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Abstract

This paper proposes a numerical method to deal with the two-dimensional hyperbolic equations with
nonlocal integral conditions. The nonlocal integral equation usually is of major challenge in the frame
work of the numerical solutions of partial differential equations. The method benefits from collocation
radial basis function method, the generalized thin plate splines (GTPS) radial basis functions are used.
Therefore, it does not require any struggle to determine shape parameter (In other RBFs, it is time-
consuming step). The present technique is one of the truly meshless methods in where it does not
require any background integration cells over local or global domains and it is in contrast to weak
form methods in where all integrations are carried out locally or globally over quadrature domains of
regular shapes, such as lines in one dimensions, circles or squares in two dimensions and spheres or
cubes in three dimensions. The obtained results for some numerical examples reveal that the proposed
technique is very effective, convenient and quite accurate to such considered problems.

Keywords : Collocation method; Shifted Jacobi polynomial; Singular boundary value problem; Expo-
nential nonlinearity; Product nonlinearity.

—————————————————————————————————–

1 Introduction

S
pectral methods are one of the principal meth-
ods of discretization for the numerical solu-

tion of boundary value problems, initial value
problems and so on [1, 2, 3, 4, 5]. The most widely
used spectral versions are the Galerkin, colloca-
tion, and Tau methods [6]. Collocation methods
are very popular for solving such problems, also
they are very applicable in providing highly ac-
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curate solutions to these problems. In this paper,
we extended the application of Jacobi polynomi-
als from Galerkin method for solving nonlinear
second-order initial value problems (see [7, 8]) to
collocation method to solve a class of boundary
value problems on the unit interval which feature
a type of exponential and product nonlinearities.

A well-known advantage of a spectral method
is that it achieves high accuracy with relatively
fewer spatial grid points in comparison by a finite-
difference method. Also, in using spectral meth-
ods, we meet to full matrices, partially negating
the gain in efficiency due to the fewer number of
grid points (see [9, 10]). The use of Jacobi polyno-
mials has the advantage of obtaining the solutions
of nonlinear differential equations, [8, 11].
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The fundamental goal of this paper is com-
parison of the result of the numerical solution
of boundary value problem (BVP) by collocation
methods with Adomian Decomposition Method
(ADM) and Reproducing Kernel Method (RKM)
and we will observe that present method is both
efficient and accurate.

The BVP is collocated only at nodes of the
shifted Jacobi-Gauss interpolation as collocation
points. The main equation together with initial
conditions generate a system of algebraic equa-
tions which can be solved using Newton’s itera-
tive method.

This paper is organized as follows. In Section
2, an overview of shifted Jacobi polynomials and
their relevant properties needed hereafter is pre-
sented. In Section 3, we construct the colloca-
tion method by using the shifted Jacobi polyno-
mials in two cases, for a two-point boundary value
problem for the fourth-order nonlinear differential
equation with an exponential nonlinearity, for a
two-point boundary value problem for the fourth-
order nonlinear differential equation with a prod-
uct nonlinearity, respectively. In Section 4, we
present some numerical results exhibiting the ac-
curacy and efficiency of our numerical algorithms,
and a brief conclusion in Section 5.

2 Preliminaries

Let α > −1, β > −1, and P
(α,β)
n (r) be the stan-

dard Jacobi polynomial of degree n. Obviously,
we have

P (α,β)
n (−r) = (−1)nP (α,β)

n (r),

P (α,β)
n (−1) =

(−1)nΓ(n+ β + 1)

n! Γ(β + 1)
,

P (α,β)
n (1) =

Γ(n+ α+ 1)

n! Γ(α+ 1)
. (2.1)

The m-th derivative of P
(α,β)
n (r) is defined as

DmP (α,β)
n (r) =

2−mΓ(m+ n+ α+ β + 1)

Γ(n+ α+ β + 1)
P

(α+m,β+m)
n−m (r). (2.2)

The set of Jacobi polynomials with the weight
function ω(α,β)(r) = (1 − r)α(1 + r)β forms a
weighted Hilbert space L2

ω(α,β) [−1, 1], which is

also a complete system by standard inner prod-
uct. The shifted Jacobi polynomial of degree n

is defined by J
(α,β)
n (r) = P

(α,β)
n (2r − 1), and by

using (2.1) and (2.2), it can be shown that

DmJ (α,β)
n (r) =

Γ(m+ n+ α+ β + 1)

Γ(n+ α+ β + 1)
J
(α+m,β+m)
n−m (r). (2.3)

The set of shifted Jacobi polynomials with the
weight function χ(α,β)(r) = (1 − r)αrβ forms a
weighted Hilbert space L2

χ(α,β) [0, 1], which is also

a complete system by standard inner product.
Moreover, we have

∥J (α,β)
n ∥2

χ(α,β)=
(1
2

)α+β+1
∥P (α,β)

n ∥2
ω(α,β) .

The symmetric Jacobi polynomials, the shifted
Chebyshev of the first kind, the shifted Cheby-
shev of the second kind and the shifted Legendre
polynomials are recovered by α = β, α = β =
−0.5, α = β = +0.5, α = β = 0, respectively.

The nodes of the standard Jacobi-Gauss in-
terpolation on the interval [−1, 1] and their cor-
responding Christoffel numbers are denoted by

r
(α,β)
N,j and ϖ

(α,β)
N,j , 0 ≤ j ≤ N , respectively.

We denote by θ
(α,β)
N,j , 0 ≤ j ≤ N the nodes of

the shifted Jacobi-Gauss interpolation on [0, 1],

which are the zeros of J
(α,β)
N+1 . It can be shown

θ
(α,β)
N,j = (r

(α,β)
N,j + 1)/2 and their corresponding

Christoffel numbers are ϑ
(α,β)
N,j = (12)

α+β+1ϖ
(α,β)
N,j

for j = 0, 1, . . . , N . By the properties of the stan-
dard Jacobi-Gauss quadrature, if ϕ be a polyno-
mial of degree at most 2N + 1, we have [7]∫ 1

0
(1− r)αrβϕ(r)dr

=

N∑
j=0

ϑ
(α,β)
N,j ϕ(θ

(α,β)
N,j ).

In practice, only the first (N + 1) terms shifted
Jacobi polynomials are considered.

3 Shifted Jacobi-Gauss Colloca-
tion Method

In this section, we consider shifted Jacobi-Gauss
collocation method approach to numerically solve



M. Maleki Miyane et al., /IJIM Vol. 11, No. 1 (2019) 35-34 37

a class of boundary value problems on the unit
interval which feature a type of exponential and
product nonlinearities.

3.1 Exponential nonlinearity

Consider the two-point boundary value problem
for the fourth-order nonlinear differential equa-
tion with an exponential nonlinearity [13]

u′′′′(r) + 6e−4u(r) = 0, r ∈ [0, 4− e], (3.4)

subject to

u(0) = 1, u′′(0) = − 1

e2
,

u(4− e) = ln(4), u′′(4− e) = − 1

16
. (3.5)

One of the important step in the collocation
method is the choice of collocation points which
effect on efficiency. Let us first introduce some
basic notation. We set

SN (0, 1) = span{J (α,β)
0 (r), J

(α,β)
1 (r), ...,

J
(α,β)
N (r)} (3.6)

and we define the discrete inner product and
norm as follows:

(u, v)χ(α,β),N =

N∑
j=0

u(θ
(α,β)
N,j )v(θ

(α,β)
N,j )ϑ

(α,β)
N,j ,

(3.7)

∥u∥χ(α,β),N=
√

(u, v)χ(α,β),N .

Here θ
(α,β)
N,j and ϑ

(α,β)
N,j are the nodes and the cor-

responding weights of the shifted Jacobi-Gauss
quadrature formula on the interval (0, 1), respec-
tively. Obviously,

(u, v)χ(α,β),N = (u, v)χ(α,β) , ∀u, v ∈ S2N−1.
(3.8)

Thus, for any u ∈ SN (0, 1), the norms ∥u∥χ(α,β),N

and ∥u∥χ(α,β) are equal.

Associating with this quadrature rule, we de-
note by IJ

(α,β)

N the shifted Jacobi-Gauss interpo-
lation,

IJ
(α,β)

N u(θ
(α,β)
N,j ) = u(θ

(α,β)
N,j ), 0 ≤ j ≤ N. (3.9)

The shifted Jacobi-Gauss collocation method for
solving (3.4) and (3.5) is to seek vN (x) ∈
SN (0, 1), such that

u′′′′(θ
(α,β)
N,j ) + 6e−4u(θ

(α,β)
N,j ) = 0, (3.10)

j = 0, 1, ..., N,

uN (0) = 1, u′′N (0) = − 1

e2
,

uN (4− e) = ln(4), u′′N (4− e) = − 1

16
.

We now derive an algorithm for solving (3.5) and
(3.4). To do this, let

uN (r) =

N∑
j=0

ajJ
(α,β)
j (r),

a = (a0, a1, ..., aN )T . (3.11)

We first approximate u(r), u′(r), u′′(r) , as (3.11).
By substituting these approximation in (3.4), we
get

N∑
j=0

ajD
4J

(α,β)
j (r)

+ 6e−4
∑N

j=0 ajJ
(α,β)
j (r) = 0. (3.12)

Then, by virtue, we deduce that

N∑
j=0

ajcj1cj2cj3cj4J
(α+4,β+4)
j−4 (r) (3.13)

+ 6e−4
∑N

j=0 ajJ
(α,β)
j (r) = 0,

where cji = α+ β + j + i.

Also, by substituting (3.11) in (3.5) we obtain

N∑
j=0

ajJ
(α,β)
j (0) = 1,

N∑
j=0

ajD
2J

(α,β)
j (0) = − 1

e2
,

N∑
j=0

ajJ
(α,β)
j (4− e) = ln(4),

N∑
j=0

ajD
2J

(α,β)
j (4− e) = − 1

16
. (3.14)
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To find the solution uN (r), we first collocate
(3.13) at the Jacobi rational roots, yielding

N∑
j=0

ajcj1cj2cj3cj4J
(α+4,β+4)
j−4 (r)

+ 6e−4
∑N

j=0 ajJ
(α,β)
j (r) = 0. (3.15)

Equation (3.14), after using of virtue of Shifted
Jacobi-Gauss polynomial, can be written as

N∑
j=0

(−1)jΓ(j + β + 1)

Γ(j + 1)Γ(β + 1)
aj − 1 = 0,

N∑
j=0

(−1)j−2cj1cj2Γ(j + β + 1)

Γ(j − 1)Γ(β + 3)
aj +

1

e2
= 0,

N∑
j=0

Γ(j + α+ 1)

Γ(j + 1)Γ(cj1)
×

j∑
s=0

Γ(cj1 + s)

Γ(α+ s+ 1)
(3− e)saj − ln(4) = 0,

N∑
j=0

Γ(j + α+ 1)

Γ(j − 1)Γ(cj3)
×

j∑
s=0

Γ(cj3 + s)

Γ(α+ s+ 3)
(3− e)saj +

1

16
= 0. (3.16)

Finally, from (3.15) and (3.16), we get a system of
nonlinear algebraic equations which can be solved
for the unknown coefficients aj by using any stan-
dard iteration technique, like Newton’s iteration
method. Consequently, uN (r) given in (3.11) can
be evaluated.

3.2 Product nonlinearity

Consider the two-point boundary value problem
for the fourth-order nonlinear differential equa-
tion with a product nonlinearity [12, 13]

u′′′′(r) + u(r)u′(r)− 4r7 − 24 = 0, r ∈ [0, 1],
(3.17)

subject to

u(0) = 0, u′′′(0.25) = 6,

u′(0.5) = 3, u(1) = 1. (3.18)

The shifted Jacobi-Gauss collocation method
for solving (3.17) and (3.18) is to seek vN (x) ∈

SN (0, 1), such that

u′′′′(θ
(α,β)
N,j ) + u(θ

(α,β)
N,j )u′(θ

(α,β)
N,j )

− 4(θ
(α,β)
N,j )7 − 24 = 0, j = 0, 1, ..., N,

uN (0) = 0, u′′′N (0.25) = 6,

u′N (0.5) = 3, uN (1) = 1. (3.19)

We now derive an algorithm for solving (3.17) and
(3.18). To do this, let

uN (r) =

N∑
j=0

ajJ
(α,β)
j (r), a = (a0, a1, ..., aN )T .

(3.20)
We first approximate u(r), u′(r), u′′(r), as (3.20).
By substituting these approximation in (3.17), we
get

N∑
j=0

ajD
4J (α,β)Jj(r)

+

N∑
j=0

ajJ
(α,β)Jj(r)

N∑
j=0

ajDJ (α,β)Jj(r)

− 4r7 − 24 = 0. (3.21)

Then, by virtue, we deduce that

N∑
j=0

ajcj1cj2cj3cj4J
(α,β)J

(α+4,β+4)
j−4 (r)

−
N∑
j=0

ajJ
(α,β)J

(α,β)
j (r)×

N∑
j=0

ajcj1ajJ
(α,β)J

(α+1,β+1)
j−1 (r)

− 4r7 − 24 = 0. (3.22)

Also, by substituting (3.20) in (3.18) we obtain

N∑
j=0

ajJ
(α,β)
j (0) = 0,

N∑
j=0

ajD
3J

(α,β)
j (0.25) = 6,

N∑
j=0

ajD
2J

(α,β)
j (0.5) = 3,

N∑
j=0

ajJ
(α,β)
j (1) = 1. (3.23)
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To find the solution uN (r), we first collocate
(3.22) at the Jacobi rational roots, yielding

N∑
j=0

ajcj1cj2cj3cj4J
(α,β)J

(α+4,β+4)
j−4 (r)

−
N∑
j=0

ajJ
(α,β)J

(α,β)
j (r)×

N∑
j=0

ajcj1J
(α,β)J

(α+1,β+1)
j−1 (r)

− 4r7 − 24 = 0. (3.24)

Equation (3.23), after using of virtue of Shifted
Jacobi-Gauss polynomial, can be written as

N∑
j=0

(−1)jΓ(j + β + 1)

Γ(j + 1)Γ(β + 1)
aj = 0,

N∑
j=0

cj1cj2Γ(j + α+ 1)

Γ(j − 1)Γ(cj3)
×

j∑
s=0

Γ(cj3 + s)

Γ(α+ s+ 3)
(−0.75)saj − 6 = 0,

N∑
j=0

cj1cj2Γ(j + α+ 1)

Γ(j − 1)Γ(cj3)
×

j∑
s=0

Γ(cj3 + s)

Γ(α+ s+ 3)
(−0.5)saj − 3 = 0,

N∑
j=0

Γ(j + α+ 1)

Γ(j + 1)Γ(α+ 1)
aj = 0. (3.25)

Finally, from (3.24) and (3.25), we get a system of
nonlinear algebraic equations which can be solved
for the unknown coefficients aj by using any stan-
dard iteration technique, like Newton’s iteration
method. Consequently, uN (r) given in (3.20) can
be evaluated.

4 Numerical Examples

In this section, we have a comparison between the
proposed method explained in pervious sections
and some other numerical methods in solving lin-
ear and nonlinear differential equations. This
comparison shows the validity and applicability
of our proposed method.

Example 4.1 Consider the two-point boundary
value problem for the fourth-order nonlinear dif-
ferential equation with an exponential nonlinear-
ity (3.4) and (3.5), [13, 14]. The exact solution
of this problem is u(x) = ln(e + x).

The best error obtained in [13] by ADM is
2.3 × 10−5, approximately. Also, the best error
obtained in [14] by RKM is 5.8 × 10−8. The ab-
solute errors |u(r)− uN (r)|, reported in Table 1,
show the accuracy of the present method.

Example 4.2 Consider the two-point bound-
ary value problem for the fourth-order nonlinear
differential equation with a product nonlinearity
(3.17) and (3.18), [12, 13, 14]. The exact solu-
tion of this problem is u(r) = r4.

This problem is consider in [12] by Adomian de-
composition method (ADM), and in [13] by mod-
ified Adomian decomposition method (MADM).
The best error obtained in [12] is 1.0×10−10, and
in [13] is 5.4×10−9, approximately. Also, the best
error obtained in [14] by RKM is 2.2×10−14. The
absolute errors |u(r)− uN (r)|, reported in Table
2, show the accuracy of the present method.

Example 4.3 Consider the following singular
fourth order four-point boundary value problem
[14, 15]

sin(r)(er − 1)2u′′′′(r) + 300e
r
2u′(r)

+ 200 sin(
√
r)u′′(r) + r sinh(r)u′(r)

+ r sin(u(r)) = f(r), r ∈ [0, 1],

u(0) = 0, u(
1

3
) = sin(

1

3
),

u(
2

3
) = sin(

2

3
), u(1) = sin(1),

where

f(r) = (−1 + er)2 sin2(r)− 2 sin(
√
r) sin(r)

− e
r
2 cos(r) + r sin(sin(r)) + cos(r) sinh(r).

The exact solution of this problem is u(r) =
sin(r).

The best error obtained in [14] by RKM is 3.5×
10−8. Also, the best error obtained in [15] by
combining of the homotopy perturbed method
(HPM) and RKM is 2.3 × 10−8. The absolute
errors |u(r) − uN (r)|, reported in Table 3, show
the accuracy of the present method.
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Table 1: Absolute errors with N = 31 for Example 4.1.

α = β = −1
2 α = β = 0 α = β =

1

2
r

1.× 10−20 3.× 10−20 1.× 10−19 0.0
7.9516053250797606810× 10−23 3.3434710028806590559× 10−22 3.9392630304801456252× 10−22 0.1
2.0000006108250784288× 10−19 1.0000215024548864886× 10−19 2.0000149618669976087× 10−19 0.2
2.2751751705451664619× 10−22 9.5176590214182709569times10−22 2.0000316084519611054× 10−19 0.3
1.0000042129860206793× 10−19 1.2097647203036968936× 10−21 3.0000341664421918505× 10−19 0.4
1.0000058389525492761× 10−19 1.4172826887112441484× 10−21 1.0001412930681577235× 10−19 0.5
1.0000071832906491791× 10−19 1.0001219615783720258× 10−19 2.0000862855539263074× 10−19 0.6
1.0000079738265055987× 10−19 1.0001330048377446228× 10−19 2.0000948144228097547× 10−19 0.7
3.9983394948964359366× 10−22 1.6124273746517058476× 10−21 1.9355975958912418494× 10−21 0.8
1.0000071268506422337× 10−19 1.4938250446988961272× 10−21 5.0000326781265528444× 10−19 0.9
1.0000054021297995555× 10−19 1.0000799115193710960× 10−19 2.0000599932646300490× 10−19 1.0

Table 2: Absolute errors with N = 7 for Example 4.2.

α = β = −1
2 α = β = 0 α = β =

1

2
r

0.0 0.0 0.0 0.0
1.97× 10−21 2.95× 10−21 3.8× 10−22 0.1
4.00× 10−21 7.20× 10−21 2.3× 10−21 0.2
6.10× 10−21 1.23× 10−20 6.2× 10−21 0.3
9.00× 10−21 1.80× 10−20 1.1× 10−20 0.4
1.30× 10−20 2.30× 10−20 1.9× 10−20 0.5
1.00× 10−20 3.00× 10−20 3.0× 10−20 0.6
1.00× 10−20 3.00× 10−20 4.0× 10−20 0.7
2.00× 10−20 3.00× 10−20 4.0× 10−20 0.8
3.00× 10−20 2.00× 10−20 6.0× 10−20 0.9
3.00× 10−20 0.0 2.0× 10−19 1.0

Table 3: Absolute errors with N = 11 for Example 4.3.

α = β = −1
2 α = β = 0 α = β =

1

2
r

1.× 10−20 1.× 10−20 1.× 10−20 0.0
3.5807× 10−17 2.12286× 10−16 6.59712× 10−16 0.1
4.509× 10−17 1.0000× 10−16 3.4955× 10−16 0.2
6.495× 10−17 3.786× 10−17 1.02× 10−18 0.3
4.104× 10−17 5.371× 10−17 1.1417× 10−16 0.4
2.3349× 10−16 2.7981× 10−16 5.0367× 10−16 0.5
3.423× 10−17 2.527× 10−17 1.6451× 10−16 0.6
1.4038× 10−16 1.3110× 10−16 1.7176× 10−16 0.7
4.9256× 10−16 7.7813× 10−16 1.63389× 10−15 0.8
6.9288× 10−16 1.24280× 10−15 2.63556× 10−15 0.9
1.0× 10−19 0.0 6.0× 10−20 1.0

5 Conclusions

In this article, we have proposed a numerical algo-
rithm to solve a class of boundary value problems.
The Shifted Jacobi-Gauss collocation method was

developed to solve these problems. We used
nodes of the shifted Jacobi-Gauss interpolation
on [0, 1]. These equations together with initial
conditions generate a system of algebraic equa-
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tions which can be solved using Newtons iterative
method. Numerical results were given to show
the accuracy and applicability of the presented
method. The method is rather robust, hence it
may be applied to other type of singular non-
linear boundary value problems with more com-
plicated forms of nonlinearity.
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