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Abstract

This article presents the exact solutions of the velocity and temperature fields for a steady fully
developed magnetohydrodynamic flow of a viscous incompressible and electrically conducting fluid
between two horizontal concentric cylinders. Using the velocity and temperature field expressions,
we have calculated the entropy generation rate and irreversibility ratio. Our study focuses on the
influence of the Hartmann number, Brinkman number, Pclet number and inner radius on the fluid
temperature field, entropy generation rate and irreversibility ratio with the help of graphs and table.
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1 Introduction

T
he study of hydromagnetic flow of an electri-
cally conducting fluid in the presence of an

external magnetic field has wide range of its ap-
plications in the various branches of science and
technology, industries and geothermal power gen-
eration. Other potential applications of the study
of transport phenomenon involving the annular
geometry are the operation of magnetohydrody-
namic generators, MHD pumps, plasma studies,
nuclear reactor, the thermal recovery of oil, crys-
tal formation, material manufacturing and geo-
logical formulation etc. Moreover, these studies
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of forced convection flow are plausible impact by
an imposed magnetic field. So many analyses
have been done on the studies of MHD forced
convective flow with various physical situations.
We can observe such investigation in the follow-
ing work of Shercliff [15], Sparrow and Chess [16],
Gold [8], Cramer and Pai [6]. Recently, Azim
et al. [2] have studied the MHD-conjugate free
convection from an isothermal horizontal cylinder
with stress work. Raju et al. [14] have studied the
MHD convective flow through porous medium in
a horizontal channel with insulated and imperme-
able bottom wall in the presence of viscous dis-
sipation and Joule heating.Very recently, Kumar
and Singh [10, 11, 12] have performed the influ-
ence of the Hall current on MHD natural convec-
tive flow between vertical Walls with taking dif-
ferent boundary conditions on induced magnetic
field.

Some decades ago, we generally determine the
efficiency of a system by the first law of thermo-
dynamic. However, in recently years, so many
researchers have identified that the entropy gen-
eration analysis is more appropriate and accu-
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rate via second law of thermodynamics than the
first law of thermodynamics. Actually, the main
basis of knowledge of entropy generation comes
from the Clausius and Kelvins studies on the ir-
reversibility aspects of the second law of thermo-
dynamics. However, the entropy generation ob-
tained by temperature differences has remained
untreated by the classical thermodynamics. The
entropy generation is closely associated with the
thermodynamic irreversibility because it occurs
in all the heat transfer processes. It is well known
that most thermal processes are inherently irre-
versible. In a continuous entropy generation, ex-
ergy (useful energy or available energy for work)
of a system destroys due to the irreversibility.
This exergy loss is basically originated by the
heat transfer occurring in different modes (con-
duction, convection and radiation) and which are
very common in most thermal engineering sys-
tems. We can determine the performance of en-
gineering processes and the thermal machines like
power plants, heat engines, refrigerators, heat
pumps and air conditioners with the help of en-
tropy generation.

Bejan [4, 5] has very well presented the uti-
lization of second law of thermodynamics in con-
vective heat transfer. The expressions for the ve-
locity, temperature distributions, entropy genera-
tion number and Bejan number to forced convec-
tion inside a cylindrical annular space with isoflux
boundary conditions with help of first and sec-
ond laws of thermodynamics have been obtained
by Mahmud and Fraser [13]. Das and Jana [7]
have performed the study of entropy generation
due to hydromagnetic flow in a porous channel
with the Navier slip. Jha et al. [9] have analyzed
an exact study of MHD natural convection flow
in a vertical parallel plate micro-channel. Baag
et al. [3] have studied the entropy generation
analysis for viscoelastic hydromagnetic flow over
a stretching sheet embedded in a porous medium.
Currently, the problem of magnetohydrodynamic
flow of Sisko fluid near the axisymmetric stag-
nation point towards a stretching cylinder has
solved numerically by Awais et al. [1].

In the present study, our study focuses on the
influence of magnetic field on a steady fully devel-
oped hydromagnetic flow of a viscous incompress-
ible and electrically conducting fluid between hor-
izontal annular cylinders. The governing equa-
tions corresponding to the velocity and tempera-

ture fields have been obtained in exact form and
further, the expression for the entropy generation
rate and irreversibility ratio have also been ob-
tained. Finally, we have presented the Hartmann
number, Brinkman number, Pclet number and ra-
dius of inner cylinder on the velocity, temperature
field, entropy generation number and irreversibil-
ity ratio by using the graphs and tables.

2 Mathematical Formulation

We consider a steady fully developed hydromag-
netic flow of a viscous incompressible and elec-
trically conducting fluid between two horizontal
concentric cylinders. The radius of inner and
outer cylinders are taken as a′ and b′ such that
a′ < b′ respectively. We have used cylindrical
polar coordinate system (r′, θ′, z′ ) with r′ in the
radial direction, z

′
lies along the central line of in-

ner and outer cylinders. We have taken that the
inner surface is kept at constant heat flux while
the outer surface is adiabatic. A uniform mag-
netic field of strength B⃗ = (B′

0, 0, 0) is applied in
a direction perpendicular to the fluid flow. The
physical model of the problem is given in Figure
1. The angular velocity of the fluid is consid-
ered as zero for the fully developed unidirectional
flow. The magnetic Reynolds number of the flow
is taken small so that the induced magnetic field
can be neglected compared to the applied radial
field.

Figure 1: Physical Model

Thus, the momentum equation in the cylindri-
cal polar coordinate system under these assump-
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tions is given as:

µ(
d2u′

dr′2
+

1

r′
du′

dr′
)− σB′2

0u
′ − ∂p

∂z′
= 0, (2.1)

with boundary conditions:

u′(a′) = 0, u′(b′) = 0, (2.2)

where µ is the fluid viscosity, u′ is the fluid ve-
locity, σ is the fluid conductivity and ∂p

∂z′ is the
applied pressure gradient.

We can obtain the solution of Eqn. (2.1).
But, we should cast them in their most efficient
form, non-dimensional form, thereby increasing
the usefulness of whatever solution we find. For
this purpose, we have used the appropriate non-
dimensional variables for the flow, defined as fol-
lows:

r =
r′

b′
, z =

z′

Peb′
, G = − ∂p

∂z′
,

u =
µu′

Gb′2
, a =

a′

b′
, Ha = B′

0b
′
√

σ

µ
,

(2.3)

where r is the dimensionless radial coordinate, z
dimensionless axial coordinate, u the characteris-
tic velocity and Ha the Hartmann number.

Using the Eq. (2.3), the momentum equation
in the non-dimension form is given as follows:

d2u

dr2
+

1

r

du

dr
−Ha2u+ 1 = 0, (2.4)

with boundary conditions:

u(a) = 0, u(1) = 0. (2.5)

The analytical solution of the Eq. (2.4) with
boundary condition () is obtained as follows:

u = CI0(rHa) +DK0(rHa) +
1

Ha2
, (2.6)

here C and D are constants which are defined in
appendix-A, I0 and K0 are the modified Bessel
functions of the first and second kinds of order
zero, respectively.

The main basis of engineering purpose, for the
formulating and solving convective heat transfer
problems, is the second law of thermodynamics.
In order to find steady state temperature distri-
bution for the laminar flow of a viscous incom-
pressible MHD forced convection flow between

the cylindrical annuli, the thermal energy equa-
tion including the effect of the viscous dissipa-
tion and joule heating for the considered model
is given by:

ρCpu
′∂T

′

∂z′
= κ(

∂2T ′

∂r′2
+

1

r′
∂T ′

∂r′
)

+µ
du′

dr′
+ σB′2

0u
′2,

(2.7)

Intel condition:

T ′(b′, 0) = T ′
0; (2.8)

at the inner surface:

∂T ′

∂r′
(a′, z′) = − q

κ
; (2.9)

at the outer surface:

∂T ′

∂r′
(b′, z′) = 0; (2.10)

where T ′
0 is the temperature at inlet wall.

Using non-dimensional variables given by Eq.
(2.3), the energy equation (2.7) with boundary
conditions Eqs. (2.8) - (2.9) in non-dimensional
form is obtained as follows:

u
∂T

∂z
= (

∂2T

∂r2
+

1

r

∂T

∂r
) +Br(

du

dr
)2

+BrHa2u2,

(2.11)

T (1, 0) = 0;
∂T

∂r
(a, z) = −1;

∂T

∂r
(1, z) = 0;

(2.12)

where additional parameters, Br = G2b′3

µq is the

Brinkman number and T =
κ(T ′−T ′

0)
qb′ is the di-

mensionless temperature.
An analytical solution of the Eq. (2.11) with

the boundary conditions (2.12) is obtained by the
method of additive separating variables . Hence,
we take

T (r, z) = R(r) + Z(z). (2.13)

With the help of Eq. (2.13), energy equation
(2.11) becomes as follows

u
dZ

dz
= (

d2R

dr2
+

1

r

dR

dr
) +Br(

du

dr
)2

+BrHa2u2 = λ(Let).

(2.14)

The solution of Eq. (??) is obtained as follows:

T (r, z) = λz + λT1(r) +BrT2(r)

+BrHa2T3(r) + C1ln(r) + C2,
(2.15)
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where C1 and C2 are integration constants.

Using the inlet and boundary conditions, given
by Eq. (2.12), Eq. (2.15) has given the following
expression for T (r, z):

T (r, z) = C3z + T4(r) +BrT5(r)

+BrHa2T6(r).
(2.16)

The constant appearing in above equations are
defined in appendix-A

3 Entropy Generation Rate

Entropy generation plays an essential role in our
understanding of many diverse phenomena rang-
ing from the cosmology to biology. Their impor-
tance is manifest in areas of immediate practical
interest such as the provision of global energy as
well as in others of a more fundamental flavour
such as the source of order and complexity in na-
ture. They also form the basis of most modern
formulations of both equilibrium and nonequilib-
rium thermodynamics. Today much progress is
being made in our understanding of entropy gen-
eration in both fundamental aspects and appli-
cation to concrete problems. Simply, we can say
that entropy is the basic thermodynamic variable
that is use to define and relate the thermal prop-
erties of the matter and the equilibrium state.
The rate of destruction of useful work in an engi-
neering system is directly proportional to the rate
of entropy generation, and also the irreversibility
of the process is measured by the entropy gener-
ation rate. According to the Bejan [4], the volu-
metric entropy generation rate is defined as:

EG =
κ

T ′2
0

[(
∂T ′

∂z′
)2 + (

∂T ′

∂r′
)2]

+
µ

T ′
0

(
du′

dr′
)2 +

σB′2
0

T ′
0

u′2.

(3.17)

In order to evaluate the irreversibility loss in the
heat transfer, the entropy generation number may
be defined as

Ns =
κT ′2

0

q2
EG. (3.18)

In terms of dimensionless velocity and tempera-
ture fields, the entropy generation number may

be defined as:

Ns =
1

Pe2
(
∂T

∂z
)2 + (

∂T

∂r
)2

+
Br

Ω
[(
du

dr
)2 +Ha2u2]

= Nz +Nr +Nf ,

(3.19)

where Ω = qb′

κT ′
0
, while Nz and Nr are the entropy

generations by heat transfer due to both axial and
radial heat convection, respectively, and Nf is the
entropy generation due to fluid friction.

In convection problem, both the fluid friction
and heat transfer contribute to the rate of en-
tropy generation. In order to judge the relative
importance of the viscous effects to temperature
gradients on entropy generation, a formula known
as the irreversibility ratio is defined as

ϕ =
Nf

(Nz +Nr)
. (3.20)

4 Results and Discussion

Heat and mass transfer from a circular cylinder
has been a subject of many experiments because
of its importance in heat exchanger design.
The aim of this analysis is to investigate the
effects of the Hartmann number (Ha), Brinkman
number (Br), Peclet number (Pe) and radius of
inner cylinder (a) on convective heat transfer
flow of an electrically conducting viscous fluid
confined in a horizontal circular annulus in the
presence of constant heat flux at inner surface
while the outer surface is adiabatic. Physical
significance of these non-dimensional numbers is
very important for analysis in such conditions.

Figure 2: Effect of Hartmann number on velocity
profiles at a=0.5 for low Ha

Figures 2, 3 and 4 show that the effect of the
Hartmann number and radius of inner cylinder,
on the velocity profiles. It is clear from Figures
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Figure 3: Effect of Hartmann number on velocity
profiles at a=0.5 for high Ha

Figure 4: Effect of radius of inner cylinder on
velocity profile at Ha=15.0

Figure 5: Effect of Hartmann number on temper-
ature field profiles at a=0.2, Br=2.0 and z=0.2.

2 and 3 that the velocity profiles decrease with
increasing the Hartmann number. This implies
that the Hartmann number tends to retard the
velocity because the Lorentz force (electromag-
netic force) opposes the velocity. The maximum
velocity lies in the middle of the annulus cylinder
and the shape of velocity profiles is parabolic
type in vertical upward direction. Also Figures
2 and 3 display that for smaller electromagnetic
force velocity increases from surface to center
smoothly while for larger electromagnetic force
increases rapidly near the surfaces and around
the center it is almost constant. Consequently
a high velocity gradient is set up in the fluid
in a direction normal to flow near the surfaces.
Thus, a boundary layer establishes itself close
to the surface with a high velocity gradient. It
is observed from Figure 4 that with increasing
the radius of inner cylinder the velocity first
decreases slowly and then by decreasing rapidly
it is tending to zero.

Figure 6: Effect of Brinkman number on temper-
ature field profiles at a=0.2, Ha=4.0 and z=0.2.

Figure 7: Effect of radius of inner cylinder on
temperature field profiles at Ha=4.0 and z=0.8.

Figures 5-7 depict the temperature field pro-
files for different values of the Hartmann number
, Brinkman number and radius of inner cylinder .
It is observed from Figure 5 that as the Hartmann
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Figure 8: Effect of Hartmann number on the
graphs of the entropy generation number at a=0.2,
Br=1.0, Ω = 0.5, Pe=100 and z=0.5

Figure 9: Effect of Brinkman number on the
graphs of the entropy generation number at a=0.2,
Ha=6.0, Ω = 0.5, Pe=50 and z=0.5

number increases, there is an increase in the tem-
perature field profiles due to presence of the elec-
tromagnetic force. From Figure 6, it is evident
that the temperature field profiles leads to in-
crease with increasing the effect of the Brinkman
number. From Figure 7, it can be seen that as
the radius of inner cylinder increases, i.e. in-
ner boundary shifted towards outer boundary, the
temperature field profile first increases slowly and
after some instant it increases rapidly.

Figure 10: Effect of Peclet number on the
graphs of the entropy generation number at a=0.2,
Ha=10.0, Ω = 0.5, Br=3.0 and z=0.3

Entropy is the measure of energy unavailable for
useful work in a thermodynamic process, such as

Figure 11: Effect of radius of inner cylinder on
the graphs of the entropy generation number at
Pe=50, Ha=10.0, Ω = 0.5, Br=5.0 and z=0.5

Figure 12: Effect of Hartmann number on the
graphs of the irreversibility ratio at a=0.2, Br=2.0,
Ω = 0.2, Pe=50 and z=0.5

in energy conversion devices, engines or machines,
which can only be driven by convertible energy.
When a substance is heated or cooled, there is a
change in the entropy and has a theoretical en-
tropy minimization (maximum efficiency) while
converting the energy to useful work. The ef-
fects of various parameters on the graphs of the
entropy number are shown in Figures 8-11. It
is found from Figure 8 and 9 that as the val-
ues of Hartmann number and Brinkman num-
ber increase, graphs of the entropy number in-
crease in both cases of the Hartmann number and
Brinkman number. Figure 10 shows that the ef-
fect of Peclet number is to decrease the profiles
of entropy number because entropy decreases due
to heat transfer only. Also, it clears from Figure
11 that as the inner radius increases i.e. inner
boundary shifted towards to outer boundary, the
entropy number rises slowly, and after some in-
stant, it rapidly increases. From the comparative
study of Figures 7 and 11, it is found that for the
low energy entropy increases slowly but for high
energy it increases rapidly.

The effects of Hartmann number, Brinkman
number, Peclet number and radius of inner an-
nulus cylinder on profiles of the irreversibility ra-
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Figure 13: Effect of Brinkman number on the
graphs of the irreversibility ratio at at a=0.2,
Ha=6.0, Ω = 0.5, Pe=100 and z=0.5

Figure 14: Effect of Peclet number on the graphs
of the irreversibility ratio at a=0.2, Ha=6.0, Ω =
0.5, Br=2.0 and z=0.5

tio are shown in Figures 12-15. It clearly shows
that the impact of the Hartmann number is to
decrease the graphs of the irreversibility ratio;
therefore, it is observed from Figures 8 and 12
that as the electromagnetic force rises the en-
tropy due to fluid friction very slowly increase in
comparison to heat transfer while the profiles of
the irreversibility ratio decrease with increasing
Brinkman number and Peclet number. Also, it
is observed from Figure 14 that the variation of
entropy due to Peclet number is negligible near
the inner boundary in comparison to the outer
boundary. Figure 15 shows that the irreversibil-
ity ratio is to decrease with increasing the radius
of the inner cylinder i.e. inner boundary shifted
to the outer boundary.

Table 1 shows the effects of Hartmann number
and radius of inner cylinder on the maximum ve-
locity of the fluid and the minimum temperature
with fixed values of Brinkman number and axial
coordinate in non-dimensional form. It can be ob-
served that the maximum velocity is shifting from
the inner cylinder towards middle of the region
with increasing the Hartmann number and inner
radius. Also, we can see from table that the min-
imum temperature has shifted away from middle

Figure 15: Effect of radius of inner cylinder on
the graphs of the irreversibility ratio at Pe=100,
Ha=4.0, Ω = 0.5, Br=10.0 and z=0.5

of the region means towards the inner cylinder
with increasing the effect of the Hartmann num-
ber and inner radius.

5 Conclusion

A theoretical analysis on a steady fully devel-
oped hydromagnetic flow of a viscous incompress-
ible and electrically conducting fluid between two
horizontal concentric cylinders under the effect
of radial magnetic field has been presented. Af-
ter obtaining an exact solution of the velocity,
temperature field, entropy generation rate and
irreversibility ratio, we have analyzed the influ-
ence of the Hartmann number, Brinkman num-
ber, Pclet number and radius of inner cylinder
on these fields and the following conclusions have
drown:

1. It is observed that the increase in the Hart-
mann number leads to decrease the velocity
and irreversibility ratio while to increase the
temperature and entropy generation rate.

2. The effect of Brinkman number is to in-
crease the temperature, entropy generation
rate and irreversibility ratio.

3. The increase in the Pclet number leads to
decrease the entropy generation rate whereas
to increase the irreversibility ratio.

4. The impact of the radius of inner cylinder
is to decrease the velocity and irreversibility
ratio but to increase the temperature and en-
tropy generation rate.

5. It is found from numerical calculation that
the maximum velocity reduces while the
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Table 1: Effect of Hartmann number on the maximum velocity and minimum temperature.

a Ha Max. velocity Max. velocity Min. temperature Min. temperature
(Max point) (%variation to center) (Max point) (%variation to center)

0.1 1.0 0.4646 15.5272 0.2683 51.2181
0.1 2.0 0.4673 15.0363 0.2535 53.9090
0.1 3.0 0.4712 14.3272 0.2493 54.6727
0.2 1.0 0.5465 8.9166 0.3679 38.6833
0.2 2.0 0.5524 7.9333 0.3613 39.7833
0.2 3.0 0.5536 7.7333 0.3592 40.1333
0.3 1.0 0.6166 5.1384 0.4485 31.0000
0.3 2.0 0.6176 4.9846 0.4436 31.7538
0.3 3.0 0.6187 4.8153 0.4402 32.2769

minimum temperature enhances with in-
creasing Hartmann number and radius of in-
ner cylinder.

Nomenclature

a′: Radius of inner cylinder

a: Radius of inner cylinder in non-dimensional
form

b′: Radius of outer cylinder

Br: Brinkman number

Cp: Specific heat at constant pressure

G: Applied pressure gradient (− δp
δz )

Ha: Hartmann number

In(r): Modified Bessel function of first kind of
order n

Kn(r): Modified Bessel function of second
kind of order n

P : Pressure

Pe: Peclet number

q: Constant heat flux

r′: Radial coordinate

r: Radial coordinate in non-dimensional form

T ′: Temperature of the fluid

T : Temperature of the fluid in non-dimensional
form

T0: Inlet wall temperature

u′: Velocity of the fluid

u: Velocity in non-dimensional form

z′: Axial coordinate

z: Axial coordinate in non-dimensional form

Greek symbols

κ: Thermal conductivity of the fluid

µ: Viscosity of the fluid

Ω: Dimensionless constant heat flux ( qb′

κT0
)

ρ Density of the fluid

Appendix

C = [K0(Ha)−K0(aHa)]
Ha2[I0(Ha)K0(aHa)−I0(aHa)K0(Ha)]

,

D = [I0(Ha)−I0(aHa)]
Ha2[I0(Ha)K0(aHa)−I0(aHa)K0(Ha)]

,

T1(r) = ( 1
s4
)f0(r) +

r2

4Ha2
,

T2(r) = 1
2 [(

r
s)

2{(f0(r))2 − (f1(r))
2 − f00(r)} −

( r
s3
){f01(r)−g501(r)}+( r

3

s )g01(r)−( 1
s4
){(f0(r))2−

2f00(r)],

T3(r) = 1
2 [(

r
Ha2

)2{(f1(r))2 − (f0(r))
2} +

( r
Ha5

){f01(r)− h01(r)} − ( 4
Ha6

)f0(r)− ( r
2Ha)

2],

T4(r) = C01(T1(r)− E1) +D1ln(
r
c0
),

T5(r) = C02{T1(r)−E1}+T2(r)+D2ln(
r
c0
)−E2,

T6(r) = C03{T1(r)−E1}+T3(r)+D3ln(
r
c0
)−E3,

f0(r) = CI0(rHa) +DK0(rHa),

f1(r) = CI1(rHa) +DK1(rHa),

f00(r) = CD{I0(rHa)K0(rHa) +
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I1(rHa)K1(rHa)},

f01(r) = {C2I0(rHa)I1(rHa) −
D2K0(rHa)K1(rHa)},

g01(r) = CD{I0(rHa)K1(rHa) +
I1(rHa)K0(rHa)},

ḡ01(r) = CD{I0(rHa)K1(rHa) −
I1(rHa)K0(rHa)},

g201(r) = CD{2I0(rHa)K0(rHa) −
I1(rHa)K1(rHa)},

g501(r) = g01(r) + 2h01(r),

h01(r) = 2CDI0(rHa)K1(rHa),

h11(r) = 2CDI1(rHa)K1(rHa),

A1 =
1

(Ha)3
f0(a) +

a
2(Ha)2

,

B1 =
1

(Ha)3
f1(1) +

1
2(Ha)2

,

A2 = a
2(Ha)2

{(f0(a))2 − (f1(a))
2 − 2g201(a)} −

1
(Ha)3

{f0(a)f1(a)} − a2

(Ha) ḡ01(a)−
1

a(Ha)4
h11(a),

B2 = 1
2(Ha)2

{(f0(1))2 − (f1(1))
2 − 2g201(1)} −

1
(Ha)3

{f0(1)f1(1)} − 1
(Ha) ḡ01(1)−

1
(Ha)4

h11(1),

A3 =
a

2(Ha)4
{(f1(a))2−(f0(a))

2}− 2
(Ha)5

{f1(a)}−
a

2(Ha)4
,

B3 =
1

2(Ha)4
{(f1(1))2−(f0(1))

2}− 2
(Ha)5

{f1(1)}−
1

2(Ha)4
,

λ = C01 +BrC02 +Ha2BrC03,

c0 = 1,

C01 =
a

(B1−aA1)
,

C02 =
aA2−B2
(B1−aA1)

,

C03 =
aA3−B3
(B1−aA1)

,

C1 = D1 +BrD2 +Ha2BrD3,

C2 = −λE1 −BrE2 +Ha2BrE3 − C1ln(c0),

C3 = C01 + C02 + C03,

D1 =
aB1

(aA1−B1)
,

D2 =
a(A2B1−A1B2)

(aA1−B1)
,

D3 =
a(A3B1−A1B3)

(aA1−B1)
,

E1 = T1(c0),

E2 = T2(c0),

E3 = T3(c0).
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