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Abstract

In wireless sensor and actor networks, connectivity among actors is very important, especially in
critical applications where actors collaborate with each other to provide a report as soon as possible.
Sometimes a node failure divides the given network into several parts; causing loss of connectivity
between actors hence degrades the network performance. Several algorithms have been proposed to
restore inter-actor connectivity. In these methods, selecting appropriate failure handler to minimize
the relocations is crucial. In this paper the issue of finding the best backup is supposed the same as
finding shortest path in stochastic graph problem. Owing that the solving stochastic shortest path
is NP-complete, DLA is used for failure handler choice. This essay also presents a hybrid algorithm
named DLA-BuS for critical node Back Up Selection based on distributed learning automata. Here
two methods are proposed; first one is that each actor node is equipped with a learning automaton
so that their cooperation in learning process leads to select the desired backups. The second method
states the presentation of DLA-MRF to repair stimulant failure of two adjacent actors. In order to
show the performance of the proposed algorithms extensive simulations using Castalia simulator have
been conducted. Simulation results demonstrate that the mentioned proposed algorithms outperform
existing methods in terms of the number of nodes movement, total distance travels, the percentage
of coverage reduction, and energy consumption.

Keywords : Wireless sensor and actor networks; Fault recovery; Connectivity restoration; Node relo-
cation; Distributed learning automata.

—————————————————————————————————–

1 Introduction

R
ecently, the popularity of wireless sensor and
actor networks (WSAN) is increasing, since

these networks are appropriate for applications
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such as critical and hard missions requiring
intelligent and autonomous interaction with the
environment. The wide range of application in
WSANs includes important themes such as area,
dynamic or static point, and barrier coverage.
WSANs are composed of a large number of static
sensor nodes and few movable nodes called actor.
The sensor nodes senses environment and report
events to one or multiple actors for processing,
making decisions and performing appropriate
actions [1, 2, 3]. Actors communication with
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each other via wireless links. Each node works
independently and with no human intervention.
Sensors are physically very small and have
limitations in processing, memory capacity and
power supply. Actors are nodes with more
processing power and more powerful battery
that should react to the event sensed by the
sensor during a specified period time. The role
of an actor is extremely crucial for a timely
response to events such as fire, earthquakes,
disasters, etc., and depends on the environment
and capabilities of actors that may vary from
one application to another [4, 5, 6].For example,
an actor can extinguish a fire, lift rubbles, rescue
trapped survivors, deactivate a landmine and
carry weapons.
The most problem of WSANs in harsh envi-
ronments is network partitioning due to the
failure of one or more critical actor nodes [7].For
recovering such partitions, sometimes additional
mobile nodes can be used such as unmanned
aerial vehicles (UAVs) or robots. However, these
relay nodes are expensive and difficult to deploy
due to unattended environment, where exact
locations are unknown. A cost effectiveness and
real time solution is moving the implicit suitable
actor nodes for recover network partitioning in
WSANs [8, 9]. There are three methodologies
to recover a partitioned network: proactive,
reactive and hybrid. Proactive approaches
establish and maintain bi-connected topology in
order to provide fault tolerance capability. These
techniques require large communication overhead
and are not cost effective. On the other hand,
reactive approaches start recovery procedure
once an actor node detects the failure. There-
fore, these approaches are not suitable for time
sensitive applications. The third methodology is
hybrid approach that is comprised of proactive
and reactive phases. In proactive phase, local
information within k-hop neighborhood is stored
in each node for the recovery. In reactive phase,
instantaneous action is performed using the
stored information in case that partitioning
occurs.
In this paper, two algorithms named DLA-BuS
and DLA-MRF are proposed both for connectiv-
ity restoration. These approaches use distributed
learning automata to designate suitable backup

for critical actors. DLA-BuS recovers the net-
work in which one actor is failed at each time,
while DLA-MRF is proposed to handle failures
of multiple actors.
In this method, we prioritize neighbors of the
critical actor. Like DLA-BuS, the recovery
procedure is applied iteratively until required
connectivity is restored. Simulation results
demonstrate the performance of the proposed
approaches in terms of total distance movement,
nodes involved in recovery, message passing and
percentage of coverage reduction.
The rest of the paper is organized as follows:
Section 2 reviews the related works.section 3
describes the concept of learning automata,
distributed learning automata, and also vari-
able action-set learning automata theories. In
Sections 4 and 5, the DLA-BuS and DLA-MRF
are discussed, respectively. Performance of the
proposed algorithms is evaluated through the
extensive simulation experiments in Section 6.
Finally Section 7 concludes the paper.

2 Related works

The fault tolerance issue in WSAN has been con-
sidered in few works in different contexts. In
[10] fault-tolerance is achieved by means of redun-
dancy. In other words, sensors send their sensed
data to more than one actor and each actor re-
ceives the sensed information from multiple sen-
sors in the event area. In this paper, we focus
on network partitioning caused by node failure
rather than reliable event notification delivery. In
this paper, we briefly review some of the existing
connectivity restoration algorithms for WSAN.
Some approaches use proactive strategy to pre-
vent network from partitioning. For example,[11]
provides k-connectivity. This idea is referred to
as k-vertex connectivity where the failure of (k
-1) nodes does not lead to any network partition-
ing problem. The aim of these approaches is to
form k-node disjoint paths between pairs of nodes
in the network. Another distributed approach
proposed in [12] to restore 2-connectivity. Un-
like these approaches, our algorithm focuses on
providing 1-connectivity. Such an optimization is
a very challenging problem that has been proven
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to be NP-hard [13] Therefore, prevention strate-
gies have tolerated high message overhead.
Some researchers employed node mobility for
network portioning recovery. The approaches
that attempt to prevent repartitioning network,
caused by node mobility, are categorized into
block and cascaded movement. In block move-
ment, all of nodes within a block, are moved to
recover network partitioning. Block movement,
as defined in [14, 15], is a solution based on the
relocation of all nodes within a partition (block).
Specifically, in each partition a node will be leader
and moves. The neighbor nodes of a leader node,
follow it to recover the dis-connectivity. Instead
of using block movement, DLA-BuS pursues a
cascaded relocation. The idea is to gradually re-
place intermediate nodes on the path instead of
moving a node for a long distance.
VCR [16] and PADRA [17] are proactive methods
and use 2-hop neighbors information. PADRA
tries to find a connected dominating set that
increases message passing overhead. PADRA
uses a greedy algorithm to designate appropriate
backup for the failed node. The ideal failure han-
dler will be a dominatee neighbor of Ai, which
can be simply replaced by Ai. If a dominatee
is not available, the closest dominator is candi-
date as the failure handler of Ai. Repositioning
the failure handler continues until a dominatee
is encountered. Greedy algorithms of these ap-
proaches may not lead to accurate solution.
Another solution to recover a partitioned network
was proposed in [18]. DARA is a reactive ap-
proach that like PADRA uses 2-hop neighbor in-
formation. The idea is to replace the dead actor
node by a suitable candidate as failure handler
based on nodes degree and distance. The over-
all objective of DARA is to minimize the total
distance travelled by the involved actors in order
to limit the movement overhead. DARA does not
provide any mechanism to detect the cut-vertices.
It assumes this information is available at the
node which may require the knowledge of the
whole topology. The selection of failure handler
(FH) to replace the failed node is done based on
the neighbors degree and distance to failed node
which may require excessive replacement until a
leaf node is found. Sometimes, moving distance
may be long and will consume more energy of the

network; also the best candidate selection is done
reactively using a lot of calculations, which is very
crucial for delay sensitive applications.
Younis et al. [19] suggested a localized reactive
distributed algorithm called recovery through in-
ward motion (RIM) for the network partition re-
covery. The main idea is to relocate the whole
neighbor of a failed node Af towards the position
of Af so that they would be able to reach each
other. RIM likes that our proposed DLA-BuS re-
duces the message overhead by maintaining only
1-hop neighbor information but a large number
of relocation are required for the recovery. Also,
it does not differentiate between critical and non-
critical nodes.
In [20], authors presented Coverage aware Con-
nectivity Restoration algorithm (C3R). C3R is
a reactive method that uses 1-hop neighbors of
failed node to restore connectivity. When neigh-
bors detect failure of a node, take turns in moving
to the position of F. After serving for some time,
each neighbor goes back to its original position,
allowing for another neighbor of F to come for-
ward and so on. In C3R the coverage stays mostly
the same as its pre-failure status. Another ap-
proach has been proposed to improve C3R in [21].
The aim of DRFN (Detection and Replacement of
a Failing Node) is that the consumed total energy,
for the restoration of connection, would be shared
by neighbor nodes extending the whole network
lifetime. DRFN ranks the nodes according to the
energy, distance and node’s degree. These meth-
ods consider coverage but neighbors will consume
more energy with more chances to fail.
In some research works, authors proposed hy-
brid approaches like DCR [22] and EDCR [23].
DCR distributes partitioning detection and con-
nectivity restoration algorithm and EDCR is en-
ergy aware DCR. DCR proactively identifies ac-
tors that are critical to the network connectiv-
ity (primary), and designates appropriate backup
nodes. Upon failure detection, the backup actor
initiates a recovery process that may involve coor-
dinated relocation of multiple actors. DCR uses
1-hop neighbors information to repair connectiv-
ity while imposing minimal communication over-
head. EDCR has been proposed to decrease the
number of heartbeat messages in DCR. In the re-
active part, once nodes energy falls below a cer-
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tain threshold it informs its one hop neighbors.
Neighbor nodes start monitoring of the primary
through HEARTBEATS. Once neighbor nodes
detect the failure they buer critical data to pre-
vent from losing sensed data. The backup node is
replaced by the primary and it informs neighbors
resuming transmission of their buered data pack-
ets. These ideas are similar to that of PADRA
but no CDS is employed which degrades the ac-
curacy of assigning appropriate backups and also
convergence of greedy algorithms are not men-
tioned. Also, EDCR does not consider physical
failures and energy as two factors in designating
backup node.
CoMN2 was proposed to repair the partitioned
network from multi adjacent failures. However, it
is centralized and considers the presence of spe-
cific entity called mobile node which has the ca-
pability of processing data and making the appro-
priate decision. In this approach, mobile node is
a single point of failure [24]. Another idea for re-
covery the partitioned network from multi node
failure is RAM [22]. RAM like DLA-MRF is a
hybrid approach but each backup node should be
aware of its grandparent and like DCR does not
consider energy of node for selecting appropriate
backup.
In this paper we present DLA-BuS approach that
like RIM only requires that each node knows the
locations of its 1-hop neighbors. In addition, like
DCR, it uses a localized algorithm to identify crit-
ical actors and here, each critical node has only
one backup to handle its failure.

3 Learning automata, dis-
tributed learning automata
and variable action-set learn-
ing automata

In this section, we briey review learning au-
tomata, distributed learning automata and vari-
able action-set learning automata.

3.1 Learning automata theory

A learning automaton [25, 26, 27, 28, 29, 30, 31,
32] is an adaptive decision making unit that im-
proves its performance by learning how to choose

the optimal action from a finite set of allowed
actions through repeated interactions with a ran-
dom environment. The action is chosen at ran-
dom based on a probability distribution kept over
the action-set and at each instant the given action
is served as the input to the random environment.
The environment responds to the taken action
in turn with a reinforcement signal. The action
probability vector is updated based on the rein-
forcement feedback from the environment. The
objective of a learning automaton is to find the
optimal action from the action-set so that the av-
erage penalty received from the environment is
minimized.
The environment can be described by a triple
{α, β, c} where α ≡ {α1, α2, .., αr} represents the
finite set of inputs (actions) β≡ {β1, β2, . . .
,im} denotes the set of values can be taken by
the reinforcement signal, and and c={f(α) | αϵα}
denotes the set of the penalty irobabilities (prob-
ability distributions over β) f(α) is called penalty
function. If the penalty probabilities are con-
stant, the random environment is said to be a
stationary random environment and if they are
time-variant, the environment is called a non -
stationary environment. The environments de-
pending on the nature of the reinforcement signal
b, can be classified into P-model, Q-model and
S-model. The environments, in which the rein-
forcement signal can only take two binary values
0 and 1, are referred to as P-model environments.
Another class of the environment allows a finite
number of the values in the interval [0,1] can be
taken by the reinforcement signal. Such an envi-
ronment is referred to as Q-model environment.
In S-model environments, the reinforcement sig-
nal lies in the interval [0,1]. The relationship be-
tween the learning automaton and its random en-
vironment has been shown in Fig. 1. Learning
automata can be classified into two main families
[33, 34, 35]:fixed structure learning automata and
variable structure learning automata. Variable
structure learning automata are represented by a
triple < β,α, T >, where β is the set of inputs, α
is the set of actions, and T is learning algorithm.
The learning algorithm is a recurrence relation
which is used to modify the action probability
vector. Let α(k) and p(k) enote the action cho-
sen at instant k and the action probability vector
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on which the chosen action is based, respectively.
The recurrence equation shown by (3.1) and (3.2)
is a linear learning algorithm by which the action
probability vector p is updated. Let αi(k) be the
action chosen by the automaton at instant k. The
action probabilities are updated as given in Eq.
(3.1),when the chosen action is rewarded by the
environment (i.e., β(n)=0). When the taken ac-
tion is penalized by the environment, the action
probabilities are updated as defined in Eq. (3.2)
(i.e., β(n)=1).

pi(n+ 1) = pi(n) + a[1− pi(n)]

pj(n+ 1) = (1− a)pj(n)∀j, j ̸= i
(3.1)

pi(n+ 1) = (1− b)pi(n)

pj(n+ 1) =
b

r − 1
+ (1− b)pj(n)∀j, j ̸= i

(3.2)

Where, r is the number of actions can be cho-
sen by the automaton, a and b denote the re-
ward and penalty parameters and determine the
amount of increases and decreases of the action
probabilities, respectively. If a = b, learning al-
gorithm is called linear reward-penalty (LR−P )).
If a >> b the given algorithm is called linear
reward-ϵ penalty (LR−ϵP ), and finalay if b = 0
it is called linear reward-Inaction (LR−I). In the
latter case, the action probability vectors remain
unchanged when the taken action is penalized by
the environment.

Figure 1: The relationship between the learning
automaton and its random envirohment.

Figure 2: Distributed learning automata.

Figure 3: An example of a connected topology.

3.2 Distributed learning automata

A distributed learning automata (DLA) [36] is
a network of the learning automata which col-
lectively cooperate to solve a particular problem.
Formally, a DLA can be defined by a quadruple
< A,E, T,A0 >, where A = {A1, A2,...,Am} is the
set of the learning automata,E ⊂ A × A is the
set of the edges in which edge e(i,j) corresponds
to the action αj of the automaton Ai, T is the
set of learning schemes by which the learning au-
tomata update their action probability vectors,
and A0 is the root automaton of DLA from which
the automaton activation is started. An exam-
ple of a DLA has been shown in Fig. 2. The
operation of a DLA can be described as follows:
At first, the root automaton randomly chooses
one of its outgoing edges (actions) according to
its action probabilities and activates the learn-
ing automaton at the other end of the selected
edge. The activated automaton also randomly
selects an action which results in activation of an-
other automaton. The process of choosing the ac-
tions and activating the automata continues until
a leaf automaton (an automaton which interacts
with the environment) is reached. The chosen
actions, along the path induced by the activated
automata between the root and leaf, are applied
to the random environment. The environment
evaluates the applied actions and emits a rein-
forcement signal to the DLA. The activated learn-
ing automata along the chosen path update their
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Figure 4: An example of selection backup whit
DLA.

action probability vectors on the basis of the re-
inforcement signal by using the learning schemes.
The paths from the unique root automaton to one
of the leaf automata are selected until the prob-
ability, by which one of the paths is chosen, is
close enough to unity. Each DLA has exactly one
root automaton which is always activated, and at
least one leaf automaton which is activated prob-
abilistically.

3.3 Variable action-set learning au-
tomata

A variable action-set learning automaton is an au-
tomaton in which the number of actions available
at each instant changes with time. It has been
shown in [31] that a learning automaton with a
changing number of actions is absolutely expedi-
ent and also e-optimal. Such an automaton has
a finite set of n actions,a = {a1, a2, ..., an}, z =
{z1, z2, ..., zm} denotes the set of action subsets
and is the subset of all the actions can be cho-
sen by the learning automaton, at each instant
k. The selection of the particular action sub-
sets is randomly made by an external agency
according to the probability distribution q(k) =
{q1(k), q2(k), ..., qm(k)} defined over the possible

DLA-BuS(){
1. ET=0
2. RT= n-1
3. If (IsCritical==true )
4. Assign backup with DLA()
5. If A detect the failure of primary then
6. Notify to backup
7. Recovery(A,F)
}
Assign backup with DLA (){
8. Form action set(){
9. for(i=0; i< NeighborTable.size() ; i++)
10. for(j=0; j< NeighborTable.size() ; j++)
11. If(NeighborTable[i] != TrN-ID[j])
12. ActionSet.pushback(NeighborTable[i])
13. }
14. Choose a neighbor randomly()
15. selection:next = rand()16.
if(action[next].Active==true)
17. ActiveNeighbor = action[next].Id
18. else
19. goto selection;
20. }
21. Put Node ID in TrN-IDarray and send
ACTIVATION message (vector TrN-IDarray){
22. TrN-ID-array. pushback (NodeID ())
23. for(int i=0; i¡(int) TrN-IDarray.size(); i++)
24. ACtivationPacket −→ setNodeID (i, TrN-
IDarray[i]) //create Activation packet
25. SendACTIVIATIONmes-
sage(ACtivationPacket, ActiveNeighbor);
26. }
27. If Hi received ACTIVATION message{
28. if ( IsCritical!=true | (int) Neigh-
borTable.size()==1 | actionSet.size()==0
){
29. Calculatewieght()
30. count=1
31. SendResponsemessage(ResponsePacket,
nodeWhichReceivedActivationMessageFromIt)
32.
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33. else if (IsCritical==true)
34. goto 11
35. }
36. If Hi received RESPONSE message{
37. if (count ≤ RT ){
38. RT = count
39. Reward Action(aR) //reward action by re-
placement threshold
40. }
41. else if (count > RT ){
42. Penalize Action (bR) //penalize action by re-
placement threshold
43. }
44. if (weigh/count) ≤ ET {
45. ET = (weigh/count) 46. Reward Action(aE)
//reward action by energy threshold
47. }
48. else if (weigh/count) ≥ ET {
49. Penalize Action(bE) //penalize action by en-
ergy threshold
50. }
51. count++
52. Calculatedweigh();
53. Weight=weightHi+ weightrecieved
54. SendResponsemessage(ResponsePacket,
nodeWhichReceivedActivationMessageFromIt)
}

Recovery (A, F){
55. Move to location F (F is failed node)
}
Calculatewieght () {
56. RemainingEnergy = ((initEnergy - spentEn-
ergy) * 100)/initEnergy;
57. weightHi = (remainingEnergy / (alfa *
(int)neighborTable.size()));
}
Reward Action (a){
58. for(int i=0; i<(int)action.size(); i++){
59. if( action[i].Id == NodeID)
60. action[i].prob[stage+1]=
((action[i].prob[stage])+(a*(1-
action[i].prob[stage])))
61. else if(action[i].Id != primary and ac-
tion[i].Active==true)
62. action[i].prob[stage+1] = ( (1-a)* ac-
tion[i].prob[stage+1];
63. else if (action[i].Active==false)
64. action[i].prob[stage+1] = ac-
tion[i].prob[stage];
65. }
}
textbfPenalize Action (b) {
66. for(int i=0; i¡(int)action.size(); i++){
67. if( action[i].Id == NodeID)
68. action[i].prob[stage+1]= ((1-
b)*action[i].prob[stage])
69. else if(action[i].Id != NodeID and ac-
tion[i].Active==true){
71. r = (int)action.size()-1;
72. action[i].prob[stage+1]=((b/(r −
1))+action[i].prob[stage]*(1-b));
73. }
74. else if (action[i].Active==false)
75. action[i].prob[stage+1] = ac-
tion[i].prob[stage];
76. }
}

Figure 5: Pseudo code of DLA-BuS.
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Figure 6: DLA-BuS flowchart

subsets of the actions, where qi(k) = prob[z(k) =
Zi | Zi ∈ Z, 1 ≤ i ≤ 2n − 1].pi(k) = prob[a(k) =
ai | Z(k), ai ∈ Z(k)] is the probability of choos-
ing action ai, conditioned in the event that the
action subset has already been selected and also
ai ∈ Z(k).The scaled probability is defined as fal-
low:

P̂i(k) =
pi(k)

R(k)
(3.3)

Where,R(k) = σai∈Z(k)pi(k) is the sum of the
probabilities of the actions in subset . The
procedure of choosing an action and updating
the action probabilities in a variable action-set
learning automaton can be described as follows.
Let Z(k) be the action subset selected at instant

Figure 7: Example of the simultaneous failure of
two adjacent nodes (a) the failure of two adjacent
critical nodes with the same backup, (b) failure of
a critical node and its backup.

k. Before choosing an action, the probabilities
of all the actions in the selected subset are
scaled as defined in Eq. (3.3). The automaton
then randomly selects one of its possible actions
according to the scaled action probability vector
P̂i(k).Depending on the response received from
the environment, the learning automaton up-
dates its scaled action probability vector. Note
that the probability of the available actions is
only updated. Finally, the probability vector of
the actions of the chosen subset is rescaled as:

Pi(k + 1) = P̂i(k + 1).R(k)∀αi ∈ Z(k) (3.4)

The absolute expediency and e-optimality of
the method described above have been proved
in [28]. Variable action set learning automata
have been found to perform well for solving
combinatorial optimization problems.

4 DLA-based BackUp Selection

The proposed method which is called Dis-
tributed Learning Automata-based BackUp Se-
lection (DLA-BuS) is a hybrid approach to re-
cover partitioned network. All nodes store a
list of their one hop neighbor nodes information
and exchange heartbeat messages to update the
neighborhood table. In fact, we are seeking to
answer the following two questions: 1. Which
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Figure 8: DLA-MRF flowchart

one-hop neighbor of node Ai (the faulty node) is
more appropriate for re-location?
2. How should we prevent the network from re-
partitioning?
In order to answer the first question, we use dis-
tributed learning automata to select a candidate
node with more energy and less relocation as the
failure handler. Cascade relocation is used in or-
der to answer the second question. Finding a de-
sirable solution requires each node to be aware of
the whole network topology information. These
centralized methods are not applicable and scal-
able in practice. We aim to propose a local-
ized and distributed method using exploitation
of learning algorithms to find a sub optimal solu-
tion.

4.1 Problem statement and Assump-
tions

Topology of the given network is assumed flat.
Nodes are uniformly deployed. It is assumed
that nodes are aware of their location through
GPS or other localization algorithms. Nodes

Figure 9: The number of nodes moved during
the recovery, while varying (a) the network size
(b) and radio range.

communication range is denoted by rc . The
sensing range and communication range of all
nodes are assumed to be identical.
As mentioned earlier, hybrid approaches are more
appropriate for time sensitive applications. In
this paper, we proposed a hybrid approach that
includes a reactive and a proactive phase. In the
proactive phase, critical nodes are identified by a
localized method and then, the most appropriate
node is selected as backup from 1-hop neigh-
bors using distributed learning automata. In
the reaction phase, our proposed approach uses
cascade relocation to prevent from repartitioning.

4.2 Identification of critical nodes

As described earlier, the failure of critical nodes
divides the network into disjoint segments. Our
goal is to identify a backup for each of these crit-
ical nodes. Various algorithms have been pre-
sented for identification of critical nodes. These
methods are classified into centralized and dis-
tributed categories. In centralized algorithms,
each node should be aware of the whole net-
work topology. Because of dynamic nature of
networks, these methods impose high communi-
cation overhead. Therefore, designing localized
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Figure 10: Total distance moved during the re-
covery, while varying (a) the network size (b) and
radio range.

and distributed algorithms is a must. Most dis-
tributed algorithms require 2-hop neighbors infor-
mation. Similar to DCR, DLA-BuS uses a local
method to detect cut vertexes. This distributed
method only requires 1-hop neighbors informa-
tion [37]. In this method, each node determines
whether it is critical or not, using the location
of neighbors by calculating the distance between
each pair of the neighbors. If this distance is less
than their communication range, it is known as a
non-critical node because the neighbors will still
be connected in its absence; otherwise, the node
is critical.
Figure 3 shows an example of network topol-
ogy. Critical and none-critical nodes are indi-
cated with black and white circles, respectively.
As it can be seen, A16 is 1-hop none critical node
because its neighbors remains connected without
it but, failure of A1 divides network into two sub
graphs.

4.3 Selection of appropriate backup
nodes

In this phase, each critical node should select
a neighbor as backup from its 1-hop neighbors.
The appropriate backup is a node that leads to
minimum relocation and consequently, minimum

Figure 11: Message overhead during the recov-
ery, while varying (a) the network size (b) and ra-
dio range.

changes in the network topology. In fact, we
are looking for the shortest path to a non-critical
node or a leaf node [[38],[39],[40],[41]], and since it
is proved that finding the shortest path is an NP-
complete issue, distributed learning automata is
used to cope with this problem [42]. Here, WSAN
is mapped to a two-dimensional weighted graph
whose vertices correspond to the actor nodes.
The weight of the actor is calculated by Eq. 4.5.
Two actors that are located in the communication
range of each other are assumed to be connected.
Factors α , β are tuned experimentally. Parame-
ter distance specifies the distance between a node
and its neighbors and also, Energy% is percent-
age of residual on-board energy of the node.

weighti =
Energy%

α× numberOfNgb+ β × dist
(4.5)

4.3.1 Modeling of environment, action
set of learning automata, and iden-
tification messages

In this paper, automatas environment is assumed
as a network that actors are distributed ran-
domly. The environment is defined as triple
E = {α, β, c}. Distributed learning automata
contain a network of automata cooperate with
each other to find the desirable response. In
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Figure 12: Percentage of coverage reduction dur-
ing the recovery process, while varying (a) the net-
work size and (b) radio range.

DLA-BuS, each critical node is equipped with a
learning automaton and so a network of learn-
ing automata, isomorphic to the network graph,
is formed and nodes action-set includes its 1-hop
neighbors. The resulting network of learning au-
tomata can be described by a duple < A,α >,
where A = {A1, A2, ..., Am} denotes the set of
the learning automata corresponding to the ver-
tex set, and α = {α1, α2, ..., αm} denotes the set
of actions in which αi = {αi1, αi2, ..., αim}defines
the action-set can be taken by learning automata
Ai.
In DLA-BuS, each critical node forms its action-
set by its neighborhood table. To prevent from
the loop and increasing convergence speed, we ap-
ply the learning automata with variable action-
set, and introduce the following rule for pruning
the action-set of such learning automata. Rule
1: Each node has a dynamic array called Trans-
mitter Nodes ID that simplified as TrN-ID array.
TrN-ID array includes nodes ID which ACTIVI-
ATION message received through them. In each
iteration, activated learning automaton is allowed
to prune its action-set by disabling the actions
corresponding to the 1-hop neighbors that their
IDs exist in TrN-ID array.
In DLA-BuS we assume two types of messages;
ACTIVATION message and RESPONSE mes-

Figure 13: Percentage of consumed energy dur-
ing the recovery, while varying (a) the network size
and (a) radio range.

Figure 14: Simulation parameters value

sage. ACTIVATION message includes a dy-
namic message of the transmitter nodes’ iden-
tifiers. When a given host Hi receives an AC-
TIVATION message, it activates its correspond-
ing learning automaton and inserts its own ID
into the TrN-ID array. The second message is
RESPONSE message. It includes two fields, i.e.,
weight and count which are used to reward and
punish the chosen action.

4.3.2 Selection of backup node using P-
model

Each node Ai is equipped with a learning automa-
ton (LA). As discussed in section 4.2, once Hi is
detected as critical node activates its correspond-
ing automaton (LAi) and then, forms its action-
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Figure 15: Consumed energy and (b) message
overhead during the recovery of DLA-MRF, while
varying the network size.

set according to its probability vector. At first
iteration, all of actions have the same probabil-
ity and then the probability vector changes over
time by rewards and punishments they receive
from environment. The node that starts backup
selection process (Ai) is known as the root node.
Since all of actions have the same probability at
first, so Ai selects one of its actions randomly,
pushes its node ID to TrN-ID array and sends
ACTIVATION message to corresponding neigh-
bor.
An ACTIVATION message includes TrN-ID ar-
ray that described in section 4.3.1. When a node
Ai receives an ACTIVATION message, if it is
critical, activates its corresponding LA and up-
dates its action-set by TrN-ID array. Then it se-
lects one neighbor and sends activation message
to it. If Ai receives activation message and it is
a leaf or non-critical node, creates a RESPONSE
message with following values. Ai calculates its
weight by Eq. (4.5) and sets count filed value as
1. Then, Ai sends this information to the node
that was sender of the activation message. If Ai is
a none-root node and receives RESPONSE mes-
sage, compares count value with the dynamic re-
location threshold (RT ). RT contains the min-
imum nodes relocation which has been required
yet in case of failure root node. This is initially

Figure 16: (a) Total distance and (b) number of
nodes moved during the recovery of DLA-MRF,
while varying the network size.

set to the network size. If the count is less than
or equal to the relocation threshold, action αij

rewarded and probability of it (pij) increased by
Eq. (3.1). Otherwise, it is punished and its prob-
ability decreases by Eq. (3.2). After a node up-
dates its probability vector, it produces a new
response message. In this case, the node incre-
ments the value of count then calculates its weight
and adds it to the weight which received from re-
sponse message. Afterwards sends the response
message to the actor, which was the sender of the
activation message.

weighti =
Energy%

α× numberOfNgb+ β × dist
(4.6)

In DLA-BuS, two measures are used for reward
and punishment. First, relocation which was ex-
plained above and next average energy. The pur-
pose is selecting a node as a backup that im-
poses low cascade relocation to the network and
have a higher energy level to increase the life-
time of the network. In order to evaluate average
consumed energy, we define an energy threshold
(ET ). ET contains the average residual energy
of nodes which has been needed for nodes relo-
cation in case of failure root node. ET is ini-
tially set at zero. Once root node receives re-
sponse message, it calculates weightavg by Eq.
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Figure 17: Consumed energy and (b) message
overhead during the recovery of DLA-MRF, while
varying the network size.

(4.6). If is greater than or equal to the energy
threshold (ET ), action αi is rewarded and its
probability is increased. Otherwise, it is pun-
ished and its probability is decreased. When
Ai receives RESPONSE message and it is root
node, then updates its vector probability as de-
scribed above and then selects a neighbor with
the highest probability as a temporary backup
node. The stopping condition of the Backup se-
lection process is when the probability of one ac-
tion becomes greater than or equal to . is empir-
ical variable and will be determined in section 6.
The flowchart and pseudo-code of the suggested
method are shown in Fig. 5 and Fig. 6.

4.3.3 Selection of backup node using S-
model

In section 4.3.2 we proposed our idea of learn-
ing automata only based on the P-model envi-
ronment, where the input to the automaton is
either 0 or 1. Now, in this section S-model is
used that considers the possibility of input values
over an interval [LB,UB] and the environment
response is given by Eq. (4.7). Since in S-models
the outputs lie in the interval [0,1], and therefore
are neither totally favorable nor totally unfavor-
able, the main problem is to determine how the

probabilities of all actions are to be updated. In
the case, the environment outputs βi(n) are not
in the interval [0,1], but in [LB,UB], it is always
possible to map the output into the unit interval
using Eq. (4.8):

βi =
Σcount
k=1 weightcount

count
(4.7)

βi =
βi − a

LB − UB
(4.8)

LBi = min(
Energy%

α× numberOfNgb+ β × dist
) ≈ 0

(4.9)

UBi = min(
Energy%

α× numberOfNgb+ β × dist
) ≈ 100

(4.10)
According to Eq. (4.9) and (4.10) LB = min{βi}
and UB = max{βi}. Therefore, only the nor-
malized S-model will be considered. The general
procedure is similar to the P-model.

4.4 Failure detection and recovery

In DLA-BuS, nodes use heartbeat messages to
monitor critical nodes and update its neighbor-
hood table. Each neighbor node exchanges heart-
beat message periodically with its primary (criti-
cal node). When a backup node does not receive
any heartbeat message from a critical node, it is
assumed that critical node is failed and then re-
covery process is executed.

4.5 Recovery process

In case a Backup node detects the failure of
its critical node, this procedure begins. Thus,
backup node moves to location of failed node and
repair partitioned network. DLA-BuS uses cas-
cade movements to avoid repartitioning network.
Fig . 4 shows an example of repair process.

5 DLA-based Recovery parti-
tioned network from Multiple
Failure

As mentioned earlier, the goal of DLA-BAS is
to recover partitioned network from single node
failure. However, some events may cause the fail-
ure of more than one adjacent actor. In general,
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the recovery from simultaneous failure of multi-
ple nodes is very challenging. DLA-BuS and sin-
gle failure recovery methods are not guaranteed
to converge. For example, consider the topol-
ogy of Fig. 4. In Fig. 7(a), A1 is selected as
a backup for node A2 and A3. Once A2 and
A3 fail simultaneously and A1 detects failure of
them, it moves to repair the one that is detected
first. Therefore, none of the surviving nodes is
responsible for tolerating the failure of the other
critical failed node and network not recovered.
Also, Fig. 7(b) shows the scenario that critical
node and its backup are failed simultaneously. In
this section, we propose an algorithm to improve
DLA-BuS for Recovery partitioned network from
Multiple Failure used Distributed learning Au-
tomata (DLA-MRF). DLA-MRF like DLA-BuS
is a hybrid approach, but the criteria for backup
selection and recovery are different. The details
of the backup selection and recovery procedure
are described later in this section.

5.1 Backup Selection

DLA-MRF uses distributed learning automata
for backup selection the same as DLA-BuS that
described in section 4. However, it has more than
one backup for each critical node. Once a node is
identified as critical, the LA which is resident on
the node, is activated. In each iteration of learn-
ing process, neighbors are prioritized from 1 to
k according to automatas action probability vec-
tor. The neighbor node associated with the most
probability is selected as backup. If two nodes
have the same probability, the node with bigger
ID will have higher priority.

5.2 Failure detection and recovery

In DLA-MRF, neighbors exchange heartbeat
messages to monitor critical nodes. In our pro-
posed scheme when any heartbeat message is re-
ceived from Si then, Si neighbor nodes assume
it is failed and initiates the recovery procedure.
Here, backup node moves toward the location
of the failed node. Once it reaches the loca-
tion, broadcast DONE RECOVERY message to
inform all neighboring nodes from accomplished
recovery process. DLA-MRF uses a timer to pre-
vent neighbors from simultaneous recovery pro-

cess executions. Actually, after failure detection
each neighbor node checks its priority and waits
T×(k−1) seconds (k is nodes priority). If DONE
RECOVERY message is not received after wait-
ing time, then that node moves toward the loca-
tion of the failed node. T is calculated by Eq.
(5.11).

T = 2
LHB

R
+

dmax

s
(5.11)

According to Eq. (5.11) LHB is the length of
Heartbeat packets in bits, R is heartbeat packet
rate in bit per second, dmax is the longest dis-
tance between two neighboring nodes, and s is
movement speed of mobile node. In other word,
T is proportional to round-trip time of a heart-
beat packet (time of failure detection) and time
taken by the actor for moving towards location
of failed node (moving time). Transmission delay
and propagation delay is assumed to be negligi-
ble. Fig. 8 depicts the flowchart of DLA-MRF
algorithm.

6 Performance analysis of DLA-
BuS and DLA-MRF

In two next sub-sections, we will present simula-
tion setup and performance metrics of DLA-BuS
and DLA-MRF, respectively.

6.1 Experiment 1: Simulation setup
and performance metrics of DLA-
BuS

Inter-actor topologies consist of a varying number
of nodes are considered in this set of experiments.
The goal of the simulations is to study the per-
formance of the purposed approach compared to
DCR, RIM, PADRA, and DARA. The compar-
isons are evaluated on Castalia 3.2, a simulator
for wireless sensor networks that is based on the
OMNeT++ platform. Castalia allows to realisti-
cally modeling the sensor nodes as well as wire-
less channel. The radio device is accurately mod-
eled having different radio states with individual
energy consumptions and transition times. The
wireless channel uses an advanced path loss model
that is based on experiments and calculates the
packet probability using a signal to interference-
plus-noise ratio (SINR) model. As radio model
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the TI CC2420 transceiver is used. It is designed
for low-power and low-voltage wireless applica-
tions. The energy consumption for receiving and
idle listening is 62 mW, whereas the transmission
cost is 57 mW (0 dBm). For duty cycling the
radio is put into the power down mode, decreas-
ing the power consumption to 0.072 mW. The
initial energy is set at 18720 joule. Also, a sim-
ple CSMA/CA Mac protocol is used. Nodes are
randomly deployed in an area of 10001000 square
meter with no obstacles that hinders a node from
moving to a new position. We have varied the
transmission range of actors between 50 and 200
m so that the topology becomes strongly con-
nected. In what follows the outcome of simula-
tion results conducted for evaluation of methods
are presented:
Number of nodes moved : this metric shows the
number of nodes that are involved in recovery
procedure. Number of moving nodes is a function
of energy consumption in the network (i.e. net-
work lifetime). More energy will be consumed, if
more nodes move in the network. Fig.9 shows the
number of moving nodes in DLA-BuS in compar-
ison with the four algorithms DCR, DARA, RIM
and PADRA. This is because in our proposed ap-
proach learning automata learn which neighbor
causes the least relocation in the network and
limits the region of recovery after selecting the
nearby none-critical node as backup. In contrast
to DLA-BuS in which just the backup node moves
to restore the connectivity, in reactive methods
such as RIM and DARA all neighboring nodes
participate in the recovery process and hence,
the number of moving nodes increases. Further-
more, the performance of DLA-BuS remains al-
most constant with varying the number of the
nodes, which implies scalability in the large scale
networks. Fig. 9(b) captures the impact of the
node movement as a function of nodes radio range
variations for the network of 50 nodes. As nodes
radio range increases, the number of traveling
nodes decreases and becomes almost constant in
all approaches as it is expected. However, DLA-
BuS further reduces the number of the partici-
pated nodes for the recovery as explained earlier.
Total distance moved : This metric demonstrates
the total distance travelled by involved nodes un-
til the connectivity is restored. Fig. 10 shows the

distance traveled by all nodes in DLA-BuS via
DCR, RIM, PADRA and DARA. As observed,
nodes traveled less distance than the other ap-
proaches in DLA-BuS. Total distance is directly
related to the number of nodes moved. As both
Figs indicate, performance of DLA-BuS remains
almost constant even with higher network den-
sities and longer transmission ranges. Message
passing overhead : this metric reports the mes-
saging overhead as a function of the network size
and nodes radio ranges. fig. 11 shows message
passing overhead in DLA-BuS. As it can be ob-
served in the figure, the resultant overhead of
DLA-BuS is less than the methods which use 2-
hop neighbors information such as PADRA and
DARA. However, DLA-BuS leads to more mas-
saging overhead compared to RIM and DCR due
to exchange of control messages among LAs. In
other words, in connectivity restoration methods,
nodes have to exchange their neighborhood tables
with each other. Therefore, in some approaches
like PADRA and DARA that use 2-hop neigh-
borhood information, nodes have to exchange too
much volume of data in order to select backup
node.
Coverage reduction: Another metric to evaluate
the connectivity restoration ideas is the percent-
age of coverage reduction with respect to prior of
failure. This metric assesses the effectiveness of
the proposed approaches in terms of mitigating
the coverage loss. Although, connectivity is the
main objective of these approaches, the network
coverage is also vital for many real-time appli-
cations. It is calculated regarding the changes
in nodes position (area coverage) as compared to
the original positions. Figure 12 shows the reduc-
tion of coverage relative to pre-failure level as the
function of number of involved nodes in the re-
covery process. Again, DLA-BuS provides better
results over DARA, PADRA, RIM and DCR due
to small changes in the position of the nodes by
selecting nearby backup.
Energy Consumption: Fig. 13 demonstrates the
total energy consumption in the given network
as a function of network density and nodes radio
ranges. In connectivity restoration algorithms,
energy consumption of nodes is affected by two
factors: first, movement overhead and the second
is message passing overhead. Movement overhead
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is directly related to the number of cascade re-
locations. In other words, nodes consume con-
siderable energy to move from one point to an-
other. From Fig. 13, it is obvious that DLA-BuS
compared to other approaches consumes less en-
ergy once the network size is increased. Although,
DLA-BuS leads to more messaging overhead than
DCR and RIM, regarding less relocations (see
Fig. 9) DLA-BuS decreases total investigated en-
ergy than DCR, RIM, DARA and PADRA and
hence, increases the network life time.

6.2 Experiment 2: simulation setup
and performance metrics of DLA-
MRF

We use Castalia simulator and the same simula-
tion setup to evaluate the performance of DLA-
MRF. Transmission delay and propagation delay
are assumed to be negligible. Other simulation
parameters are shown in fig 14. For more ac-
curacy, we run codes 10 times with 10 different
topologies. Each time after identifying critical ac-
tors, we choose two adjacent cut-vertices at ran-
dom to be failed simultaneously.
Fig. 15 (a) shows a comparison of message pass-
ing overhead in RAM and DLA. Similarly, Fig.
15 (b) shows a comparison of energy consump-
tion in RAM and DLA via number of nodes. As
it can be seen it is obvious that DLA-MRF has
more residual energy than RAM due to the se-
lection of the nearby suitable neighbor node with
balanced energy consumption in the network dur-
ing its movement. Also, because of distributed
manner, DLA-MRF is sutible for large scale net-
work and its energy consumption results has less
variasions than RAM. Although, DLA-MRF uses
distributed learning automata with more message
passing overhead, it is noticible that it has less
relocation and momvent overhead reducing the
consumption energy.
Increasing the network density causes that nodess
degree increases and hence, the number of critical
nodes reduces. Therfore, the total number of re-
placements and total distance traveled by nodes
are decreased. In other words, the availability of
non-critical nodes reduces the region of cascaded
relocations. Fig. 16 and 17 show results of em-
ploying DLA-MRF. DLA-MRF has better perfor-
mance than RAM for two following reasons:

1. DLA-MRF utilizes distributed learning au-
tomata with more accuracy to choose appropriate
backup.
2. In RAM a backup node must be aware of its
grand primary node.
For example, if A is selected as backup of B and
B is backup of C, A should be aware of C to re-
cover network in case of simultaneously failures of
B and C. In this idea, A should repair failure of
two nodes and hence, A consumes more energy
decreasing network lifetime. In contrast, DLA-
MRF prioritizes neighbors and uses all neigh-
bor nodes to repair the partitioned network and
hence, it provides uniform energy consumption in
the network increasesing its lifetime.

7 Conclusion

In this paper, a distributed hybrid approach
using Distributed Learning Automata was pro-
posed to restore connectivity of a partitioned net-
work. DLA-BuS selects a suitable neighbor as
backup for critical node, and then utilizes cas-
cade relocations during the recovery process in-
stead of moving a complete block of nodes. Af-
terwards, we presented DLA-MRF for recovering
the network from failure of two adjacent nodes.
The performance of DLA-BuS and DLA-MRF
were validated through extensive Castalia sim-
ulations. Simulation results have confirmed the
performance of our approaches in term of move-
ment overhead and consumed energy. Also, DLA-
MRF balances the energy consumption of the
network nodes to further enhance the network
lifetime. DLA-BuS and DLA-MRF have differ-
ent goals. Employing of them would highly de-
pend on the application requirements. For exam-
ple, in a highly risk environment such as a war
zone, RAM would be better suited since simulta-
neous failure of adjacent nodes may normally take
place. Generally, simultaneous node failures are
very challenging since a part of the deployment
area is subject to a major hazardous event (e.g.,
hit by a bomb). In the future, we plan to extend
our approach to recover the partitioned network
from k adjacent simultaneous nodes failures. An-
other plan that we will focus on is to evaluate
the performance of the proposed approaches in a
network of robots experimentally.
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