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Abstract

In the present paper, by considering the notion of ideals inMV -algebras, we study some kinds of ideals
in MV -algebras and obtain some results on them. For example, we present definition of ultra ideal
in MV -algebras, and we get some results on it. In fact, by definition of ultra ideals, we present new
conditions to have prime ideals, positive implicative ideals and maximal ideals in MV -algebras. Also,
we state some properties on contracted or extended ideals as useful examples of ideals inMV -algebras.
Finally, we try to prove the Chines reminder theorem in MV -algebras.
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1 Introduction

MV
-algebras were defined by C. C. Chang
[3, 4] as algebras corresponding to the

Lukasiewicz infinite valued propositional calcu-
lus. These algebras have appeared in the lit-
erature under different names and polynomially
equivalent presentation: CN -algebras, Wajsberg
algebras, bounded commutative BCK-algebras
and bricks. It is discovered that MV -algebras
are naturally related to the Murray-von Neu-
mann order of projections in operator algebras
on Hilbert spaces and that they play an inter-
esting role as invariants of approximately finite-
dimensional C∗-algebras. They are also naturally
related to Ulam

,
s searching games with lies. MV -
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algebras admit a natural lattice reduct and hence
a natural order structure. In particular, empha-
sis has been put the ideal theory of MV -algebras
[8, 11]. Hoo, Iseki and Tanaka introduced the
notions of implicative and quasi-implicative ide-
als of MV -algebras [12, 13]. Many important
properties can be derived from the fact, estab-
lished by Chang that nontrivial MV -algebras are
subdirect products of MV -chains, that is, to-
tally ordered MV -algebras. To prove this fun-
damental result, Chang introduced the notion of
prime ideal in an MV -algebra. Recently, some
reasearchers worked on MV -algebras and ideals
in them (see [2, 10, 17, 18, 19]). For continuing of
study of ideals in MV -algebras, we present def-
inition of ultra ideal in MV -algebras and verify
the relationship between it and some other ideals.
Also, we introduce contraction and extension of
an ideal in MV -algebras and we get related re-
sults.
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2 Preliminaries

In this section, we review some definitions and re-
lated lemmas and theorems in MV -algebras that
we use in the next sections.

Definition 2.1 [5] An MV-algebra is a structure
M = (M,⊕,′ , 0) of type (2, 1, 0) such that:

(MV 1) (M,⊕, 0) is an Abelian monoid,
(MV 2) (a′)′ = a,
(MV 3) 0′ ⊕ a = 0′,
(MV 4) (a′ ⊕ b)′ ⊕ b = (b′ ⊕ a)′ ⊕ a,
If we define the constant 1 = 0′ and operations ⊙
and ⊖ by a⊙ b = (a′ ⊕ b′)′, a⊖ b = a⊙ b′, then
(MV 5) (a⊕ b) = (a′ ⊙ b′)′,
(MV 6) a⊕ 1 = 1,
(MV 7) (a⊖ b)⊕ b = (b⊖ a)⊕ a,
(MV 8) a⊕ a′ = 1,
for every a, b ∈ M .
It is clear that (M,⊙, 1) is an Abelian monoid.
Now, if we define auxiliary operations ∨ and ∧ on
M by a∨b = (a⊙b′)⊕b and a∧b = a⊙(a′⊕b), for
every a, b ∈ M , then (M,∨,∧, 0) is a bounded dis-
tributive lattice. An MV -algebra M is a Boolean
algebra if and only if the operation “⊕ ” is idem-
potent, i.e., x⊕ x = x, for every x ∈ M . In MV -
algebra M , the following conditions are equiv-
alent: (i) a′ ⊕ b = 1, (ii) a ⊙ b′ = 0, (iii)
b = a ⊕ (b ⊖ a), (iv) there exists c ∈ M such
that a⊕ c = b, for every a, b, c ∈ M . For any two
elements a, b of MV -algebra M , a ≤ b if and only
if a, b satisfy in the above equivalent conditions
(i)− (iv). An ideal of MV -algebra M is a subset
I of M , satisfying the following condition: (I1)
0 ∈ I, (I2) x ≤ y and y ∈ I imply that x ∈ I, (I3)
x⊕ y ∈ I, for every x, y ∈ I. Let I be an ideal of
M and I ̸= M (we say I is a proper ideal of M) .
Then (i) I is a prime ideal if and only if x⊖y ∈ I
or y ⊖ x ∈ I, for every x, y ∈ M . A proper ideal
I of M is a maximal ideal of M if and only if
no proper ideal of M strictly contains I. In MV -
algebraM , the distance function d : M×M → M
is defined by d(x, y) = (x⊖y)⊕(y⊖x) which sat-
isfies (i) d(x, y) = 0 if and only if x = y, (ii)
d(x, y) = d(y, x), (iii) d(x, z) ≤ d(x, y) ⊕ d(y, z),
(iv) d(x, y) = d(x′, y′), (v) d(x ⊕ z, y ⊕ t) ≤
d(x, y) ⊕ d(z, t), for every x, y, z, t ∈ M . Let I
be an ideal of MV -algebra M . Then we denote
x ∼ y (x ≡I y) if and only if d(x, y) ∈ I, for every
x, y ∈ M . So ∼ is a congruence relation on M .

Denote the equivalence class containing x by x
I

and M
I = {x

I : x ∈ M}. Then (MI ,⊕,′ , 0I ) is an

MV -algebra, where (xI )
′ = x′

I and x
I ⊕ y

I = x⊕y
I ,

for all x, y ∈ M . Let M and K be two MV -
algebras. A mapping f : M → K is called
an MV -homomorphism if (H1) f(0) = 0, (H2)
f(x⊕ y) = f(x)⊕ f(y) and (H3) f(x′) = (f(x))′,
for every x, y ∈ M . If f is one to one (onto),
then f is called an MV -monomorphism (epimor-
phism). If f is onto and one to one, then f is
called an MV -isomorphism.(see [5])

Definition 2.2 [6, 9] (i) An l-group is an alge-
bra (G,+,−, 0,∨,∧), where the following proper-
ties hold:

(a) (G,+,−, 0) is a group,
(b) (G,∨,∧) is a lattice,
(c) x ≤ y implies that x + a ≤ y + a, for any
x, y, a, b ∈ G.
A strong unit u > 0 is a positive element with
property that for any g ∈ G there exits n ∈ ω
such that g ≤ nu. The Abelian l-groups with
strong unit will be simply called lu-groups.
The category whose objects areMV -algebras and
whose homomorphisms are MV -homomorphisms
is denoted by MV. The category whose objects
are pairs (G, u), where G is an Abelian l-group
and u is a strong unit of G and whose homomor-
phisms are l-group homomorphisms is denoted by
UG. The functor that establishes the categorial
equivalence between MV and UG is

Γ : UG −→ MV,

where Γ(G, u) = [0, u]G, for every lu-group (G, u)
and Γ(h) = h|[0,u], for every lu-group homomor-
phism h.

Lemma 2.1 [5] Let M be an MV -algebra. Then
x ≤ y implies that x⊙z ≤ y⊙z and x⊕z ≤ y⊕z,
for every x, y, z ∈ M .

Definition 2.3 [15] A BCK-algebra is a struc-
ture X = (X, ∗, 0) of type (2, 0) such that:

(BCK1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(BCK2) (x ∗ (x ∗ y)) ∗ y = 0,
(BCK3) x ∗ x = 0,
(BCK4) 0 ∗ x = 0,
(BCK5) if x ∗ y = y ∗ x = 0, then x = y, for all
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x, y, z ∈ X.
The relation x ≤ y which is defined by x ∗ y = 0
is a partial order on X with 0 as least element.
In BCK-algebra X, for any x, y, z ∈ X, we have
(BCK6) (x ∗ y) ∗ z = (x ∗ z) ∗ y.
Let (X, ∗, 0) be a BCK-algebra. Subset ∅ ̸= I ⊆
X is called an ideal of X, if 0 ∈ I and for any
x, y ∈ X, x ∗ y ∈ I and y ∈ I, imply that x ∈ I.
A nonempty subset I of X is said to be a positive
implicative ideal if 0 ∈ I and (x ∗ y) ∗ z ∈ I,
y ∗ z ∈ I imply that x ∗ z ∈ I, for any x, y, z ∈ X.
Furthermore, any positive implicative ideal must
be an ideal. see [15]

Theorem 2.1 [5] If (M,⊕,′ , 0, 1) is an MV -
algebra, then (M,⊖, 0) is a BCK-algebra.

Corollary 2.1 [5] (i) Every prime ideal I of an
MV -algebra M is contained in a unique maximal
ideal of M .
(ii) Every proper ideal of an MV -algebra M is
an intersection of prime ideals of M .

Lemma 2.2 [5] Let M be an MV -algebra and
∅ ̸= W ⊆ M . If the generated ideal by W is
denoted by ≺ W ≻, then ≺ W ≻= {x ∈ M : x ≤
w1 ⊕ · · · ⊕ wn, for some w1, · · · , wn ∈ W}.

Proposition 2.1 [5] Let M,N be MV -algebras
and J be a maximal ideal of N . Then for any
homomorphism h : M −→ N , the inverse image
h−1(J) is a maximal ideal of M .

Lemma 2.3 [5] Let M,N be two MV -algebras
and f : M → N be an MV - homomorphism.
Then the following properties hold:
(i) Ker(f) is an ideal of M ,
(ii) if f is an MV -epimorphism, then M

Kerf
∼= N ,

(iii) f(x) ≤ f(y) iff x⊖ y ∈ Ker(f),
(iv) f is injective iff Ker(f) = {0}.

Definition 2.4 [6] A product MV -algebra (or
PMV -algebra, for short) is a structure A =
(A,⊕, .,′ , 0), where (A,⊕,′ , 0) is an MV -algebra
and “.” is a binary associative operation on A
such that the following property is satisfied: if
x + y is defined, then x.z + y.z and z.x + z.y
are defined and (x+ y).z = x.z+ y.z, z.(x+ y) =
z.x+ z.y, for every x, y, z ∈ A, where “+” is the
partial addition on A. A unity for the product

is an element e ∈ A such that e.x = x.e = x,
for every x ∈ A. If A has a unity for prod-
uct, then e = 1. A PMV -homomorphism is an
MV -homomorphism which also commutes with
the product operation.

3 Some results on ideals

In this section, we verify some results on ideals.

Proposition 3.1 Let M be an MV algebra and
I ⊆ M . Then
(1) I is an ideal of M if and only if the following
holds:
(i) 0 ∈ I,
(ii) x⊕ y ∈ I,
(iii) if x⊖y, y ∈ I, then x ∈ I, for any x, y ∈ M .
(2) I is an ideal of M if and only if the following
holds:
(i) 0 ∈ I,
(ii) x⊕ y ∈ I,
(iii) if z ⊖ y, y ⊖ x ∈ I, then z ⊖ x ∈ I, for any
x, y, z ∈ M .

Proof. (1) (⇒) Let I be an ideal of M . Then (i)
and (ii) are clear. Now, let x ⊖ y, y ∈ I. Then
by (ii) and (MV 7), (y⊖x)⊕x = (x⊖ y)⊕ y ∈ I.
Since x ≤ (y ⊖ x)⊕ x ∈ I, we have x ∈ I.
(⇐) Let (i), (ii) and (iii) be true. If x ≤ y and
y ∈ I, then x ⊖ y = x ⊙ y′ = 0 ∈ I and so by
(iii), x ∈ I. Hence, I is an ideal of M .

(2) (⇒) Let I be an ideal of M . Then (i)
and (ii) are clear. Now, let z ⊖ y, y ⊖ x ∈ I,
for any x, y, z ∈ M . Then by Theorem 2.1 and
(BCK1), ((z ⊖ x) ⊖ (z ⊖ y)) ⊖ (y ⊖ x) = 0 and
so by (1), (z ⊖ x) ∈ I.
(⇐) Let (i), (ii) and (iii) be true. If x ≤ y
and y ∈ I, then x ⊖ y = x ⊙ y′ = 0 ∈ I. Since
y ⊖ 0 = y ∈ I, by (iii), x = x ⊖ 0 ∈ I. Hence, I
is an ideal of M .

Theorem 3.1 Let J be an ideal of MV -algebra
M and a ∈ M . Then

≺ J ∪ {a} ≻= {x ∈ M : ∃n ∈ N, (x′ ⊕ na)′ ∈ J}.

Moreover, ≺ J ∪ {a} ≻ is the least ideal of M
containing J ∪ {a}.

Proof. Let T = {x ∈ M : ∃n ∈ N, (x′ ⊕ na)′ ∈
J}. If x ∈≺ J ∪ {a} ≻, then by Lemma 2.2,
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there exist b1, · · · , bm ∈ J ∪ {a} such that x ≤
b1⊕b2⊕· · ·⊕bm and so x⊙(b1⊕b2⊕· · ·⊕bm)′ = 0.
It means that ((x ⊖ b1) ⊖ b2) ⊖ · · ·) ⊖ bm = 0 ∈
J . We consider two cases. Let bi ̸= a, for any
1 ≤ i ≤ m. Then by Theorem 2.1 and (BCK6),
(((x ⊖ a) ⊖ b1) ⊖ b2) ⊖ · · ·) ⊖ bm = (((x ⊖ b1) ⊖
b2) ⊖ · · ·) ⊖ bm) ⊖ a = 0 ⊖ a = 0 ∈ J. Since
b1, · · · , bm ∈ J , we have x⊖ a ∈ J and so x ∈ T .
If there exists bi = a, for some 1 ≤ i ≤ m, then by
renumbering, there exist n, k ∈ N and n, k < m
such that (((x′ ⊕ na)′ ⊖ b1) ⊖ · · ·) ⊖ bk = 0 ∈ J .
It results that (x′ ⊕ na)′ ∈ J and so x ∈ T . Now,
let x ∈ T . Then there exists n ∈ N such that
(x′⊕na)′ ∈ J . Let u = (x′⊕na)′. Then u ∈ J and
(x′⊕na)′⊖u = u⊖u = 0. Hence, x ∈≺ J∪{a} ≻.
Finally, we will show that ≺ J∪{a} ≻ is the least
ideal of M containing J ∪ {a}. Let C be an ideal
of M containing J ∪ {a}. We must show that ≺
J∪{a} ≻⊆ C. Let x ∈≺ J∪{a} ≻. Then there is
n ∈ N such that (x′⊕na)′ ∈ J ⊆ C. Since a ∈ C,
we have (x′⊕na)′⊕na ∈ C. Now, by (MV 4), we
have x ≤ (x⊕(na)′)′⊕x = (x′⊕na)′⊕na ∈ C. It
results that x ∈ C. Therefore, ≺ J ∪ {a} ≻⊆ C.

Proposition 3.2 Let a, b ∈ M and J be an ideal
of M . Then ≺ J ∪ {a} ≻ ∩ ≺ J ∪ {b} ≻⊆≺
J ∪ {a⊕ b} ≻.

Proof. Let x ∈≺ J ∪ {a} ≻ ∩ ≺ J ∪ {b} ≻.
Then by Theorem 3.1, there exist m,n ∈ N such
that (x′ ⊕ na)′ ∈ J and (x′ ⊕ mb)′ ∈ J . Let
u = (x′ ⊕ na)′ and v = (x′ ⊕ma)′. By Theorem
2.1 and (BCK6), we have

(((x⊖ u)⊖ v)′ ⊕ na)′ = ((x⊖ u)⊖ v)⊖ na

= ((x⊖ u)⊖ na)⊖ v

= ((x⊖ na)⊖ u)⊖ v

= ((x′ ⊕ na)′ ⊖ u)⊖ v

= (u⊖ u)⊖ v = 0.

Similarly, we have ((x ⊖ u) ⊖ v)′ ⊕ mb)′ =
((x′ ⊕ mb)′ ⊖ v) ⊖ u = (v ⊖ v) ⊖ u = 0.
Let t = (x ⊖ u) ⊖ v. We have a ≤ a ⊕ b.
Then by Lemma 2.1, t ⊖ (a ⊕ b) ≤ t ⊖ a and
(t ⊖ (a ⊕ b)) ⊖ (a ⊕ b) ≤ (t ⊖ a) ⊖ (a ⊕ b) =
(t ⊖ (a ⊕ b)) ⊖ a ≤ (t ⊖ a) ⊖ a. Hence,
(t⊖ (a⊕ b))⊖ (a⊕ b) ≤ (t⊖ a)⊖ a. Similarly, it
results that (t′⊕n(a⊕b))′ ≤ (t′⊕na)′ = 0 and so
(((x⊖u)⊖ v)′⊕n(a⊕ b))′ = 0. It is easy to show
that ((x′⊕n(a⊕b))′⊖u)⊖v = 0. Since u, v ∈ J , by

Proposition 3.1(1), we get (x′⊕n(a⊕b))′ ∈ J and
so by Theorem 3.1, x ∈≺ J ∪ {a ⊕ b} ≻. There-
fore, ≺ J ∪{a} ≻ ∩ ≺ J ∪{b} ≻⊆≺ J ∪{a⊕b} ≻.

Notation: In general, the converse of Proposi-
tion 3.2, is not true.

Example 3.1 Let M = {0, 1, 2, 3} and operation
“⊕ ” is defined on M as follows:

⊕ 0 1 2 3

0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

If 0′ = 3, 1′ = 2, 2′ = 1 and 3′ = 0, then
(M,⊕, 0, 3) is an MV -algebra and I = {0, 1}
is an ideal of M . It is easy to show that ≺
I ∪ {1⊕ 2} ≻=≺ I ∪ {3} ≻= {x : ∃n ∈ N, (x′ ⊕
n3)′ ∈ I} = {0, 1, 2, 3}, ≺ I ∪ {1} ≻= {0, 1}
and ≺ I ∪ {2} ≻= {0, 1, 2, 3}. It results that
≺ I ∪ {1⊕ 2} ≻⊈≺ I ∪ {1} ≻ ∩ ≺ I ∪ {2} ≻.

4 Ultra ideals

In this section, we present definition of ultra ide-
als in MV -algebras. Then we verify some prop-
erties about them, and we obtain the relationship
between ultra ideals and some other ideals.

Definition 4.1 Let M be an MV -algebra and I
be a non trivial ideal of M . Then I is called an
ultra ideal of M if for every x ∈ M , x ∈ I if and
only if x′ /∈ I.

Example 4.1 Let M = {0, 1, 2, 3, 4} and the op-
eration “⊕ ” on M is defined as follows:

⊕ 0 1 2 3 4

0 0 1 2 3 4
1 0 1 2 3 4
2 2 2 2 4 4
3 3 3 4 3 4
4 4 4 4 4 4

If 0′ = 4, 1′ = 4, 2′ = 3, 3′ = 2 and 4′ = 0, then
(M,⊕, 0, 4) is an MV -algebra and I = {0, 1, 2},
J = {0, 1, 3} and K = {0, 1} are ideals of M . It
is easy to show that I, J are ultra ideals of M .
Since 2′ = 3 /∈ K and 2 /∈ K, K is not an ultra
ideal of M .
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Theorem 4.1 Let I be an ultra ideal of MV -
algebra M , J be a proper ideal of M and I ⊆ J .
Then J is an ultra ideal of M , too.

Proof. Let x ∈ J . If x′ ∈ J , then by (I3),
1 = x⊕x′ ∈ J , which is a contradiction. Now, let
x′ /∈ J . If x /∈ J , then x /∈ I and so x′ ∈ I ⊆ J ,
which is a contradiction.

By Theorem 2.1, in MV -algebra (M,⊕,′ , 0, 1),
if I is an ideal of BCK-algebra (M,⊖, 0) and it
satisfies in (I3), then I is an ideal of MV -algebra
(M,⊕,′ , 0, 1), too. Hence, in this case, definition
of positive implicative ideals in BCK-algebras
can be translated to MV -algebras. Then we
can present the definition of positive implicative
ideals in MV -algebras as follows:
let M be an MV -algebra and ∅ ̸= I ⊆ M . Then
I is called a positive implicative ideal of M if the
following hold: (i) 0 ∈ I, (ii) x ⊕ y ∈ I, (iii) if
(x⊖ y)⊖ z ∈ I and y⊖ z ∈ I, then x⊖ z ∈ I, for
any x, y, z ∈ M . Also, in this field, all of proved
theorems of ideals in BCK-algebras are true in
MV -algebras.

Example 4.2 (i) Let M = {0, 1, 2} and opera-
tion ⊕ be defined by

⊕ 0 1 2

0 0 1 2
1 1 1 2
2 0 2 2

If 0′ = 2, 1′ = 1 and 2′ = 0, then (M,⊕,′ , 0, 2) is
an MV -algebra. It is easy to show that I = {0, 1}
is a positive implicative ideal of M .
(ii) In Example 4.1, K is a positive implicative
ideal of M .
(iii) Let M2(R) be the ring of square matrixes of
order 2 with real elements and let 0 be the matrix
with all elements 0. It is easy to see that M2(R) is

an l-group. If v =

(
1
2

1
2

1
2

1
2

)
, then (M2(R), v) is

an lu-group and so M = Γ(M2(R), v) is an MV -
algebra. It is easy to see that I(M) = {{0},M},
where I(M) is the set of ideals of M . It is easy
to see that {0} is not a positive implicative ideal
of M .

In following, we verify the relationship between
ultra ideals and positive implicative (prime) ide-
als.

Theorem 4.2 Let I be an ultra ideal of M .
Then
(i) I is a positive implicative ideal of M ,
(ii) I is a prime ideal of M .

Proof. (i) Let (z ⊖ y)⊖ x ∈ I, y ⊖ x ∈ I, where
x, y, z ∈ M . We must show that z ⊖ x ∈ I. Let
z⊖x /∈ I. Then (z⊖x)′ ∈ I. Since x⊖ (z⊖x)′ =
x⊙ (z ⊖ x) = x⊙ (z ⊙ x′) = 0 ∈ I, we get x ∈ I.
Now, since y ⊖ x, x ∈ I, we have y ∈ I. On the
other hand, by Theorem 2.1 and (BCK6), since
(z ⊖ x)⊖ y = (z ⊖ y)⊖ x ∈ I, we have z ⊖ x ∈ I,
which is a contradiction. Therefore, I is a positive
implicative ideal of M .
(ii) If I is not a prime ideal of M , then there exist
x, y ∈ M such that x⊖y /∈ I and y⊖x /∈ I. Since
I is an ultra ideal of M , we have (x ⊖ y)′ ∈ I
and (y ⊖ x)′ ∈ I. Then 1 = (x′ ⊕ y)⊕ (y′ ⊕ x) =
(x ⊖ y)′ ⊕ (y ⊖ x)′ ∈ I, which is a contradiction.
Therefore, I is a prime ideal of M .

Example 4.3 (i) In Example 4.1, K is a posi-
tive implicative ideal, but it is not an ultra ideal.
(ii) In example 4.2 (i), {0} is a prime ideal of M ,
but it is not an ultra ideal of M .
(iii) In example 4.2 (iii), {0} is neither a posi-
tive implicative ideal of M nor an ultra ideal of
M . Also, {0} is not a prime ideal of M .

Definition 4.2 Let M be an MV -algebra. B ⊆
M is said to have the finite union property if a1⊕
a2 ⊕ · · · ⊕ an ̸= 1, for any a1, · · · , an ∈ B and
ai ̸= 1, where 1 ≤ i ≤ n.

Example 4.4 In Example 4.1, B = {0, 1, 2} has
finite union property, but C = {2, 3} has not fi-
nite union property (note that 2⊕ 3 = 4).

Theorem 4.3 Let M be an MV -algebra, B ⊆ A
and 1 /∈ B. Then ≺ B ≻ is a proper ideal of M
if and only if B has the finite union property.

Proof. (⇒) Let ≺ B ≻ be a proper ideal of
M and B has not the finite union property.
Then there exist a1, · · · , an ∈ B such that
a1⊕ a2⊕ · · ·⊕ an = 1. By Lemma 2.2, 1 ∈≺ B ≻
and so ≺ B ≻= M , which is a contradiction.
(⇐) Let B has the finite union property and
≺ B ≻= M . Then 1 ∈≺ B ≻ and so by
Lemma 2.2, there exist a1, · · · , an ∈ B such that
a1 ⊕ a2 ⊕ · · · ⊕ an ≥ 1, which is a contradiction.
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Note. It is easy to see that every non
trivial ideal of an MV -algebra has the finite
union property. The proof is similar to the proof
of Theorem 4.3 (⇒).

Lemma 4.1 Let M be an MV -algebra, x ∈ M
and I be an ideal of M such that I have the finite
union property. If x /∈ I and x′ /∈ I, then I ∪ {x}
has the finite union property.

Proof. Let B = I ∪ {x}. We will show that
b1 ⊕ b2 · · · ⊕ bn ̸= 1, for any b1, · · · , bn ∈ B and
bi ̸= 1. If b1, · · · , bn ∈ I, then the proof is clear.
If W. O. L. G, b1 = x and b1⊕ b2 · · · ⊕ bn = 1, for
some b1, · · · , bn ∈ B, then (x′⊙ (b2⊕· · ·⊕bn)

′)′ =
x⊕ b2 · · · ⊕ bn = 1 and so
x′⊖ (b2⊕ · · · ⊕ bn) = x′⊙ (b2⊕ · · · ⊕ bn)

′ = 0 ∈ I.
Since b2 ⊕ · · · ⊕ bn ∈ I, by Proposition 3.1(1), we
have x′ ∈ I, which is a contradiction. Therefore,
b1 ⊕ b2 · · · ⊕ bn ̸= 1, for any b1, · · · , bn ∈ B and so
I ∪ {x} has the finite union property.

Theorem 4.4 Let M be an MV -algebra and I ⊆
M . Then I is an ultra ideal of M if and only if
I is a non trivial maximal ideal of M .

Proof. (⇒) Let I be an ultra ideal of M , and I
is not a maximal ideal of M . Then there exists
a proper ideal J of M such that I ⊊ J and so
there exists x ∈ J such that x /∈ I. It results that
x′ ∈ I and so x′ ∈ J . Since 1 ⊖ x = 1 ⊙ x′ =
(0⊕x′)′ = x′ ∈ J and x ∈ J , we get 1 ∈ J , which
is a contradiction.
(⇐) Let I be a maximal ideal of M . If x ∈ I and
x′ ∈ I, for some x ∈ M , then 1 ∈ I, which is a
contradiction. Hence, x ∈ I implies that x′ /∈ I.
Now, let there exists x ∈ A such that x′ /∈ I and
x /∈ I. Consider B = I ∪ {x}. Then by Lemma
4.1, B has the finite union property. Hence, by
Theorem 4.3, ≺ B ≻ is a proper ideal ofM , which
is a contradiction. Because, I ⊂≺ B ≻⊂ M and
I is a maximal ideal of M . Hence, x′ /∈ I implies
that x ∈ I. Therefore, I is an ultra ideal of M .

Lemma 4.2 Let M be an MV -algebra and I ⊆
M . If I has the finite union property, then there
exists an ultra ideal B of M such that I ⊆ B.

Proof. Let E = {B : I ⊆
B, where B is a proper ideal of M}. Since I
has the finite union property, by Theorem 4.3,

≺ I ≻ is a proper ideal of M . Since I ⊆≺ I ≻, we
have ≺ I ≻∈ E and so E ̸= ∅. Let F = {Bi}i∈N
be a chain in E and B1 =

∪
i∈NBi. Since B1 is

an upper bound of F in E and B1 is an ideal of
M , B1 ∈ E. Hence, by Zorn’s lemma, E has a
maximal element B and so by Theorem 4.4, B is
an ultra ideal of M such that I ⊆ B.

Theorem 4.5 Any proper ideal in MV -algebra
M , contained at least one ultra ideal.

Proof. Let I be a proper ideal of M . Since
I =≺ I ≻, by Theorem 4.3, I has the finite union
property and so by Lemma 4.2, there exists an
ultra ideal B of M such that I ⊆ B.

5 Contraction and Extension of
ideals in MV -algebras

In this section, we verify some properties on con-
tracted or extended ideals as useful examples of
ideals in MV -algebras. Also, we try to prove the
Chines reminder theorem in MV -algebras.
Remark: Let M,N be MV -algebras, f : M −→
N be an MV -homomorphism, I ⊆ M and J be
an ideal of N . Then we set f−1(J) = Jc and
≺ f(I) ≻= Ie. It is clear that Jc (contraction of
J) is an ideal of M and Ie (extension of I) is an
ideal of N .

Theorem 5.1 Let M,N be MV -algebras, f :
M −→ N be an MV -homomorphism, I be an
ideal of M and J be an ideal of N . Then
(i) I ⊆ Iec,
(ii) Jce ⊆ J ,
(iii) Jc = Jcec,
(iv) Ie = Iece,
(v) If K = {I : I is an ideal of M and Iec = I},
E = {J : J is an ideal of N and Jce = J},
K ′ = {Jc : J is an ideal of N} and E′ = {Ie :
I is an ideal of M}, then K = K ′, E = E′ and
there exists an isomorphism Φ : K −→ E.

Proof.
(i) The proof is clear.
(ii) Let y ∈ Jce =≺ f(Jc) ≻. Then there exist
t1, t2, · · · , tk ∈ Jc such that y ≤ f(t1)⊕· · ·⊕f(tk)
and so y ≤ f(f−1(a1))⊕ · · · ⊕ f(f−1(ak)), where
f(ti) = ai ∈ J , for any 1 ≤ i ≤ k. It results that
y ≤ a1 ⊕ · · · ⊕ ak and so y ∈≺ J ≻= J . Hence,



S. Saidi Goraghani et al., /IJIM Vol. 12, No. 3 (2020) 205-213 211

Jce ⊆ J .
(iii) By (i), we have Jc ⊆ Jcec. We show that
Jcec ⊆ Jc, i.e., f−1(≺ f(f−1(J)) ≻) ⊆ f−1(J).
Let x ∈ Jcec. Then f(x) ∈≺ f(f−1(J)) ≻ and so
f(x) ≤ f(t1)⊕ · · · ⊕ f(tk), where ti ∈ f−1(J), for
any 1 ≤ i ≤ k. It results that f(x) ≤ a1⊕· · ·⊕ak,
where f(ti) = ai ∈ J , for any 1 ≤ i ≤ k and
so f(x) ∈≺ J ≻= J . It means that x ∈ Jc.
Therefore, Jc = Jcec.
(iv) By (ii), Iece ⊆ Ie. Let y ∈ Ie. Then there ex-
ist a1, · · · , ak ∈ I such that y ≤ f(a1)⊕· · ·⊕f(ak).
Since ai ∈ I, by (i), we have ai ∈ Iec. It means
that y ∈ Iece and so Ie ⊆ Iece.
(v) The proof is routine.

In Theorem 5.1, it is not necessary that
I = Iec or Jce = J , where I is an ideal of M and
J be an ideal of N .

Example 5.1 (i) In example 3.1, let f : M −→
M be zero homomorphism. Consider I = {0} that
is an ideal of M . We have Ie =≺ f(I) ≻= {0}
and Iec = M . Then I ̸= Iec.
(ii) In Example 3.1, let f : M −→ M be defined
by f(0) = f(1) = 0 and f(2) = f(3) = 3. It
is easy to see that f is an MV -homomorphism.
Consider J = {0} that is an ideal of M . We have
Jc = {0, 1} and Jce =≺ {0, 1} ≻= {x ∈ M : x ≤
w1 ⊕ · · · ⊕ wn, for some w1, · · · , wn ∈ {0, 1}} =
{0, 1}. Hence Jce ̸= J

Definition 5.1 [10] Let I be an ideal of MV -
algebra M . Then we set rad(I) =

∩
I⊆mm, where

m is any maximal ideal of M . Moreover, if there
is not any maximal ideal of M containing I, then
we let rad(I) = M .

Notation: By Corollary 2.1, any proper ideal
of a PMV -algebra is contained in a maximal
ideal (note that every PMV -algebra is an MV -
algebra).

Theorem 5.2 Let M,N be MV -algebras,
I1, I2, I be ideals of M , J1, J2, J be ideals of N
and f : M −→ N be an MV -homomorphism.
Then
(i) (I1 ∩ I2)

e ⊆ Ie1 ∩ Ie2 ,
(ii) (J1 ∩ J2)

c = Jc
1 ∩ Jc

2,
(iii) (I1 ⊕ I2)

e ⊆ (f(I1) ⊕ f(I2))
e, where

I1 ⊕ I2 = {a⊕ b : a ∈ I1, b ∈ I2},
(iv) (rad(I))e ⊆ rad(Ie),
(v) rad(Jc) ⊆ (rad(J))c.

Proof. (i) Let y ∈ (I1 ∩ I2)
e. Then by Lemma

2.2, there exist a1, · · · , ak ∈ I1 ∩ I2 such that
y ≤ f(a1)⊕· · ·⊕f(ak). Since ai ∈ I1 and ai ∈ I2,
we have f(ai) ∈ f(I1) and f(ai) ∈ f(I2), for any
1 ≤ i ≤ n. It results that y ∈ Ie1 ∩ Ie2 .
(ii) The proof is routine.
(iii) Let y ∈ (I1 ⊕ I2)

e. Then by Lemma 2.2,
there exist ai ⊕ bi ∈ I1 ⊕ I2, for any 1 ≤ i ≤ n
such that y ≤ f(a1 ⊕ b1) ⊕ · · · ⊕ f(an ⊕ bn) =
f(a1)⊕f(b1)⊕· · ·⊕f(an)⊕f(bn). It results that
y ∈ (f(I1)⊕ f(I2))

e.
(iv) Let y ∈ (rad(I))e =≺ f(

∩
I⊆K K ≻, where

K is every maximal ideal of M . Then there ex-
ist a1, · · · , ak ∈

∩
I⊆K K such that y ≤ f(a1) ⊕

· · ·⊕f(an). We must show that y ∈
∩

≺f(I)≻⊆L L,
where L is any maximal ideal of N containing
≺ f(I) ≻. We have ai ∈ K, for any maximal
ideal of M containing I. Then f(ai) ∈ f(K) ⊆≺
f(K) ≻. Let ≺ f(K) ≻≠ N . Then by above
Notation, f(ai) ∈ n, where L is a maximal ideal
of N containing ≺ f(K) ≻ (if ≺ f(K) ≻= N ,
then there is no maximal ideal of N containing
≺ f(K) ≻ and so by definition of 5.1, we con-
sider L = N). On the other hand, I ⊆ K implies
that ≺ f(I) ≻⊆≺ f(K) ≻⊆ L. It results that
f(ai) ∈

∩
≺f(I)≻⊆L L = rad(Ie).

(v) Let x ∈ (rad(J))c = f−1(
∩

J⊆L L), where L is
any maximal ideal of N . Then f(x) ∈

∩
J⊆L L ⊆

L and so x ∈ f−1(L) = Lc. It results that
x ∈

∩
J⊆L Lc =

∩
Jc⊆Lc Lc and so by Proposition

2.1, x ∈ rad(Jc). Hence, (rad(J))c ⊆ rad(Jc).

Lemma 5.1 Let A be a PMV -algebra. Then∑
i∈I A = A⊕A⊕ · · · ⊕A is a PMV -algebra.

Proof. We define {ai}ni=1⊕{bi}ni=1 = {ai⊕bi}ni=1,
{ai}ni=1.{bi}ni=1 = {ai.bi}ni=1 and ({ai}ni=1)

′ =
{a′i}ni=1, for every {ai}ni=1, {bi}ni=1 ∈

∑n
i=1A. It is

easy to show that (
∑n

i=1A,⊕,′ , ., {0}) is a PMV -
algebra.

Theorem 5.3 Let M be an MV -algebra and
I1, · · · , In be ideals of M . Then there exists an
MV -homomorphism Φ : M −→ M

I1

⊕
· · ·

⊕ M
In

such that
(i) Φ is an MV -monomorphism if and only if∩n

i=1 Ii = {0},
(ii) if Φ is onto, then ≺ Ii

⊕
Ij ≻= M , for any

1 ≤ i, j ≤ n, where Ii
⊕

Ij = {α⊕ β : α ∈ Ii, β ∈
Ij}.
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(iii) if y = (x1
I1
, · · · , xn

In
) ∈

∑n
i=1

M
Ii

implies that
xi ⊖

∧n
i=1 xi ∈ Ii, then ϕ is onto.

Proof. By Lemma 5.1,
∑n

i=1
M
Ii

is an
MV -algebra (note that every PMV -
algebra is an MV -algebra). We define
Φ(a) = ( a

I1
, · · · , a

In
), for any a ∈ M . It is

clear that Φ(0) = 0. It is easy to show that
Φ(a ⊕ b) = Φ(a) ⊕ Φ(b), for any a, b ∈ M . We
have Φ(a′) = ( a

′

I1
, · · · , a′

In
) = (ϕ(a))′. Hence, ϕ is

an MV -homomorphism.
(i) Let ϕ be an MV -monomorphism. Then by
Lemma 2.3(iv), Ker(ϕ) = {0}. If a ∈

∩n
i=1 Ii,

then a ∈ Ii and so d(a, 0) = a ∈ Ii, for any
1 ≤ i ≤ n. It means that a

Ii
= 0

Ii
and so

Φ(a) = ( a
I1
, · · · , a

In
) = ( 0

I1
, · · · , 0

In
) = 0. Hence,

a ∈ Ker(ϕ) = {0}. It results that
∩n

i=1 Ii = {0}.
Similarly, if

∩n
i=1 Ii = {0}, then Ker(ϕ) = {0}

and so ϕ is an MV -monomorphism.
(ii) Let ϕ be an MV -epimorphism. We show
that ≺ I1 ⊕ I2 ≻= M . Since 0, 1 ∈ M , we have
( 1
I1
, 0
I2
· · · , 0

In
) ∈

∑n
i=1

M
Ii
. Since ϕ is onto, there

exists x ∈ M such that
ϕ(x) = ( x

I1
, · · · , x

In
) = ( 1

I1
, 0
I2
· · · , 0

In
). It re-

sults that x′ = d(1, x) ∈ I1, x = d(0, x) ∈ I2
and so 1 = x′ ⊕ x ∈ I1

⊕
I2. It means that

≺ I1 ⊕ I2 ≻= M . Similarly, we can show that
≺ Ii ⊕ Ij ≻= M , for any 1 ≤ i, j ≤ n.
(iii) Let y = (x1

I1
, · · · , xn

In
) ∈

∑n
i=1

M
Ii
.

Then we consider x =
∧n

i=1 xi. Since
x ≤ xi ∈ Ii, we have x ∈ Ii. Since
d(x, xi) = (x⊖ xi)⊕ (xi ⊖ x) = 0⊕ (xi ⊖ x) ∈ Ii,
we have x

Ii
= xi

Ii
, for any 1 ≤ i ≤ n. It means

that ϕ(x) = ( x
I1
, · · · , x

In
) = (x1

I1
, · · · , xn

In
) = y.

Therefore, ϕ is an MV -epimorphism.

6 Conclusion

We obtained some new results in ideals theory
and opened new fields to anyone that is interested
to studying and development of ideals in MV -
algebras.
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