥ y′im + ximt − 1; i = 1, .., n;

m = 1, ..,Mi; t = 1, .., T.

g′imt ≤ y′im; i = 1, .., n;m = 1, ..,Mi;

t = 1, .., T.

g′imt ≤ ximt; i = 1, .., n;m = 1, ..,Mi;

t = 1, .., T.

h′imt ≥ y′im + xn+1,1,t − 1; i = 1, .., n;

m = 1, ..,Mi; t = 1, .., T.

h′imt ≤ y′im; i = 1, .., n;m = 1, ..,Mi;

t = 1, .., T.

h′imt ≤ xn+1,1,t; i = 1, .., n;

m = 1, ..,Mi; t = 1, .., T.

dim ≤ M

T∑
t=1

ximt i = 1, .., n;m = 1, ..,Mi

Mi∑
m=1

lsi∑
t=esi

(t.ximt + Bimt) ≤
Mj∑
m=1

lsj∑
t=esj

t.xjmt;

∀ (i, j) ∈ A

Bimt ≤ dim + (1 − ximt)M ; i = 1, .., n;

m = 1, ..,Mi; t = 1, .., T

Bimt ≥ dim − (1 − ximt)M ; i = 1, .., n;

m = 1, ..,Mi; t = 1, .., T

Bimt ≤ ximt.M ; i = 1, .., n;m = 1, ..,Mi;

t = 1, .., T

Mi∑
m=1

lsi∑
t=esi

ximt = 1 i = 1, .., n

n∑
i=1

Mi∑
m=1

rrimk

min(t−1,lsi)∑
s=max(t−Dm(im),esi)

xims ≤ ark

k = 1, .., Rk; t = 1, .., T

n∑
i=1

Mi∑
m=1

rniml

lsi∑
t=esi

ximt ≤ anl l = 1, .., Rn

ximt, yim, y′im, y′′′im, himt, h
′
imt, gimt, g

′
imt∈{0, 1};

dim ∈ Z

fim, f ′
im, Bimt ≥ 0

6 Numerical Illustration

To illustrate the model, here, a numerical exam-
ple is given where the information about a sample
project will be provided. In this line, Figure 2 dis-
plays the precedence relations among the project
activities. As shown in Fig. 2, the sample project
comprises ten activities, each of which can be ex-
ecuted under various modes.

Table 1 provides information about the imple-
mentation of the project activities including max-
imum crashing level, maximum delay in activity
execution, as well as the coefficients for the costs
inflicted and the savings gained from crashing and
delaying the activities, respectively. Further, a
type of renewable resources and a type of non-
renewable resources have been considered in this
numerical example.

Table 2 gives information about the usage
amount of each activity from these resources. As
shown, each activity can enjoy a different amount
of resource use under different modes of execu-
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tion. In this project, it shall be noted that activ-
ities 1 and 10 are hypothetical ones and, accord-
ingly, the value of the parameters for them has
been considered as zero.

The other bits of information needed for the
sample project include the direct costs (10000),
indirect costs (200), interest rate (0.1), and max-
imum budget at avail (15000 monetary units).

Figure 2: The precedence network of the numerical
example

Table 1: Information on crashing and delaying activ-
ities and their respective costs and savings coefficients

Activity
Number

of
mode

Df Dn Dm C C′

1 1 0 0 0 0 0 0 0 0 0 0

2 2 3 4 4 6 5 8 1500 750 2525 2562

3 2 1 1 2 2 4 3 1200 1200 2506 2506

4 2 2 3 3 5 5 6 2000 1000 2560 2520

5 2 1 1 2 2 4 3 1450 1450 2547 2547

6 2 1 3 2 4 3 5 1800 1891 2575 2595

7 2 1 1 2 1 2 2 540 670 2560 2520

8 2 1 1 1 2 2 2 430 450 2525 2562

9 2 1 1 1 2 2 2 590 340 2575 2595

10 1 0 0 0 0 0 0 0 0 0 0

Now that the parameters of the model are
known, we can attempt to solve the prob-
lem. With regard to the proposed optimized
model and the follow-up linearization process
which was described, the mathematical model has
turned into a mixed–integer linear programming
(MILP), where the branch and bound method can
be used to get an optimal solution. In this study,
LINGO software has been adopted for using the
branch and bound method. Table 3 shows the
results achieved for the variables of the model.

Table 2: Information on the coefficients of renewable
and non-renewable resource use

Activity rr rn

1 0 0 0 0

2 2 1 3 1

3 1 1 0 0

4 3 1 4 2

5 1 1 0 0

6 2 1 3 2

7 2 1 2 1

8 2 2 2 2

9 2 2 2 2

10 0 0 0 0

ar = 10 an = 25

Since the activities 1 and 10 are hypothetical
ones, information about them is being ignored.

Table 3: Results from branch and bound method for
the numerical example

Activity Mode Duration Crashing Delay Start time

2 1 4 No No 1

3 2 2 No No 1

4 1 3 No No 1

5 2 1 Yes No 5

6 1 1 Yes No 5

7 2 1 No No 6

8 1 2 No Yes 4

9 1 1 No No 6

As shown in the table, activities 5and 6 have
undergone crashing and activity 8 has been de-
layed. Other activities of the project have been
carried out within the normal span of time. In the
end, the objective function of the sample project
is equal to 10 which is the optimum makespan of
the project.

7 Sensitivity Analysis

Here, we try to examine the impact of changing
the parameter of maximum budget on the value
of the objective function and the values of the
costs inflicted by crashing as well as the savings
from delaying the activities. In the first column
of the following table, the decreasing values of the
maximum budget at hand are given and the cor-
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responding changes in the objective function and
the triple factors in constraint 6 have been re-
ported. These triple factors consist of direct and
indirect costs of the project, the costs of crashing,
and the savings gained from delaying the activ-
ities. How to calculate these factors is given in
the relations 12, 13 and 14 and their linear from
is given in the mixed-integer linear mathematical
optimization.

As depicted in figure 3, with an increase in the
maximum available budget, the value of the ob-
jective function or the completion time of the
project is naturally ameliorated with the de-
crease. Concurrent with this drop, the direct
and indirect costs, too, witness a downward trend
which is readily justifiable in light of the higher
speed in the completion time of the project.

In Figure 4, with a hike in the maximum
budget at avail, in addition to a diminishing
makespan, an upward trend in the costs of crash-
ing the activities is noticed. Except for when the
maximum available budget amounts to 6000 mon-
etary units, such an upward trend can be seen
in Fig.4. This hike, of course, has to do with
the multiple properties of an optimum solution
in such a way that we would witness the same
makespan even if no activity is being crashed un-
der these conditions. Apart from this exclusive
case, an increment in the costs of crashing to-
gether with a decline in the completion time of
the project is reasonable, meaning that the higher
the available budget is, the higher the spend-
ing on crashing for reducing the makespan of the
project would be.

Table 4: Results of sensitivity analysis

Maximum
Available
Budget
(CMax)

Objective
Function
(makespan)

Direct
and

Indirect
Costs

Crashing
Costs

Saving
from
Delay-
ing

21000 7 11400 5908 0

20000 7 11400 3900 0

19000 7 11400 7534 0

18000 7 11400 1740 0

17000 7 11400 6680 3062.4

16000 7 11400 5708 1767.5

15000 7 11400 3900 1767.5

14000 7 11400 4364 1767.5

13000 8 11600 0 0

12000 8 11600 1740 2519.3

Figure 3: The relationship between the makespan
and the direct and indirect costs of the project

Figure 4: The relationship between the makespan
and the costs of crashing the activities

In figure 5, the reduction in the value of the ob-
jective function is coupled with a decline in the
savings from delaying the activities. As depicted
in Figure, the saving gained from delaying the
activities has decreased from a value of 2519.3 in
the budget level of 12000 to zero in the budget
level of 21,000. The reason is that, with a low
budget in hand, the mathematical optimization
model postpones some of the activities in order to
compensate for the direct and indirect costs and
to secure them through the savings gained. Obvi-
ously, delaying the execution of an activity entails
a lengthier makespan. From another standpoint,
the higher the budget at avail is, the lesser the
need for saving and delaying the activities arises.
Consequently, the amount of the savings dimin-
ishe.
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Figure 5: The relationship between the makespan
and the savings gained from delaying the execution of
the activities

8 Conclusion

Over the recent years, numerous researches have
been conducted on resource constrained project
scheduling largely focusing on a certain resource
type, i.e. renewable ones. Rarely has a study
considered both renewable and non-renewable re-
sources. In the project scheduling model under
study in this research, both types of resources
have been assumed. Non-renewable resources are
allocated for the whole project only once, whereas
the renewable resources can be renewed at any
given time span. Also, in the proposed model,
the activities are defined in multiple modes. As
stated in the literature review, MRCPSP has
been studied by very few researchers. In such
problems, there is a possibility for executing ev-
ery activity via multiple modes. Every mode is
a combination of duration and resource use, and,
usually, the shorter the duration of a mode is,
the more the need for resource use arises. Such
an assumption practically creates flexibility in se-
lecting the execution modes and making better
decisions. One of the prime objectives in project
scheduling is to carry out an activity over a fa-
vorable span of time using the least possible re-
source so as to be able to complete the project
in a minimum makespan. Making use of vari-
ous modes in implementing the activities is one
of the strategies that would enable us to achieve
such a goal. Adopting several modes, the model
becomes flexible in selecting the most appropri-
ate path in better performing the scheduling of
the project with a higher quality, besides saving
in the costs of implementing the project.

As a general rule, the more a model enjoys flex-
ible assumptions, the higher the quality of the
solutions would be. It was shown in this paper
that we can make the problem conditions closer
to the real world via adopting certain assump-
tions such as the time value of money (TVM)
which is of great significance to the managers
and decision-makers in deciding about the is-
sue of time- and-cost tradeoff. This is so be-
cause a change in the value of money disrupts
the scheduling of mega-projects whose implemen-
tation entails lengthy durations of time. Consid-
ering a non-linear function for the costs, too, is
another noteworthy point in this vein.
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