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Abstract

In this paper, we introduce the concepts of n-fold obstinate pseudo-hoop and n-fold obstinate filter
in pseudo-hoops. Then we investigated these notions and proved some properties of them. Also, we
discussed the relationship between n-fold obstinate pseudo-hoop and n-fold obstinate filter and other
types of n-fold pseudo-hoops and n-fold filters such as n-fold(positive) implicative filter and n-fold
fantastic filter in pseudo-hoops. For example, we proved that any n-fold obstinate filter is a maximal
filter. Finally, we obtain a characterization of n-fold obstinate filters in terms of congruences and we
show that any n-fold obstinate pseudo-hoop is an n-fold fantastic, n-fold positive implicative, n-fold
implicative pseudo-hoop and simple pseudo-hoop.

Keywords : Pseudo-hoop algebra; Filter; n-fold obstinate pseudo-hoop; n-fold obstinate filter.

1 Introduction

Aturally ordered commutative residuated in-
N tegral monoids (hoop) introduced by B. Bos-
bach in [5, 6], then studied by J. R. Biichi et al. in
[7], a paper never published. Also G. Georgescu,
L. Leustean et al. study the pseudo-hoops in
[8]. It is well-known that in various logical sys-
tems, filters play a fundamental role, filters cor-
respond to sets of provable formulas closed with
respect to Modus Ponnen. In [10, 12, 14, 16, 17]
the authors investigated the notation folding the-
ory to residuated lattices, n-folding fantastic fil-
ters and obstinate filters in BL-algebras, general-
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ization of integral filters and n-fold integral BL-
algebras and n-fold filters of MTL-algebras. In
[2], R. A. Borzooei et al., survey the notion of n-
fold(implicative, positive implicative and fantas-
tic filters) of pseudo-hoops. They show that if F
is an n-fold(implicative, positive implicative and
fantastic)filter, then A/F is an n-fold (implica-
tive, positive implicative and fantastic)pseudo-
hoops. Also in [15], A. Namdar et al., proposed
the obstinate filter in hoops.

In this disquisition, we define and study the no-
tion of n-fold obstinate pseudo-hoop and n-fold
obstinate filters in pseudo-hoops and generaliza-
tion of the corresponding notion in the crisp case.
Several properties of n-fold obstinate pseudo-
hoop and n-fold obstinate filters are given. We
show that F is an n-fold obstinate filter of A if
and only if A/F is an n-fold obstinate pseudo-
hoop. On the other hands if F' is an n-fold obsti-
nate filter of A, then A/F is a local and simple
pseudo-hoop. Also, we show that F' is an n-fold
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obstinate filter if and only if F' is a maximal and
n-fold positive implicative filter.

2 Preliminaries

In this section, we recollect some definitions and
results which will be used in this paper.

Definition 2.1 /8/ A pseudo-hoop algebra or
pseudo-hoop is an algebra (A, ®, —,~, 1) of type
(2,2,2,0) such that, for all x,y,z € A:

PH1) z01=10z=u,

rT—r=x~~x=1,

(oY) »z=z—(y — 2),

(zOY) 2=y~ (z~2),
(zoyor=y—2)0y=10(r~
y) =y 0oy~ ).

(

(PH2)
(PH3)
(PH4)
(PH5)

On pseudo-hoop A, we define z < y if and only
ifz > y=x~ y=1. It is easy to see that < is
a partial order relation on A. If ® is commuta-
tive(or equivalently —=~~), then A is said to be
a hoop. A pseudo-hoop A is bounded if there is
an element 0 € A such that 0 < x, for all x € A.
For any «x € A, we consider = = z — 0 and
x~ =x ~ 0. An element x € A is called atom if
it is a minimal among elements in bounded hoop
A\{0}. Also, element = € A is called idempotent
if 22 = x. The order of 1 # = € A, in symbols
ord(zx) is the smallest n € N such that 2 = 0. If
no such n exists, then ord(z) = co. (See [8])

Definition 2.2 /8] For pseudo-hoop A and for
any x,y € A, we definexVy=((xr = y)~y) A
((y = 2) ~z)=((z~y) = yA(y ~z) = ).
If V is the join operation on A, then A is called
a pseudo V-hoop.

Proposition 2.1 [8] In any pseudo-hoop A, the
following properties hold, for all x,y,z € A:

(1) (A, <)is ameet-semilattice with zAy = (z —
yor=z0(x~y)),

(i) 1 -z =ux,
(1ii) y<x—yandy <z~ vy,

(i) ifx <y, theny~z<z~zandy — z <
T — z,

(v) Oy <x,yand 2" <z, for any n € N,

(vi) if V exists, then (zVy) ~ z = (z ~ 2)A(y ~
z2), (xVy) = z=(x—=2)A\(y = 2).

lwxr=2z, z~x=1,

Proposition 2.2 [8] Let A be a bounded pseudo-
hoop. Then the following properties hold, for all
xr,y,z € A:

i) if x <y, then y~ <z~ and y~ <z~,

(

(i) (z")” < (a"™)7 and (z")~ < (a"T1)7,
(7ir) 0~ =0"=1and 17 =17 =0,
(iv) x < (z7)~ and z < (™),

(v) rOx” =0z~ =0,

(

vi) o7 <z —yand 2~ < x~ .

Definition 2.3 [8] Let A be a pseudo-hoop. A
non-empty subset F' of A is called a filter of A if,

(F1) = € F and = < y, then y € F, for any
T,y € A,

(F2) @y € F, for any z,y € F.

Clearly, 1 € F, for all filters of A. A filter I’ of
A is called a proper filter if F # A. It is easy to
see that, if A is a bounded pseudo-hoop, then a
filter is proper if and only if it is not containing
0. The set of all filters of A denoted by F(A).

Proposition 2.3 [8] Let A be a pseudo-hoop. If
F is a non-empty subset of pseudo-hoop A such
that 1 € F, then the following statements are
equivalent, for any x,y € A:

(i) F is a filter,

(ii) ifx,x >y € F, theny € F,

(tit) if z,x~y € F,theny € F.

Notation: It is easy to see that the intersection
of all filters of pseudo-hoop A is a filter. Hence,
for any B C A, Npcper(a) F is a filter and de-
noted by [B) and we called generated filter by B.

Theorem 2.1 [8] Let x € A. Then [z) = {a €
A | 2" < a, for somen > 1}, F(z) = [FU
{z}) ={t|t> foz" for f € F;n € N} and
[FUG)={acA|a>fogforfeF, geqG},
for any F,G € F(A).

Definition 2.4 [8] A filter F' of pseudo-hoop A
1s called a normal filter if v — y € F' if and only
ifc~~y€eF, forall z,y € A.

Definition 2.5 [8] A proper filter F' of a pseudo
V-hoop A is called a prime filter of A if xVy € F,
then x € F ory € F, for any x,y € A.
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A mazimal filter of pseudo-hoop A is a proper
filter M of A that is not included in any other
proper filters of A. Max(A) is the set of all max-
imal filters of A.

Proposition 2.4 [8] Let A be a pseudo-hoop
and F be a non-empty subset of pseudo-hoop A.
Then the following conditions are equivalent, for
any x € A:

(1) F is a maximal filter,
(1) x ¢ F if and only if (™), (z")™~ € F, for
some n € N.

Proposition 2.5 [3] Let A be a bounded V-
hoop. Then every maximal filter of A is a prime

filter.

Definition 2.6 [2/ Let F be a subset of A such
that 1 € F. Then for any x,y,z € A:

(1) Fis called an n-fold positive implicative filter
of A, if 2" — (y = z) € F and 2™ ~» y € F, then
2" — z € F. Also, if 2" ~ (y ~ z) € F and
" =y € F, then 2™ ~~» z € F..

(i) F is called an n-fold implicative filter of A, if
r— ((y* —2)~y)e Fandx € F, theny € F.
Also, if x ~ ((y" ~ 2z) - y) € F and x € F,
then y € F.

(131) F is called an n-fold fantastic filter of A, if
z—=(y—x) € Fandz € F, then ((2" — y) ~
y) > x € F. Also, if z ~ (y ~ z) € F and
z € F, then ((z" ~y) > y)~z € F.

Definition 2.7 [8] Let A and B be two bounded
pseudo-hoops. A map f : A — B is called a
pseudo-hoop homomorphism if and only if for all
z,y€ A, f(0)=0, f1) =1, fzoy) = flz)®
fW), f(@ = y) = flx) = fly) and f(z ~y) =
F(z) ~ f(y).

The set of all pseudo-hoop homomorphism
from A to B is shown by Hom(A, B).

Definition 2.8 [8/ Let A be a pseudo-hoop.
Then A is called:

(1) mn-fold positive implicative pseudo-hoop, if
"t =g for all z € A.

(i)  n-fold  implicative  pseudo-hoop, if
(2" = 0) ~» z =z and (2" ~» 0) = = = z, for all

x € A
(vi1) n-fold  fantastic  pseudo-hoop, if
((z" — y) ~ y) — x = y — x and
(" ~ y) = y) ~ =z =y ~ x, for all
T,y €A

(iv) local pseudo-hoop, if ord(x) < oo or
ord(z™) < oo or ord(z"™) < oo, for all z € A.

v) simple pseudo-hoop, if A is non-trivial and
{1} is its only proper filter.

(vi) cancellative pseudo-hoop, if the monoid
(A,®,1) is cancellative if and only if
b— (a®b) =aand b ~ (a®b) = aif and
only if c®a = c®b, then a = b, for any a, b, c € A.

Notation: From now one, we let (A, ®, —, ~
,0,1) or A be a bounded pseudo-hoop, unless oth-
erwise state.

3 n-fold obstinate pseudo-hoops
and n-fold obstinate filters in
pseudo-hoops

In this section, we introduce the notion of n-fold
obstinate pseudo-hoop and n-fold obstinate filter
in pseudo-hoop and investigate some properties
of them.

Definition 3.1 A is called an n-fold obstinate
pseudo-hoop if, for all x # 1, 2™ = 0.

Example 3.1 (i) Let (A = {0,a,b,1},<) be a
chain that is0 < a < b < 1. Define the operations
®,— and ~ on A as follows:

—,~ | 0 a b 1
0 1 1 1 1
a b 1 1 1
b a b 1 1
1 0 a b 1
® | 0 a b 1
0O | 00 0 O
a | 0 0 0 a
b | 0 0 a b
1 | 0 a b 1

Then (A,®,—,~,1,0) is a bounded pseudo-
hoop and A is an 3-fold obstinate pseudo-hoop.
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But it is not an 2-fold obstinate pseudo-hoop, be-
cause b # 0.

(13) [9]. Let NS[0,1], (non-standard interval
[0, 1]) be the ordered set whose elements are pairs
(a,b) such that a =0 and 0 <bor 0 < a < 1 and
b arbitrary or a = 1 and b < 0 (b running on real
set). The ordering is lexicographic: (a,b) < (¢, d)
if and only if a < ¢ or (a = ¢ and b < d). The or-
dered set NS[0,1] endowed with the operations:
(a,b) © (¢, d) =

max ((0,0), (%(a—i— c—1+ac), b(C;— 1))>

If (a,0) < (¢,d), then (a,b) — (c,d) = 1,

otherwise (a,b) — (¢,d) = <261_f:1, Zﬁgb).

Also, if (a,b) < (¢,d), then (a,b) ~ (c,d) = 1,
otherwise (a,b) ~ (¢,d) = 2611_7“;1, _bl(izl) + d).

Then (NS[0,1],®,—,~,0,1) is a bounded
pseudo-hoop. But it is not an n-fold ob-
stinate pseudo-hoop, because (1,b) ® (1,b) =
maz((0,0), (1,b)) = (1,b), for b < 0.
(#7) [1] Let A = [0, 4] U {1} and operations ®, —
and ,~ are defind by, z © y = max(0,xz +y — 1),
and if x < y, then + — y = 1, otherwise
r—y=min(l —z +y,1).

Then (A,®,—,1,0) is an 2-fold obstinate
pseudo-hoop.

Proposition 3.1 If A is an n-fold obstinate
pseudo-hoop, then A is an (n + 1)-fold obstinate
pseudo-hoop.

Proof. Let A be an n-fold obstinate pseudo-
hoop. Then z" = 0, for any z € A\{1}. By
Proposition 2.1(v), "™ < 2™. Hence, 2" = 0,
for any z € A\{1} and so A is an (n + 1)-fold
obstinate pseudo-hoop.

Corollary 3.1 Any n-fold obstinate pseudo-
hoop is an (n+ k)-fold obstinate pseudo-hoop, for
all k> 1.

Proposition 3.2 If A is an n-fold obstinate
pseudo-hoop, then A is not a cancellative pseudo-
hoop.

Proof. Let A be a cancellative pseudo-hoop, by
the contrary. Then "t = 2" = 0. Hence 2" ®

r=2"®1=0. Thus x = 1 = 0, which is a
contradiction. Therefore, A is not a cancellative
pseudo-hoop.

Proposition 3.3 If A does not have idempo-
tent element except {0,1} and A(M) is the set
of all atoms of A, then A(M)U {1} is an n-fold

obstinate pseudo-hoop.

Proof. If z € A(M), then z is an atom and is
not idempotent element of A. Thus z? # z. By
Proposition 2.1(v), 2" = 2% = 0.

Proposition 3.4 If A is an n-fold obstinate
pseudo-hoop, then A does not have idempotent el-
ement except 0,1.

Proof. Let 0 # z be an idempotent element
of A. Then z?> = z. Since A is an n-fold
obstinate pseudo-hoop, 0 = 2™ = x, which is a
contradiction.

Notation: For any x € A, we consider
mg = ord(x) — 1, so 2™ # 0.

Proposition 3.5 Let A be an n-fold obstinate
pseudo-hoop. Then ™ is an atom for any 0,1 #
x € A and m, € N.

Proof. Let x € A. Then 2" =0 and 0 = 2" <
2"l < 22 < < 2. If t = ord(z), then
x=1 #£0. So for my =t — 1, ™= is an atom.

Definition 3.2 A proper filter F' of A is called
an n-fold obstinate filter if for all x,y ¢ F, then
" =y y" - x € F and 2" ~ y,y" ~ x € F,
forn € N.

Example 3.2 In Ezample 3.1(i), F = {1} is an
3-fold obstinate filter but since b> — 0 =a — 0 =
b¢ F, F is not an 2-fold obstinate filter of A.

Proposition 3.6 Let F' be a proper filter of A.
Then the following statements are equivalent:

(i) F is an n-fold obstinate filter of A,

(1) x € F or(z")”,(z™)~ € F, for all x € A.

Proof. (i) = (ii) Suppose F' is an n-fold obsti-
nate filter and x ¢ F. Since F is a proper filter
and A is bounded, 0 ¢ F. Then (z")” = 2" —
0€ Fand (")~ =a2" ~0€ F.

(ii) = (1) Let x,y ¢ F. Then by assump-
tion, (2")~, (™)™, (y")~, (¥")~ € F. Thus,
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by Proposition 2.2(vi), (z")” < 2" — y and
(y")~ < y™ — z. Since F is a filter, by (F1),
2" — y € F and y" — = € F. The proof of
other case is similar. Therefore, F' is an n-fold

obstinate filter of A.

Corollary 3.2 F' is an n-fold obstinate fil-
ter of A if and only if v ¢ F implies
(™))™ ((z™)~)™ € F, for all m € N and
x e A.

Proposition 3.7 Let F' be an n-fold obstinate
filter of A. Then the following conditions hold:

(¢) forall 0,1 # x € A, 2" — (2™)7, 2" —

(x™)~ € For (z")” — 2", (™)~ =z € F,

(17) forallz € A, ((z™)7)~ = 2", (™))" ~
" e F,

(131) for all x ¢ F, and for any y < 2", then
yo, Yy eFr,

(iv) forallz € A, 2™ — 2", 2" ~ 2?™ € F.
Proof. (i) Let z € F. Then by Proposi-
tion 2.1(iii), 2™ < (2™)” — 2". Since F is a
filter, by (F1), (") — a" € F. If ¢ ¢ F,
then by Proposition 3.6(ii), (z")~ € F. By
Proposition 2.1(iii), (z")” < 2" — (2™)7, and
so 2™ — (z™)” € F. The proof of other cases is
similar.

(1) We consider the following cases:

Case 1: If x € F, then by Proposition 2.1(iii),
z" < ((z™)7)~ — 2". Since F is a filter, by

(F1), ((2")7)~ = 2" € F.

Case 2: If z ¢ F, then by Proposition 3.6(ii),
(")~ € F. By Proposition 2.2(iv) and (vi),
(") < (((«")7)™)" < ((#")7)” — x, and so
by (F'1), ((z™)7)~ — x € F. The proof of other
cases is similar, too.

(7i1) Let x ¢ F and y < 2™. Then by Proposition
2.2(1), (z™)~ < y~. Since F is an n-fold obstinate
filter, by Proposition 3.6(ii), (z™)~ € F and by
(F1),y~ € F.

(tv) We consider the following cases:

Case 1: If z € F, then by Proposition 2.1(iii),
? < 2" — x®. Since F is a filter, by (F1),
" — x?" € F.

Case 2: If z ¢ F, then by Proposition 3.6(ii),
(™)~ € F. By Proposition 2.2(iv) and (vi),
(&™)~ < (((@")7)™)” < ((@")7)” — a?". Also,
by Proposition 2.2(iv) and Proposition 2.1(iv),

2" < ((2")7)~ and ((2")7)~ — 2" < " — 2"
Therefore, by (F1), 2" — 22" € F.

Proposition 3.8 If F' is an n-fold obstinate fil-
ter of A, then F is an (n+k)-fold obstinate filter
of A, for any k € N.

Proof. Let x ¢ F'. Then by Proposition 3.6(ii),
(")~ € F. By Proposition 2.2(ii), (z")” <
(z"1)~ and so by (F'1), (z"*1)~ € F. The proof
of other case is similar.

Let FF € F(A). Define x =p y if and
only if z - y € F, y — x € F, and
x~y € F y~ x € F for any z,y € A.
Then we can see that = is a congruence relation
on A. The set of all congruence classes is
denoted by A/F, it means A/F = {[z]| | x € A},
where [z] = {y € A | * =r y}. Define
the operations ©®,— and ~» on A/F by
Zloy = oy, [z = [y = [z - 4
and [z] ~ [y] = [r ~ wy]. Therefore,
(A/F,®,—,~,[1],[0]) is a bounded pseudo-
hoop with respect to F' and [z] < [y] if and only
ifx —y,x~yeF. (See [8])

Notation: It is easy to show that every obsti-
nate filter of A is an n-fold obstinate filter of A
and every 1-fold obstinate filter of A is an obsti-
nate filter of A.

Theorem 3.1 Let F' be an 1-fold obstinate filter
of A. Then A/F is a Boolean algebra.

Proof. Let z € A. Since F is an 1-fold ob-
stinate filter, by Proposition 3.6(ii), = € F or
x~, ™ € F. Then, [z] = [1] or [x_] = [z™~] = [1].
Hence, [2] = [1] or [(z7)~] = [0]. If [(z™)~] = [0],
since [z] < [(z7)7], then [z] = [0]. Therefore,
A/F is a Boolean algebra.

Theorem 3.2 F is an n-fold obstinate filter of A
if and only if A/F is an n-fold obstinate pseudo-
hoop.

Proof. (=) Let F' be an n-fold obstinate filter
and x ¢ F. Then z/F # 1/F. By Proposition
3.6(ii), («™)~ € F, thus (2")"/F = 1/F. By
Proposition 2.2(ii) and (iii), 2" /F = 0/F.

(<) Let A/F be an n-fold obstinate pseudo-hoop
and x ¢ F. Then 2" /F = 0/F and by Proposi-
tion 2.2(iii), (™)~ /F = 1/F. Hence (z™)~ € F.
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By Proposition 3.6(ii), F' is an n-fold obstinate
filter of A.

Proposition 3.9 Let F' and G be two filters of
A such that F C G. If F is an n-fold obstinate
filter of A, then G is an n-fold obstinate filter,
too.

Proof. Let F' and G be two filters of A such
that /© C G and F be an n-fold obstinate filter
of A. Suppose x ¢ G. Then z ¢ F. Since F is
an n-fold obstinate filter, by Proposition 3.6(ii),
(™), (z™)~ € F. Hence (z™)7, (2")~ € G and
G is an n-fold obstinate filter of A.

Proposition 3.10 Let F' be an n-fold obstinate
filter of A. Then:

(1) (x®y)~ € F,implies (")~ € For (y")” € F.
(i1) (x ©®y)~ € F, implies (z™)~ € F or (y")~ €
F.

Proof. (i) Let F be an n-fold obstinate filter of
A and (x ©®y)~ € F. Since F is a proper filter,
r©®y ¢ F. Then by (F2), x ¢ Fory ¢ F. By
Proposition 3.6(ii), (z")~ € F and (y")~ € F.
(7i) The proof is similar to (7).

Lemma 3.1 (i) Let ¢ € Hom(A, B) and G be
an n-fold obstinate filter of B. Then the inverse
image of G is an n-fold obstinate filter of A.

(i) Let ¢ : A — B be a pseudo-hoop isomor-
phism and F € F(A) be an n-fold obstinate filter.
Then @(F) is an n-fold obstinate filter of B.
(7i1) Let ¢ : A — B be a pseudo-hoop surjective
and A be an n-fold obstinate pseudo-hoop. Then
B is an n-fold obstinate pseudo-hoop.

Proof. (i) Let G be an n-fold obstinate
filter of B and * € A but z ¢ ¢ }G).
Then p(z) ¢ G, and so by Proposition 3.6(ii),
(6@, (@)~ € G. By Definition
2.7, we have ¢((z™)7), ¢((z™)~) € G. Then
(™), (z")~ € ¢ }G). Therefore, ¢~ 1(G) is
an n-fold obstinate filter of A.

(11) Tt is easy to see that, if F € F(A), since ¢ is
a pseudo-hoop isomorphism, then ¢(F) € F(B).
Now, let y1,y2 ¢ o(F). Then ¢ (y1), ¢~ (y2) ¢
F. Since F is an n-fold obstinate filter, then
e )" = y2) = (P )" = ¢ ye) € F
and so (y1)" — y2 € ¢(F). By the similar way,
we can get that (y2)" — y1, (y1)" ~ y2, (y2)" ~
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Borzooei et al., /IJIM Vol. 12, No. 2 (2020) 147-157

y1 € p(F). Therefore, p(F') is an n-fold obstinate
filter of B.

(791) Let y € B. Then there exists x € A such
that y = ¢(x) and so y" = (™) = ¢(0) = 0.
Therefore, B is an n-fold obstinate pseudo-hoop.

Theorem 3.3 The
equivalent:

(i) any filter F' € F(A) is an n-fold obstinate
filter of A,

(73) {1} is an n-fold obstinate filter of A,

(7i7) A is an n-fold obstinate pseudo-hoop.

following conditions are

Proof. (i) = (i7) The proof is clear.

(ii) = (i) By Proposition 3.9, the proof is clear.
(17) = (19i) Since A = A/{1} and {1} is an n-fold
obstinate filter, then by Theorem 3.2 and Lemma
3.1(iii), A is an n-fold obstinate pseudo-hoop.
(7i1) = (i7) Let A be an n-fold obstinate pseudo-
hoop and 1 # = € A. Since, ™ = 0, by Propo-
sition 2.2(iii), (2™)” = (2™)~ =1 € {1}. Then
by Proposition 3.6(ii), {1} is an n-fold obstinate
filter of A.

Proposition 3.11 Let F' be an n-fold obstinate
filter of A. Then the following conditions are
hold:

(1) [FUG) is an n-fold obstinate filter of A, for
any G € F(A).

(14) F(z) is an n-fold obstinate filter of A, for
all x € A.

Proof. (i) Let z ¢ [FUG). Then x ¢ F and
x ¢ G. By Proposition 3.6(ii), (z")~ € F. Thus
(™)~ € [F UG). By Proposition 3.6(ii), [FF U G)
is an n-fold obstinate filter of A.
(79) We consider the following cases:
Case 1: If z € F, then F(z) = F.
Case 2: If e ¢ Fand y ¢ F(z), y # z, then y ¢
F' and by Proposition 3.6(ii), (y")~ € F. Hence
(y™)~ € F(z). By Proposition 3.6(ii), F(z) is an
n-fold obstinate filter of A.

4 Relation between n-fold fil-
ters in pseudo-hoops

In this section, we investigate the relationship be-
tween n-fold obstinate filters and other filters and
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n-fold filters in pseudo-hoops.

Theorem 4.1 Every n-fold obstinate filter of A
is @ mazximal filter of A.

Proof. Let F' be an n-fold obstinate filter of
A which is not a maximal filter of A. Then there
exists a proper filter G of A such that F C G.
Let z € G\F. Since F is an n-fold obstinate
filter, by Proposition 3.6(ii), (z™)~ € F. Since
(z")” € G and 2" € G, by Proposition 2.2(v),
z" ® (z")” = 0 € G, which is a contradiction.
Therefore, F' is a maximal filter.

The next example shows that the converse of
Theorem 4.1, is not true, in general.

Example 4.1 Let (A = {0,a,b,¢,d,1},<) be a
poset. Define operations ®,~ and — on A as
follows,

—, 0 a b ¢ d 1
0 1 1 1 1 1 1
a c 1 b ¢ b 1
b d a 1 b a 1
C a a 1 1 a 1
d b 1 1 b 1 1
1 0 a b ¢ d 1

® | 0 a b ¢ d 1

0O | 00 0 0 0 O

a | 0 a d 0 d a

b | 0 d ¢ ¢ 0 b

c | 00 ¢c ¢ 0 ¢

d | 04 0 0 0 d

1 | 0 a b c d 1

By routine calculations, we can see that (A4, ®, —
,~,0,1) is a bounded pseudo-hoop. It is clear
that F' = {1,a} is a maximal filter but it is not
an 1-fold obstinate filter. Because b ¢ F and
b-=d¢F.

Corollary 4.1 FEvery n-fold obstinate filter of
pseudo V-hoop A is a prime filter of A.

Proof. By Theorem 4.1 and Proposition 2.5,
the proof is clear.

Proposition 4.1 Any 1-fold obstinate filter F
s a normal filter of A.

Proof. Let F be an 1-fold obstinate filter and
x — y € F. We consider the following cases:
Case 1: If y € F, then by Proposition 2.1(iii),
y<z~y. By (Fl),z~y€F.
Case 2: If z,y ¢ F, then by assumption, = ~~
ye L.
Case 3: If x € F, then by Proposition 2.1(v),
(x - y)©x < y. By (F1l) and (F2), y € F.
Hence by Case 1, x ~» y € F.
Therefore, F' is a normal filter of A.

In the following example we show that the con-
verse of Proposition 4.1, is not true, in general.

Example 4.2 In Example /.1, F = {1}, is a
normal filter but it is not an n-fold obstinate fil-
ter. Because, a" —-b=>bandb" —a=a¢ F.

Theorem 4.2 Let F' be an n-fold obstinate filter
of A. Then F' is an n-fold implicative filter.

Proof. Assume that F is not an n-fold im-
plicative filter. Then there exist z,y € A, such
that 1 — ((z" — y) ~ 2) € F but ¢ F. By
Proposition 2.3(ii), (z" — y) ~ = € F. We con-
sider two cases:

Case 1: If y € F, then since y < 2™ — y, so by
(F1), 2™ — y € F. By Proposition 2.3(iii), since
(" - y) ~ x € F and 2" — y € F, we get,
x € F, which is a contradiction.

Case 2: If y ¢ F, then since F' is an n-fold obsti-
nate filter, 2" — y € F. By Proposition 2.3(iii),
since (z" — y) ~ x € F and 2" — y € F, we
get, x € I', which is a contradiction.

Therefore, F' is an n-fold implicative filter of A.

Lemma 4.1 Any filter F' of A is an n-fold pos-
itive implicative filter if and only if for all x €
A Fp={yecA|2" wyanda" ~yeF}isa
filter of A.

Proof. Let I’ be an n-fold positive implicative

filter of A. Since z — 1 = 1 € F, we have
1 € F,. Let y,z € A such that y,y — z € F,.
Then 2 ~»y € F and 2" — (y — z) € F. Thus
" — z € F, and so z € F,. Therefore, F} is a
filter of A.
Conversely, suppose F) is a filter of A, for all z €
A. Let z,y,z € A such that 2" — (y — z) € F
and " ~» y € F. Then y,y — 2z € F,;. Thus
z € Fy, and so 2 — z € F. The proof of other
cases is similar, too.
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Theorem 4.3 If F' is a mazimal and n-fold pos-
itive implicative filter of A, then F is an n-fold
obstinate filter of A.

Proof. Let F' be a maximal and n-fold positive
implicative filter of A and z,y € A\F. Then by
Lemma 4.1, F, ={b€ A | 2™ - band 2" ~ b €
F}and Fy={be A|y" = b, y" ~ be F} are
filters of A .

Let z € F. Then by Proposition 2.1(iii), z <
z" — z and by (F1), 2" — 2z € F. Thus, z € F;
and so /' C F,. On the other hand, z" — x =
1€ F,sox € F,. By assumption, ¢ F'. Hence
F C F, C A. Since F is a maximal filter of A,
F, = A. Hence y € F, or equivalently 2™ — y €
F. Similarly 2" ~~ y € F, y" — x € F and
y" ~ax e F.
Proposition 4.2 [2] Let F be a normal filter
of A.

(i) If for all z € A, 2" — 2™ € F or
z" ~» z?® € F, then F is an n-fold positive
implicative filter of A.

(1) If F is an n-fold implicative filter of A, then
F' is an n-fold fantastic filter of A.

(737) {1} is an n-fold fantastic filter, if and only
if A is an n-fold fantastic pseudo-hoop.

Theorem 4.4 Let A be a pseudo V-hoop. Then
F is an n-fold obstinate filter if and only if F' is
a prime and n-fold implicative filter.

Proof. If F' is an n-fold obstinate filter, then

by Corollary 4.1 and Theorem 4.2, the proof is
clear.
Conversely, assume that F' is a prime filter and n-
fold implicative filter of A such that z € A\F. We
show that x vV (")~ € F and z V (2™)™~ € F, for
all x € A. Since F is an n-fold implicative filter,
if (™)~ — z € F then x € F. Also (z")” ~
x € F implies x € F. Now, we must show that
t=xV (z")” € F. Since x < t, we have z" < "
and then by Proposition 2.2(i), (t")~ < (z")” <
()" Vo =t So (t")” ~t=1¢€ F. Hence,
we get that ¢ € F. The other case is similar.
Thus x V (z™)~ € F. Since F is a prime filter and
x ¢ F, we have (2")~ € F. Therefore, F' is an
n-fold obstinate filter of A.

Proposition 4.3 Let F' be a normal n-fold ob-
stinate filter of A. Then:

(i) F is an n-fold positive implicative filter,

(1) F is an n-fold fantastic filter.

Proof. (i) We consider two cases:

Case 1: Let z € F. Then by (F2), 2?" € F
and by Proposition 2.1(iii), 2°" < 2" — 2", By
(F1), 2" — 2?" € F.

Case 2: Let ¢ F. Then by assume (z")~ € F.
By Proposition 2.2(vi), (z")~ < 2™ — 2?" and by
(F1), 2™ — 2?" € F. Therefore, by Proposition
4.2(i), F' is an n-fold positive implicative filter of
A.

(17) By Theorems 4.2 and 4.2(ii), F' is an n-fold
fantastic filter of A.

Theorem 4.5 (i) If F is an n-fold fantas-
tic filter of A, then ((™)7)~ — x € F and
((z™)™)” -z e F.

(1) If De(A) = {z € A| 2~ =2~ =0} =
A\{0}, then every n-fold fantastic filter is an n-
fold obstinate filter of A.

(1it) Let F be an n-fold fantastic filter and for
al xz,y € A, if (" ©y")” € F, then (z™)” € F
or (y")~ € F. Also, (z" © y™)™~ € F implies
(™)~ € F or (y")~ € F. Then F is an n-fold
obstinate filter of A.

Proof. (i) Since0 -z =0~ x=1¢ F and
F' is an n-fold fantastic filter, then ((2™)7)~ —
x € Fand (")) —z € F.

(ii) Let F be a proper n-fold fantastic filter of
A. Then 0 ¢ F, and so (z")~, (z")~ ¢ F, for
any 0 # x € A and n > 1. By assumption and
(0), (z" = 0)~»~0) 2=(0~0) »z=1—
x = x € F. Hence, by Proposition 3.6(ii), F' is
an n-fold obstinate filter.

(7i7) Assume F is an n-fold fantastic filter of
A such that x ¢ F. It is enough to prove
that (z")7, (™)~ € F. Let (")~ ¢ F, by
the contrary. Then by Proposition 2.2(v), (2" ®
(™)7)Y = 0~ =1 € F. By assumption
((z™)~)~ € F. Since F is an n-fold fantastic
filter, by (i), ((z")7)~ — x € F. By Propo-
sition 2.3(ii), = € F, which is a contradiction.
Hence, (™)~ € F. By the similar way, we get
that (2™)~ € F. Therefore, F is an n-fold obsti-
nate filter of A.

Proposition 4.4 Let A be an n-fold fantastic
pseudo-hoop and if for all z,y € A, 2" ©y"™ =0
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implies " = 0 or y™ = 0. Then A is an n-fold
obstinate pseudo-hoop.

Proof. If A is an n-fold fantastic pseudo-hoop,
then by Proposition 4.2(iii), {1} is an n-fold fan-
tastic filter of A. By hypothesis and Theorem
4.5(iii), {1} is an n-fold obstinate filter of A and
so by Theorem 3.3(iii), A is an n-fold obstinate
pseudo-hoop.

Proposition 4.5 Let A be a bounded simple
pseudo-hoop. Then A is an n-fold obstinate
pseudo-hoop, for some n € N.

Proof. If 1 # x € A, then [z) = A and so
0 € [x). Hence for some m € N, ™ = 0. Let n =
max{m | © € A}. Then A is an n-fold obstinate
pseudo-hoop.

Theorem 4.6 Let F' be an n-fold obstinate filter
of A. Then A/F is a local and simple pseudo-
hoop.

Proof. Let F be an n-fold obstinate filter of
A. Then by Theorem 4.1, F'is a maximal filter of
A and so A/F is alocal and simple pseudo-hoop.

Notation: A partially ordered set (P, <) is
called to be of the finite length if the length of all
chains in P are finite.

Theorem 4.7 Let A be a pseudo-hoop of finite
length. Then there exists n € N such that every
mazximal filter of A is an n-fold obstinate filters

of A.

Proof. Let n be the length of the greatest
chain in A. Then by Theorem 4.1, every n-fold
obstinate filter of A is a maximal one. Now, let
F € Max(A). Then, we show that F' is an n-
fold obstinate filter. Assume = ¢ F. Since F is
a maximal filter of A, by Proposition 2.4, then
(z')~ € F, for some t € N. If t < n, then by
Proposition 2.1(v), 2" < a!, so by Proposition
2.2(1), (%)~ < (z")~. By (F1), (")~ € F. Let
n<t Since)<z"<az"l< . <22<z<1
and A is finite length. Then by assumption, there
isa s € {1,2,..,n} such that 25 = 25! so 2" =
xt. Tt follows that (z)~ € F. Therefore, F is an
n-fold obstinate of A.

Theorem 4.8 Let A be an n-fold obstinate
pseudo-hoop. Then the following conditions are
hold:

(i) A is an n-fold fantastic pseudo-hoop,

(ii) A is an n-fold positive implicative pseudo-
hoop,

(7i7) A is an n-fold implicative pseudo-hoop,
(tv) A is a local pseudo-hoop,

(v) A is a simple pseudo-hoop.

Proof. (i) Let A be an n-fold obstinate
pseudo-hoop. Then by Theorem 3.3(ii), {1} is
an n-fold obstinate filter of A. By Proposition
4.3(ii), {1} is an n-fold fantastic filter of A. then
by Proposition 4.2(iii), A is an n-fold fantastic
pseudo-hoop.

(ii) Let A be an n-fold obstinate pseudo-hoop.
Then 2" = 0, and so 2”1 = 2”. Hence, A is an
n-fold positive implicative pseudo-hoop.

(7i7) Let A be an n-fold obstinate pseudo-hoop.
Then by Proposition 2.1(ii), (™ — 0) ~ x =
l~z=zand (2" ~ 0) 22z =1— 2z ==z
Therefore, A is an n-fold implicative pseudo-
hoop.

(iv) Since for any 1 # = € A, 2" = 0, then
ord(xz) < co. Hence, A is a local pseudo-hoop.
(v) Let A be an n-fold obstinate pseudo-hoop
and 1 # x € F. Then by (F2), 0 = 2" € F.
Therefore, A is a simple pseudo-hoop.

In the following diagram, we show the relation-
ship between n-fold obstinate filter and other fil-
ters of pseudo-hoop, where the condition (x) is
"oy =0=2"=0or y" =0.

prime n-fold implicative
o (c") "~ €For
n-fold implicative (@) € F
maximal
maximal «——————  n-fold obstinate *———, n-fold positive implicative

normal
%| {normal

n-fold fantastic

Figure 1: First-type nanostar dendrimer, N.S;[2]
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5 Conclusion

In this paper, we have considered the folding the-
ory of a filter which is a generalization of a fil-
ter in pseudo-hoop. We have provided conditions
for a filter to be an n-fold obstinate filter of a
pseudo-hoop. So we discuss on concept n-fold
obstinate pseudo-hoops. Then we studied rela-
tionships between n-fold obstinate pseudo-hoops
and some other special pseudo-hoops, such as
simple pseudo-hoop and local pseudo-hoop. On
the other hands, we introduced the notion of an
n-fold obstinate filter in pseudo-hoop. Then we
studied relationships between an n-fold obstinate
filter and some other special n-fold filter, such as
n-fold fantastic, n-fold positive implicative and
n-fold implicative filter.
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