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Abstract

Data Envelopment Analysis (DEA) is recognized as a robust analytical tool extensively utilized in
measuring the relative efficiency of a group of Decision Making Units (DMUs) with multiple inputs and
outputs. The DEA models require inputs and outputs equipped with precise information. However in
real-world situations inputs and outputs may be unstable and complicated thus unable to be accurately
measured. This problem resulted in the investigation of uncertain DEA models. The BCC model
is studied in this paper in an uncertain environment where uncertain inputs and outputs were belief
degree-based uncertainty useful for the cases for which no historical information of an uncertain event
is available. As the solution method the uncertain BCC model was converted to a crisp form using
two approaches of expected value method (EV) and expected value and chance-constrained method
(EVCC) separately. Finally, an applied example regarding the Iranian Banking system is presented
to document the proposed models.

Keywords : Data envelopment analysis; Uncertainty theory; Belief degree; BCC model; Uncertainty;
Iranian Banks.

—————————————————————————————————–

1 Introduction

A
s a strong analytical tool data envelopment
analysis (DEA) is a method for evaluating
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the relation efficiency of decision-making units
(DMUs) originally developed by Charens et al.
[4] within a printed-paper named CCR. They ex-
tended the nonparametric method introduced by
Farrell [13] to gauge DMUs with multiple inputs
and outputs. Afterward Banker et al. (1984) in-
troduced the BCC model. In addition to CCR
and BCC there are several models that discuss
DEA from several perspectives: RAM by Cooper
et al. [7] slack-adjust by Sueyoshi [28] additive
model by Ali and Seiford et al. [1] SBM model
by Tone [30] and FDH model by Deprins et al.
[11] all of which are DEA basic models.

In classical DEA models DMUs are evaluated
by considering input and output values in order to
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measure rational efficiency as compared to differ-
ent DMUs; eventually the measure to which ratio-
nal efficiency belong is obtained (0,1). The first
DEA models expected that inputs and outputs be
measured by precise values. However in numer-
ous situations such as when producing a system or
in preparation process the banking system insur-
ance industry and financial service system inputs
and outputs are unstable and complicated and
therefore cannot be accurately measured. Conse-
quently many analysts attempted to model DEA
with completely different questioning hypotheses.

The possible hypothesis is the earliest princi-
ples which may be used to build stochastic DEA
models. Sengupta [29] summed up the stochastic
DEA model utilizing expected value. Moreover
Banker [3] consolidated applied mathematics el-
ements underneath DEA in order to develop a
statistical method. Several papers [6, 8, 14, 25]
utilized chance-constrained programming to DEA
so as to introduce stochastic varieties to informa-
tion. Fuzzy outlook is another theory in which
the hypothesis has been incorporated to cope
with the uncertainty in DEA. United with the
DEA innovator Cooper et al. [8, 9] introduced
a technique to deal with inaccurate information
such as moderate data adjectival data and ratio
moderate data in DEA. Furthermore Kao and Liu
[17] designed a technique to discover the member-
ship function of fuzzy performance marks when
each input and output are fuzzy numbers. En-
tani et al. [12] proposed an interval potency DEA
model by pessimistic and idealistic values. Sev-
eral researchers have introduced the possibility
measure into DEA [15, 18].

As confirmed by several studies human uncer-
tainty does not come with the same fuzziness. Be-
cause of the shortages of Fuzzy Theory Liu [19] in-
troduced Uncertain Theory and refined it in 2010
as an understandable mathematical structure for
confronting uncertainty in data which serves as a
strong alternative to the probability theory when
one has to restrict the information in the face of
insufficient trusted data. The belief degree func-
tion is associated with an underlying concept of
this theory built according to the experts’ opin-
ion. Optimization problems including uncertain
data can be even more interesting and realistic in
uncertain environments with uncertain values for

parameters and even variables.

To tackle such problems with uncertain param-
eters any approach based on randomness fuzzy
theory stochastic programming probability the-
ory and so on can be applied in the face of histor-
ical information of the parameters. In such cases
the uncertain manner of the problem is estimated
from the historical data as the probability func-
tion random number fuzzy number etc. On the
other hand for cases in which no historical infor-
mation for an uncertain event exists uncertainty
theory based on belief degree has been applied to
solve the problem. This uncertainty theory can
be explained by a simple example.

Consider a bridge and strength. At first it is as-
sumed that no destructive experiment is allowed
for the bridge. Thus there is no sample regard-
ing the strength of the bridge. In this case no
statistical methods exists for estimating its prob-
ability distribution. Therefore there is choice but
to invite bridge engineers to evaluate the belief
degrees about the bridge’s strength.

Some basic concepts of the belief degree-based
uncertainty theory will be explained in Section 2
and a complete study of this topic can be found
in Liu [19]. The belief degree depends heavily on
personal knowledge (even including preferences)
concerning the event. When changes the per-
sonal knowledge the belief degree changes as well.
Different people may produce different belief de-
grees. The question is which belief degree is cor-
rect a question which may be answered as follows:
All belief degrees are wrong but some are useful.
A belief degree becomes ”correct” only when it
is close enough to the frequency of the indeter-
minate quantity which however does not usually
occur. Numerous surveys demonstrated that hu-
man beings usually estimate a much wider range
of values than the object actually takes. This hu-
man conservatism makes the belief degrees devi-
ate far from the frequency. Thus all belief degrees
are wrong compared with the frequency. Never-
theless it is undeniable that these belief degrees
are indeed helpful for decision-making.

Wen et al.[31] applied the uncertain theory for
the first time to rewrite the DEA model in uncer-
tainty condition and then published a paper on
the sensitivity and stability of the additive model
in terms of uncertainty. Wen et al. [31] also in-
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troduced a new Additive model with uncertain
inputs and outputs. Additionally Wen et al. [31]
developed the DEA model with uncertainty index
ranking for criteria. Liu et al. [23] also published
a paper to evaluate DMU with uncertain inputs
and outputs. These studies are nevertheless in-
sufficient for describing programming with uncer-
tain data [5, 10, 16, 24, 26, 32, 25] and new models
are often introduced to create a new method.

This article proposed a BCC of efficiency in
DEA. In contrast to the previous model mea-
sures based on the proportional reduction (en-
largement) of input (output) vectors. The present
paper assumed inputs and outputs to be uncer-
tain variables in BCC model and then to deal
with uncertainty downside recommend two com-
pletely different models to crisp this new model.
Afterward the uncertain BCC model is applied
to an Iranian Bank to see how the target cus-
tomer accepts a replacement-banking product be-
fore promotion and announcement phase.

The paper proceeds as follows: In Section 2
some preliminary knowledge of uncertainty the-
ory and basic notions of some DEA models are re-
viewed. In Section 3 several new uncertain DEA
models are introduced and their new structures
are verified. In Section 4 the crisp equivalents
of the model are presented. Finally a practical
example of the Iranian Banking system with the
uncertain BCC model is introduced.

2 Preliminaries

Here discuss basic concept and present uncertain
variables. Let Γ be a nonempty set and L an σ-
algebra over Γ. Each element Λ ∈ L is called an
event. A set function M{Λ} ∈ [0, 1] is known as
an uncertain measure if it satisfies the following
three axioms [19]:

1. M{Λ} = 1 for the universal set Γ.

2. M{Λ}+M{Λc} = 1 for any event Λ.

3. For every countable subadditive of events, Λi

we have M{
∪∞

i=1} ⩽
∑∞

i=1 Λi.

Definition 2.1. [19] The set function M called
an uncertain measure if it contents the duality
normality and subadditivity axioms.

The uncertain measure has the following at-
tributes:

1. M{∅} = 0.

2. 0 ⩽ M{Λ} ⩽ 1 for any event Λ.

3. M{Λ1} ⩽ M{Λ2} for any events Λ1 ⊂ Λ2.

The triplet (Γ, L,M) called an uncertainty space.
In order to define product uncertain measure Liu
[22] proposed the fourth axiom as follow:
Let (Γk, Lk,Mk) be uncertainty space for k =
1, 2, ... then the product uncertain measure M is
an uncertain measure satisfying M{

∏∞
k=1 Λk} =∧∞

k=1Mk{Λk}.

Definition 2.2. [19]. An uncertain variable is a
measurable function ξ from an uncertainty space
(Γ, L,M) to the set of real numbers i.e. for any
Borel set B of real numbers the set {ξ ∈ B} =
{γ ∈ Γ|ξ(γ) ∈ B} is an event.

An uncertainty distribution function is used to
characterize an uncertain variable and is defined
as follows [19].

φ(x) = M{ξ ≤ x} ∀x, x ∈ R

Example 2.1. The uncertain variable with linear
uncertainty distribution is defined as follow:

φ(x) =


0 x ≤ a
x−a
b−a a ≤ x ≤ b

1 x ≥ b

for convenience it is denoted in the paper by ξ ∼
L(a, b) where a < b.

Definition 2.3. An uncertainty distribution φ is
said to be regular if it is a continuous and strictly
increasing function with respect to x at which 0 <
φ(x) < 1, and

lim
x→ −∞

φ(x) = 0, lim
x→ +∞

φ(x) = 1.

Example 2.2. The inverse uncertainty distri-
bution of linear uncertain variable L(a, b) is
φ−1(α) = (1− α)a+ αb.

Theorem 2.1. [21] Let ξ1, ξ2, ..., ξn be in-
dependent uncertain variables with regular
uncertainty distributions φ1, φ2, ..., φn re-
spectively. If f is a strictly increasing with
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respect to ξ1, ξ2, ..., ξm and strictly decreas-
ing with respect to ξm+1, ξm+2, ..., ξn, then
ξ = f(ξ1, ξ2, ..., ξn) is an uncertain variable with
an inverse uncertainty distribution φ−1(α) =
f(φ−1

1 (α), ..., φ−1
m (α), φ−1

m+1(1−α), ..., φ−1
n (1−α)).

Theorem 2.2. [21]Let ξ be an uncertain vari-
able with regular uncertainty distribution ϕ, Then
E[ξ] =

∫ 1
0 φ

−1(α)dα.

Theorem 2.3. [21] Let ξ1, ξ2, ..., ξn be in-
dependent uncertain variables with regular
uncertainty distributions φ1, φ2, ..., φn re-
spectively. If f is a strictly increasing with
respect to ξ1, ξ2, ..., ξm and strictly decreas-
ing with respect to ξm+1, ξm+2, ..., ξn, then
ξ = f(ξ1, ξ2, ..., ξn) has an expected value
E[ξ] =

∫ 1
0 f(φ

−1
1 (α), ..., φ−1

m (α), φ−1
m+1(1 −

α), ..., φ−1
n (1− α))dα.

Theorem 2.4. [21] Let ξ and η be independent
uncertain variables with finite expected value.
Then, for any real numbers a and b have E[aξ +
bη] = aE[ξ] + bE[η].

Theorem 2.5. [21] Let ξ1, ξ2, ..., ξn be inde-
pendent uncertain variables with regular uncer-
tainty distributions φ1, φ2, ..., φn respectively. If
the function f(ξ1, ξ2, ..., ξn) is a strictly increas-
ing with respect to ξ1, ξ2, ..., ξm and strictly de-
creasing with respect to ξm+1, ξm+2, ..., ξn, then
M{f(ξ1, ξ2, ..., ξn) ≤ 0} ≥ α if and only
if f(φ−1

1 (α), ..., φ−1
m (α), φ−1

m+1(1 − α), ..., φ−1
n (1 −

α)) ≤ 0.

Example 2.3. Let ξ ∼ L(a, b) be a variable with
linear uncertainty. Then its inverse is showed
with ϕ−1(α) = (1 − α)a + αb, and its expected
value is E[ξ] =

∫ 1
0 ((1− α)a+ αb)dα = a+b

2 .

Consider a set of DMUk(k = 1, 2, ..., n) with
m positive inputs xik(i = 1, 2, ...,m) and s posi-
tive outputs yrk(r = 1, 2, ..., s). Now for evaluate
DMUo = (xo,yo), the linear programming BCC

model will be formulated as follows [2]:

max
s∑

r=1

uryro + u0 (2.1)

s.t
m∑
i=1

vixio = 1

s∑
r=1

uryrk −
m∑
i=1

vixik + uo ≤ 0, k = 1, 2, ..., n

ur ≥ 0, vi ≥ 0, r = 1, 2, ..., s, i = 1, 2, ...,m.

3 Uncertain DEA model

The BCC model requires inputs and outputs
equipped with precise data. Nevertheless in real-
world situations inputs and outputs may be un-
stable and complicated and therefore cannot be
measured in an accurate manner. Consequently
this conflict results in the investigation of uncer-
tain DEA models. Decision-makers in real-word
situations make their decisions in the indetermi-
nacy state. To model indeterminacy there ex-
ist two mathematical systems one the probability
theory and the other the uncertainty theory [19].
If there exists frequency in phenomena the proba-
bility theory is employed; otherwise the uncertain
theory can be a powerful technique for resolving
the drawback with no sample using the personal
belief degree. For this purpose skilled consul-
tants and experts should be invited to measure
the belief degree. Throughout this approach we
aimed to introduce a BCC model with uncertain
inputs and outputs referred to as the uncertain
BCC model. First new symbols and notations
are presented:

x̃k = (x̃1k, x̃2k, ..., x̃mk) : the uncertain inputs
vector of DMUk, k = 1, 2, ..., n;

ỹk = (ỹ1k, ỹ2k, ..., ỹrk) : the uncertain inputs
output of DMUk, k = 1, 2, ..., n;

φik(x): The uncertainty distribution of x̃ik,
k=1,2,...,n, i=1,2,...,m;

ψrk(x): the uncertainty distribution of ỹrk,
k=1,2,...,n, r=1,2,...,s;

α: is a predetermined confidence level;

M: the uncertainty measure expressed in sec-
tion 2;



M. Jamshidi et al., /IJIM Vol. 13, No. 3 (2021) 239-249 243

Second the uncertain BCC model with uncer-
tain inputs (x̃ik) and uncertain outputs (ỹrk) ex-
presses as fallow:

max

s∑
r=1

urỹro + u0

s.t (3.2)
m∑
i=1

vix̃io = 1

s∑
r=1

urỹrk −
m∑
i=1

vix̃ik + uo ≤ 0, k = 1, 2, ..., n

ur ≥ 0, vi ≥ 0, r = 1, 2, ..., s, i = 1, 2, ...,m.

To encounter with the uncertainty problem in the
uncertain BCC model we introduced two models
to crisp it:

1. Expected Value and Chance-Constrained
method (EVCC).

2. Expected Value method (EV).

4 Crisp equivalents of the
model

In this section, the uncertain BCC model is trans-
formed to a crisp model using EVCC method.

4.1 EVCC method

Using EVCC method, the uncertain BCC model
3.2 is converted into crisp model and the new
crisp model are solved with the help of specific
software.

θ = max E

[
s∑

r=1

urỹro + u0

]
(4.3)

s.t

M

{
m∑
i=1

vix̃io = 1

}
≥ α

M

{
s∑

r=1

urỹrk −
m∑
i=1

vix̃ik + uo ≤ 0

}
≥ α, ∀k

ur ≥ 0, vi ≥ 0, r = 1, 2, ..., s, i = 1, 2, ...,m.

Definition 4.1. A vector (ν, u, u0) is called a fea-
sible solution to the uncertain programming model

(4.3) if for k = 1, 2, ..., n:

M

{
m∑
i=1

vix̃io = 1

}
≥ α

M

{
s∑

r=1

urỹrk −
m∑
i=1

vix̃ik + u0 ≤ 0

}
≥ α,

ur ≥ 0, vi ≥ 0, r = 1, 2, ..., s, i = 1, 2, ...,m.

Definition 4.2. A feasible solution (ν∗, u∗, u∗0)
is called an expected optimal solution to the
uncertain programming model (4.3) if for
any solution (ν, u, u0): E [

∑s
r=1 u

∗
r ỹro + u∗o] ≥

E [
∑s

r=1 urỹro + u0].

Definition 4.3. The greater the optimal objec-
tive value is the more efficient DMUo is ranked.

Theorem 4.1. Assume x̃i1, x̃i2, · · · , x̃in are in-
dependent uncertain inputs with uncertainty
distribution φi1, φi2, · · · , φin for each i =
1, 2, · · · ,m, and ỹr1, ỹr2, · · · , ỹrn are independent
uncertain outputs with uncertainty distribution
ψr1, ψr2, · · · , ψrn, for each r = 1, 2, · · · , s. Then
the uncertain programming model (4.3) is equiv-
alent to the following model:

θ = max

s∑
r=1

ur

∫ 1

0
φ−1
ro (α)dα+ u0 (4.4)

s.t
m∑
i=1

viφ
−1
io (α) = 1

s∑
r=1

urψ
−1
rk (α)−

m∑
i=1

viφ
−1
ik (1− α)+

u0 ≤ 0, k = 1, 2, · · · , n
ur ≥ 0, vi ≥ 0, r = 1, 2, ..., s, i = 1, 2, ...,m.

Proof. First according to Theorem (2.4) the
objective function in (4.3) is rewritten as follows:

E

[
s∑

r=1

urỹro + u0

]
= E

[
s∑

r=1

urỹro

]
+ E [u0]

=

s∑
r=1

urE[ỹro] + u0.

The function E [ỹro] is strictly increasing with re-
spect to ỹro, for each k, as it follows from Theo-
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rems (2.1) and (2.3).

E

[
s∑

r=1

urỹro + u0

]
=

s∑
r=1

ur

∫ 1

0
φ−1
ro (α)dα

+ u0

and the objective value has proved. Now, let us
to prove the chance constraint as follows:

The function
∑m

i=1 vix̃io − 1 is strictly increas-
ing with respect to x̃ij for each i = 1, 2, · · · ,m
and j = 1, 2, · · · , n. According to Theorem (2.5):

M

{
m∑
i=1

vix̃io − 1 = 0

}
≥ α⇔

m∑
i=1

viφ
−1
io (α) = 1, i = 1, 2, · · · ,m.

Also, the function
∑s

r=1 urỹrk−
∑m

i=1 vix̃ik+u0 is
strictly increasing with respect to ỹrk and strictly
decreasing with respect to x̃ik for each i and r,
i = 1, 2, · · · ,m, r = 1, 2, · · · , s and j = 1, 2, · · · , n.
According to Theorem (2.5):

M

{
s∑

r=1

urỹrk −
m∑
i=1

vix̃ik + uo ≤ 0

}
≥ α, ∀k

if and only if

s∑
r=1

urψ
−1
rk (α)−

m∑
i=1

viφ
−1
ik (1− α) + u0 ≤ 0 ∀k

Therefore, the theorem is proved.

4.2 EV method

The uncertain BCC model (3.2) is introduced as
follows using EV method:

θ = max E

[
s∑

r=1

urỹro + u0

]
(4.5)

s.t

E

[
m∑
i=1

vix̃io − 1

]
= 0

E

[
s∑

r=1

urỹrk −
m∑
i=1

vix̃ik + uo

]
≤ 0 ∀k

ur ≥ 0, vi ≥ 0, r = 1, 2, ..., s, i = 1, 2, ...,m.

Definition 4.4. (Efficiency) DMUo is said to be
efficient if and only if θ can achieve 1 where θ is
the optimal value of (4.5).

Theorem 4.2. Assume x̃i1, x̃i2, · · · , x̃in are in-
dependent uncertain inputs with uncertainty
distribution φi1, φi2, · · · , φin for each i =
1, 2, · · · ,m, and ỹr1, ỹr2, · · · , ỹrn are independent
uncertain inputs with uncertainty distribution
ψr1, ψr2, · · · , ψrn for each r = 1, 2, · · · , n. Then
the uncertain programming model (4.5) is equiv-
alent to the following model:

θ = max

s∑
r=1

ur

∫ 1

0
ψ−1
ro (α)dα+ u0 (4.6)

s.t
m∑
i=1

vi

∫ 1

0
φ−1
io (α)dα = 1

s∑
r=1

ur

∫ 1

0
φ−1
rk (α)dα

−
m∑
i=1

vi

∫ 1

0
φ−1
ik (1− α)dα+ u0 ≤ 0 ∀k

ur ≥ 0, vi ≥ 0, r = 1, 2, ..., s, i = 1, 2, ...,m.

where φ1o, · · · , φmo and ψ1o, · · · , ψmo are the reg-
ular uncertainty distributions of x̃1o, x̃2o, · · · , x̃no
and ỹ1o, ỹ2o, · · · , ỹno respectively.

Proof. First according to Theorem (2.4) the
objective function in (4.5) is rewritten as follows:

E

[
s∑

r=1

urỹro + u0

]
= E

[
s∑

r=1

urỹro

]
+ E [u0]

s∑
r=1

urE[ỹro] + u0

The function
∑s

r=1 urE[ỹro] is strictly increasing
with respect to ỹro, as it follows from Theorems
(2.2) and (2.3).

E

[
s∑

r=1

urỹro + u0

]
=

s∑
r=1

ur

∫ 1

0
ψ−1
ro (α)dα+ u0

So, the objective value has proved. Now, let us
to prove the constraint as follows:
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According to Theorem (2.4) the constraint func-
tion in (4.5) is rewritten as follows:

E

[
m∑
i=1

vix̃io − 1

]
= E

[
m∑
i=1

vix̃io

]
− 1

m∑
i=1

viE [x̃io]− 1 =
m∑
i=1

vi

∫ 1

0
φ−1
io (α)dα− 1

Also, the function
∑s

r=1 urỹrk −
∑m

i=1 vix̃ik + uo
is strictly increasing with respect to ỹrk and
strictly decreasing with respect to x̃ik for each
i = 1, 2, ..,m, r = 1, 2, ...,m and k = 1, 2, ..., n.
According to Theorems (2.2) and (2.3):

E

[
s∑

r=1

urỹrk −
m∑
i=1

vix̃ik + uo

]

=

s∑
r=1

urE [ỹrk]−
m∑
i=1

viE [x̃ik] + E[uo]

=
s∑

r=1

ur

∫ 1

0
φ−1
rk (α)dα

−
m∑
i=1

vi

∫ 1

0
φ−1
ik (1− α)dα+ u0

Therefore, the theorem is proved.

Corollary 4.1. If the ỹio, ỹro and ỹrk are the in-
dependent uncertain variables of the form L(a, b)
with a, b ∈ R and a < b, then the crisp equivalent
of model (4.5) can be written as shown in model
(4.7):

θ = max

s∑
r=1

ur

(
aro + bro

2

)
+ u0 (4.7)

s.t
m∑
i=1

vi

(
aio + bio

2

)
= 1,

s∑
r=1

ur

(
aro + bro

2

)
−

m∑
i=1

vi

(
aio + bio

2

)
+ u0 ≤ 0

ur ≥ 0, r = 1, ..., s, vi ≥ 0, i = 1, ...,m.

Proof. According to Theorem (2.2)

E[aξ] =

∫ 1

0
aϕ−1(1− α)dα = a

∫ 1

0
ϕ−1(α)dα

= aE[ξ]

Now according to Theorem (2.4) rewrite (4.5) as
follows:

θ = max
s∑

r=1

urE [ỹro] + u0 (4.8)

s.t
m∑
i=1

viE [x̃io]− 1 = 0

s∑
r=1

urE [ỹrk]−
m∑
i=1

viE [x̃ik] + uo ≤ 0 ∀k

ur ≥ 0, vi ≥ 0, r = 1, 2, ..., s, i = 1, 2, ...,m.

From the linearity property of expected value
operator the crisp equivalent of uncertain BCC
model in model (4.8) can be formulated as fol-
lows:

θ = max
s∑

r=1

ur

(
aro + bro

2

)
+ u0 (4.9)

s.t
m∑
i=1

vi

(
aio + bio

2

)
= 1,

s∑
r=1

ur

(
aro + bro

2

)
−

m∑
i=1

vi

(
aio + bio

2

)
+ u0 ≤ 0

ur ≥ 0, r = 1, ..., s, vi ≥ 0, i = 1, ...,m.

5 Practical Example

In this section we applied the BCC uncertain
models to an example of an Iranian bank to see
how the target customer accepts a new banking
product before the promotion and announcement
phase. To this end, 20 branch managers (banking
experts) were selected to answer to an eight-item
questionnaire (Table 1) to produce the linear un-
certain variable ξ ∼ L(a, b) to test the newly im-
plemented models (Tables 2 and 3).

Because of classical banking system in order to
employ a new product in branches first a cost-
benefit analysis and must be performed; if re-
sult is positive; it will be directly announced in
branches while the customers’ feedback on the
product is not considered. In several cases they
solely performed the cost-benefit analysis phase
and then in practice customers did not accept the
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Table 1: Input and output questions.

input question

To what percent do you predict the acceptability of this
product would be for customers?

To what percent does this product have competitive
power with the rivals?

To what percent does this product have the ability
of WOM (word-of-mouth)?

Resources that this product managed to grab
is a number between and ...

output question

To what percent will you predict the success of this product?

To what percent do you think this product will attract
the customers?

To what percent will this product could grab rival
banks’ resources?

The loan which must be paid for the resources of
this product is a number between ... and ...

product thereby wasting a considerable amount of
money in the banking system. Results for model

Table 2: DMUs with four uncertain inputs.

DMUi 1 2 3 4

1 L(60, 70) L(60, 70) L(60, 70) L(20, 25)
2 L(70, 80) L(60, 70) L(40, 50) L(50, 120)
3 L(80, 90) L(70, 80) L(70, 80) L(50, 80)
4 L(70, 100) L(50, 100) L(40, 100) L(1, 3)
5 L(10, 15) L(10, 15) L(5, 10) L(0.3, 0.5)
6 L(30, 60) L(30, 40) L(30, 50) L(30, 40)
7 L(50, 100) L(50, 100) L(30, 100) L(1, 2)
8 L(70, 90) L(60, 70) L(30, 60) L(70, 80)
9 L(30, 70) L(40, 70) L(40, 80) L(20, 50)
10 L(80, 90) L(60, 80) L(40, 80) L(7, 10)
11 L(5, 10) L(10, 20) L(10, 15) L(1.5, 2.5)
12 L(10, 30) L(17, 49) L(11, 35) L(20, 30)
13 L(20, 40) L(20, 30) L(20, 40) L(10, 15)
14 L(50, 80) L(70, 80) L(50, 60) L(20, 30)
15 L(70, 100) L(70, 100) L(80, 100) L(10, 30)
16 L(60, 80) L(80, 100) L(70, 80) L(60, 70)
17 L(20, 30) L(30, 50) L(10, 30) L(10, 30)
18 L(50, 70) L(40, 50) L(20, 50) L(10, 30)
19 L(20, 40) L(10, 20) L(60, 90) L(10, 30)
20 L(50, 80) L(30, 60) L(30, 50) L(30, 60)

(4.4) showed that 11 branches supported this new
product as an attractive use case showing a 55
percent success likelihood for the product before
the announcement phase (Table 4).

The result of model (4.6) is as same as model
(4.4). According to the CPU times reported it
can be observed that model (4.4) is run in 140 sec-
onds depending on the combination of confidence
levels while model (4.6) is run in 3455 seconds de-
pending on the combination of confidence levels.
It seems that model (4.4) has the best perfor-
mance in terms of CPU running time in big data

Table 3: DMUs with four uncertain outputs.

DMUi 1 2 3 4

1 L(50, 70) L(70, 80) L(40, 50) L(14, 17.5)
2 L(50, 70) L(50, 60) L(40, 50) L(35, 84)
3 L(80, 90) L(80, 90) L(80, 90) L(35, 56)
4 L(50, 100) L(70, 100) L(80, 100) L(0.7, 2.1)
5 L(10, 20) L(10, 15) L(5, 10) L(0.21, 0.35)
6 L(30, 50) L(30, 40) L(30, 60) L(21, 28)
7 L(50, 100) L(30, 100) L(30, 100) L(0.7, 1.4)
8 L(70, 90) L(70, 90) L(20, 30) L(49, 56)
9 L(20, 60) L(30, 70) L(20, 50) L(14, 35)
10 L(50, 80) L(50, 70) L(40, 70) L(4.9, 7)
11 L(10, 15) L(10, 20) L(10, 20) L(1.05, 1.7)
12 L(15, 20) L(13, 20) L(34, 51) L(14, 21)
13 L(20, 30) L(10, 20) L(10, 15) L(7, 10.5)
14 L(50, 90) L(60, 80) L(1, 50) L(14, 21)
15 L(80, 100) L(90, 100) L(70, 100) L(7, 21)
16 L(20, 70) L(80, 90) L(80, 90) L(42, 49)
17 L(30, 60) L(10, 30) L(10, 20) L(7, 21)
18 L(20, 70) L(30, 80) L(20, 50) L(7, 21)
19 L(20, 50) L(20, 40) L(10, 20) L(7, 21)
20 L(30, 70) L(50, 80) L(30, 60) L(21, 42)

Table 4: Results of evaluating the DMUs with α =
0.5.

DMU1 DMU2 DMU3 DMU4

0.9126 0.9160 1 1

Inefficiency Inefficiency efficiency efficiency

DMU5 DMU6 DMU7 DMU8

1 0.9160 1 1

efficiency Inefficiency efficiency efficiency

DMU9 DMU10 DMU11 DMU12

1 0.8855 1 0.8891

efficiency Inefficiency efficiency Inefficiency

DMU13 DMU14 DMU15 DMU16

0.7271 0.8623 1 1

Inefficiency Inefficiency efficiency efficiency

DMU17 DMU18 DMU19 DMU20

1 0.8947 0.8613 1

efficiency Inefficiency Inefficiency efficiency

whereas model (4.6) has the worst performance.

6 Conclusion

In this paper we aimed to explain an uncertain
BCC model with inherent complexity for uncer-
tain models. Then by use of two methods we at-
tempted to crisp the uncertain model. Finally an
applicable example regarding the Iranian bank-
ing system was proposed to document the new
models. For this purpose we selected 20 branch
managers (bank experts) to respond to an eight-
item questionnaire to examine the success prob-
ability for a new product before the announce-



M. Jamshidi et al., /IJIM Vol. 13, No. 3 (2021) 239-249 247

ment phase. This method assisted bank CEOs in
choosing the product which might be interesting
to the costumer. Further studies can find a new
method for saving cost in bank products before
promotion and announcement phase. As a future
study direction the proposed variance instead of
the expected value in objective functions with un-
certain variables can be taken into account. Also
the problem of this paper with normal type un-
certain variables can be studied.
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