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Abstract

Since complex interval matrix have many applications in different fields of science, in this paper
interval complex matrix system as [W][Z] = [K] in which [W], [K] are n× n known interval complex
matrices and [Z] is n× n unknown interval complex matrix is studied.

Using operations on interval complex numbers and matrices and defining a theorem, two auxiliary
addition and subtraction complex systems are introduced and proved. Then, using the equality
property of two complex numbers, the auxiliary interval complex systems are transformed to real
crisp systems. Then the new system is solved and [Z] is achieved. Finally, some numerical examples
are given to illustrate the applicability and ability of the proposed approach.

Keywords : Interval linear system; Interval complex number; Matrix system; Complex number; Crisp
systems.
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1 Introduction

M
odeling of many problems in various sci-
ences leads to matrix systems. In partic-

ular, when the variables are complex interval, we
deal with interval complex matrix system. The
study of complex systems has recently been con-
sidered by the authors. [?]-[?].
Introduction of interval computations is studied
in [?]. In 1998, Petkovic considered complex in-
terval arithmetic and its applications [?]. Can-
dau and et al expressed Complex interval arith-
metic in [?] using polar form. Gay and Hladik
solved interval and complex systems ([?, ?]). Re-
cently, Behera and Chakraverty solved the fuzzy
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complex system of linear equations in [?] using
the addition and the subtraction systems. In [?],
the definition of the multiplication of the imagi-
nary interval number proposed in [?] was modi-
fied. Ghanbari in [?] expressed and corrected the
defects in [?]. Chelabi in [?] solved fuzzy dual
complex linear systems using the addition and the
subtraction systems.
In this paper, we solve the interval complex ma-
trix system using auxiliary systems (addition and
subtraction).
This paper is organized as follows: In Section 2
we present some preliminaries of interval number
and system. Interval complex matrix system of
linear equations with the proposed method are
explained in Sections 3. In Section ??, numerical
examples are presented which verify the efficiency
and applicability of the proposed method. Con-
clusion are drawn in Section ??.
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2 Basic Definitions

Definition 2.1 [?] An interval number [x] is
defined as the set of real numbers such that
[x] = [x, x] ={x′∈R : x ≤ x′ ≤ x} where x ≤
x.

Definition 2.2 (Interval arithmetic) For arbi-
trary interval numbers [x] = [x, x] and [y] = [y, y],
we define addition and multiplication by a scalar
as:

[x] + [y] = [x+y, x+y], (2.1)

λ [x] =

{
[λx,λx], if λ > 0
[λx,λx], if λ < 0

(2.2)

[x]× [y] = [min{xy, xy, xy, xy},max{xy, xy, xy, xy}] (2.3)

3 Solution of interval complex
matrix system

Definition 3.1 An arbitrary interval complex
number may be represented as X = [p] + i[q],
where [p] = [p, p] and [q] = [q, q] are interval
numbers.

Definition 3.2 (Interval complex arithmetic)
Let
X = [p, p] + i [q, q], Y = [w,w] + i [v, v], so we
have:

X+Y = [p+w, p+w] + i [q+v, q+v] (3.4)

X ∗Y = ( [p, p]× [w,w]) + i ([q, q]× [v, v] )
(3.5)

Definition 3.3 Let X = [p] + i [q]:

1. If [p] ≥ 0, [q] ≥ 0, we say X ≥ 0.

2. If [p] ≤ 0, [q] ≤ 0, we say X ≤ 0.

3. If [p] = [p, p], [q] = [q, q],
(p, q ≤ 0), (p, q ≥ 0), we say 0 ∈ X.

Definition 3.4 (W) is called interval complex
matrix if at least one of its elements is an interval
complex number.

Definition 3.5 The n× n matrix system


[w11] [w12] · · · [w1n]
[w21] [w22] · · · [w2n]

...
...

[wn1] [wn2] · · · [wnn]




[z11] [z12] · · · [z1n]
[z21] [z22] · · · [z2n]

...
...

[zn1] [zn2] · · · [znn]

=


[k11] [k12] · · · [k1n]
[k21] [k22] · · · [k2n]

...
...

[kn1] [kn2] · · · [knn]

 (3.6)

Where (W)=( [wij] )n×n& (Z)=( [zij] )n×n,
(K)=( [kij] )n×nare n× n interval complex ma-
trix, is called interval complex matrix system
(ICMS).

Proposed method

System (3.6) can be represented as follow:

n∑
k=1

[wik][zkj] = [kij] 1 ≤ i, j ≤ n (3.7)

By substuting

[wik] = [aik] + i [bik], [zkj] = [pkj] + i [qkj],
[kij] = [uij] + i [vij] in (3.7), we have:

n∑
k=1

( [aik] + i [bik] ) ( [pkj] + i [qkj] ) =

1 ≤ i, j ≤ n(3.8)

Therefore

n∑
k=1

(
[aik] [pkj]+i [aik] [qkj]+i [bik] [pkj]− [bik] [qkj]

)

= [uij] +i [vij] 1 ≤ i, j ≤ n (3.9)
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Now we consider three cases and using interval
arithmetic we obtain: Case 1: [zkj] ≥ 0

∑
[aik] ≥ 0 [aikpkj, aik pkj]

+
∑

[aik] ≤ 0 [aikpkj, aikpkj]+∑
0∈[aik] [aikpkj, aikpkj] +

i
∑

[aik] ≥ 0 [aikqkj, aik qkj]

+i
∑

[aik] ≤ 0 [aikqkj, aikqkj]

+i
∑

0∈[aik] [aikqkj, aikqkj]

+i
∑

[bik] ≥ 0 [bikpkj, bik pkj]

+i
∑

[bik] ≤ 0 [bikpkj, bikpkj]+

i
∑

0∈[bik] [bikpkj, bikpkj]

−
∑

[bik] ≥ 0 [bikqkj, bik qkj]

−
∑

[bik] ≤ 0 [bikqkj, bikqkj] −∑
0∈[bik] [bikqkj, bikqkj]

= [uij, uij] + i [vij, vij]

(3.10)

Case 2: [zkj] ≤ 0

∑
[aik] ≥ 0 [aikpkj, aikpkj]+∑
[aik] ≤ 0 [aikpkj, aikpkj]

+
∑

0∈[aik] [aikpkj, aikpkj]

+i
∑

[aik ]≥ 0 [aikqkj, aikqkj]+

i
∑

[aik] ≤ 0 [aikqkj, aikqkj]+

i
∑

0∈[aik] [aikqkj, aikqkj]

+i
∑

[bik] ≥ 0 [bikpkj, bikpkj]+

i
∑

[bik] ≤ 0 [bikpkj, bikpkj]+

i
∑

0∈[bik] [bikpkj,bikpkj]

−
∑

[bik] ≥ 0 [bikqkj, bikqkj] −∑
[bik] ≤ 0 [bikqkj, bikqkj] −∑
0∈[bik] [bikqkj, bikqkj]

= [uij, uij] + i [vij, vij]

(3.11)

Case 3: 0∈[zkj]∑
[aik] ≥ 0 [aikpkj, aikpkj]

+
∑

[aik] ≤ 0 [aikpkj, aikpkj]

+
∑

0∈[aik] [aikpkj, aikpkj]

+i
∑

[aik] ≥ 0 [aikqkj, aikqkj]+

i
∑

[aik] ≤ 0 [aikqkj, aikqkj]+

i
∑

0∈[aik] [aikqkj, aikqkj]

+i
∑

[bik] ≥ 0 [bikpkj, bikpkj]+

i
∑

[bik] ≤ 0 [bikpkj, bikpkj]+

i
∑

0∈[bik] [bikpkj,bikpkj]

−
∑

[bik] ≥ 0 [bikqkj, bikqkj] −∑
[bik] ≤ 0 [bikqkj, bikqkj]

−
∑

0∈[bik] [bikqkj, bikqkj]

= [uij, uij] + i [vij, vij]

(3.12)

In the following by defining a theorem, two aux-
iliary addition and subtraction systems are intro-
duced and proved for solving matrix system (3.6).

Theorem 3.1 Let (A)= [aij], (B)= [bij], (P)= [pij],
(Q)= [qij], (U) = [uij ], (V)= [vij], so we have:

1.
(((A) (P)+(A) (P))− (((B) (Q)+(B) (Q)))+

i (((A) (Q)+(B) (P))+

((A) (Q)+(B) (P)))= ((U)+(U)) + i ((V)+(V))
(3.13)

2.
(((A) (P)− (A) (P)) + (((B) (Q)− (B) (Q)))+

i (((A) (Q)+(B) (P)) −

((A) (Q)+(B) (P)) = ((U)−(U)) + i ((V) − (V))
(3.14)

Proof. Using matrixes and interval arithmetic
and ((3.10)-(3.12)), the proof is obvious.

Proposed method:

for solving interval complex matrix system (3.6),
auxiliary systems (??) and (??) are defined using
operations on interval complex numbers and ma-
trix. As two complex numbers are equal, if their
integer sections are equal
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with each other, and their imaginary sections are
equal with each other, we obtain:

((A) (P)+(A) (P))− ((B) (Q)+(B) (Q))

= (U)+(U)

((A) (Q)+(B) (P)) + ((A) (Q)+(B) (P))

= (V)+(V)

((A) (P)− (A) (P)) + (((B) (Q)− (B) (Q))

= (U)− (U)

((A) (Q)+(B) (P))− ((A) (Q)+(B) (P))=(V)−(V)
(3.15)

By solving the system (??), which is a crisp sys-
tem, the solution of the system (3.6) is obtained.

4 Numerical example

In this section the performance of the proposed
method is shown by presenting some examples.
The proposed method provides the solution with
less complexity and computations in comparison
with similar methods in this regard.

Example 4.1 Consider the following system(
[−1, 3] + i [0, 2] [1, 4]
i[−2,−1] [0, 3] + i [−2, 5]

) (
[x11] [x12]
[x21] [x22]

)
=
(

[−4, 42] + i [3, 41] [−14, 74] + i [−2, 65]
[−35, 25] + i [−32, 65] [−29, 59] + i [−42, 65]

)
We put:

A =

(
[−1, 3] [1, 4]
[0, 0] [0, 3]

)
,

B =

(
[0, 2] [0, 0]

[−2,−1] [−2, 5]

)
,

P =

(
[p

11
,p11] [p

12
, p12]

[p
21
,p21] [p

22
, p22

)

, Q =

(
[q

11
, q11] [q

12
, q12]

[q
21
, q21] [q

22
, q22

)
, U =

(
[−4, 42] [−14, 74]
[−35, 25] [−29, 59]

)

,V =

(
[3, 41] [−2, 65]
[−32, 65] [−42, 65]

)
Using theorem 3.1, we obtain:

(2p11+p
21
+4p21−2q11)

+i (2q11+q
21
+4q21+2p11)

= 38 + 44i

(2p12+p
22
+4p22−2q12)

+i (2q12+q
22
+4q22+2p12)

= 60 + 63i

(3p21+2q11−3q21+q
11
) + i (3q21+3p21−2p11−p

11
)

= −10 + 33i

(3p22−3q22+2q12+q
12
) + i (3q22−2p12+3p22−p

12
)

= 30 + 23i

(−4p11+p
21
−4p21−2q11)+i (−4q11+q

21
−4q21−2p11)

= −46− 38i

(−4p12−3p22−2q12)

+i (−4q12+q
22
−4q22−2p12)

= −88− 67i

(−3p21−7q21−2q11+q
11
)

+i (−2p11−7p21−3q12+p
11
)

= −60− 97i

(−3p22−2q12+q
12
−7q22)

+i (−2p12−7p22−3q22+p
12
)

= −86− 107i

Finally, we have:(
[x11] [x12]
[x21] [x22]

)
=
(

[p
11
, p11] + i [q

11
, q11] [p

12
,p12] + i [q

12
, q12]

[p
21
, p21] + i [q

21
, q21] [p

22
,p22] + i [q

22
, q22]

)

=

(
[1, 2] + i [0, 3] [8, 10] + i [1, 7]
[4, 9] + i [6, 7] [10, 11] + i [5, 6]

)
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Example 4.2 Consider the following system(
[−1, 0] + i [2, 3] [1, 7] + i [−4,−2]
[−4,−2] + i [3, 5] i [1, 5]

)
(

[x11] [x12]
[x21] [x22]

)

=

(
[−15, 8] + i [−20, 4] [−29, 11] + i [−26, 11]
[2, 28] + i [−15, 5] [11, 47] + i [−26, 8]

)
We put:

A =

(
[−1, 0] [1, 7]
[−4,−2] [0, 0]

)
,

B =

(
[2, 3] [−4,−2]

[3, 5] [1, 5]

)
,

P =

(
[p

11
, p11] [p

12
, p12]

[p
21
, p21] [p

22
, p22

)
,

Q =

(
[q

11
, q11] [q

12
, q12]

[q
21
, q21] [q

22
, q22

)
,

U =

(
[−15, 8] [−29, 11]
[2, 28] [11, 47]

)
,

V =

(
[−20, 4] [−26, 11]
[[−15, 5] [−26, 8]

)
Using theorem 3.1, we have:

(7p
21

− p
11
+p21−3q

11
−2q21+4q

21
)

+i (7q
21

− q
11
+q21+3p

11
−2p21+2p11−4p

21
)

= −7− 16 i

(7p
22

− p
12
+p22−3q

12
+2q22−2q12+4q

22
)

+i (7q
22

− q
12
+q22+3p

12
−2p22+2p12−4p

22

(−2p11−4p
11
−5q

11
−5q

21
−3q11 − q21)

+i (−2q11−4q
11
+5p

11
+5p

21
+3p11+p21)

= 30− 10 i

(−2p12−4p
12
−5q

12
−5q

22
−3q11 − q21)

+i (−2q12−4q
12
+5p

12
+5p

22
+3p12+p22)

= 58− 18 i

(7p
21
+p

11
− p21+3q

11
−2q21−2q11+4q

21
)

+i(7q
21
+q

11
− q21+3p

11
−2p21−2p11+4p

21
)

= −23− 24 i

(7p
22
+p

12
− p22+3q

12
−2q22−2q12+4q

22
)

+i (7q
22
+q

12
− q22+3p

12
−2p22−2p12+4p

22
)

= −40− 37 i

(−2p11+4p
11
+5q

11
+5q

21
−3q11 − q21)+

i (−2q11+4q
11
+5p

11
+5p

12
−3p11 − p21)

= −26− 20 i

(−2p12+4p
12
+5q

12
+5q

22
−3q12 − q22)+

i(−2q22+4q
22
+5p

12
+5p

22
−3p12 − p22)

= −36− 34 i

Finally, we obtain:(
[x11] [x12]
[x21] [x22]

)
=

(
[−2,−1] + i [−2, 0] [−3,−2] + i [−4,−2]
[−1, 0] + i [−2, 0] [−3,−2] + i [−3,−1]

)

5 Conclusion

In the paper, interval complex matrix system is
solved. With the help of two addition and sub-
traction systems and using the features of interval
complex numbers and matrix properties, we find
the positive and negative solutions as well as the
solutions including zero for the system. The pro-
posed method is simple and doesn’t need complex
computations. In fact, the solution of interval
matrix is achieved by solving a real crisp system.
Finally, useful numerical examples are presented
and the applicability of the method and the sim-
plicity of the system solution is verified by the
proposed method. In the future, we will solve
the complex matrix fuzzy system by α-cut.
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