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Abstract

In this paper, we present an improved neural network to solve strictly convex quadratic program-
ming(QP) problem. The proposed model includes a set of differential equations such that their equi-
librium points correspond to optimality condition of convex (QP) problem and has a lower structure
complexity respect to the other existing neural network model for solving such problems. In theoret-
ical aspect, stability and global convergence of the proposed neural network is proved. The validity
and transient behavior of the proposed neural network are demonstrated by using four numerical

examples.
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1 Introduction

Ne promising approach to solving the opti-
mization problems with hight dimension and
dense structure in real time is to employ artifi-
cial neural networks based on circuit implemen-
tation [24]. Neural networks are computing sys-
tems composed of a number of highly intercon-
nected simple information processing units, and
thus can usually solve optimization problems in
execution times at the orders of magnitude much
faster than most popular optimization algorithms
for general-purpose digital [24]. A neural net-
work with a good computational performance
should satisfy threefold. First, the global conver-
gence of the neural networks with an arbitrarily
given initial state should be guaranteed. Second,
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the network design preferably contains no vari-
able parameter. Third, the equilibrium points
of the network should correspond to the exact
or approximate solution [17]. Solving optimiza-
tion problems using recurrent neural networks
has fascinated much attention since seminal work
of Tank and Hopfield [11]. Many neural network
for constrained optimization problems has been
developed during the past two decades,e.g.see
2, 3, 4, 6, 7, 8,9, 10, 12, 13, 15, 17, 18, 19,
20, 21, 22, 24, 26, 28, 30] and references therein.
Kennedy and Chua [4] presented a neural net-
work for solving the strictly convex quadratic pro-
gramming. Proposed model by kennedy and chua
contain a finite penalty parameter, thus their
model converges to an approximate optimal solu-
tion. Lately, many researchers successively pro-
posed a number of primal-dual neural networks
8, 9, 28] and projection neural networks for solv-
ing linear and quadratic programming problems
[2, 6, 15, 18, 20, 23, 24, 26]. Moreover, a number
of neural networks models proposed for solving a
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special forms of quadratic programming problems
such as Li-norm estimation and Lo-norm estima-
tion problems [14, 16, 25]. These neural networks
were proved to be globally convergent to the ex-
act solutions.

We are concerned with the following QP problem:

Minimize ¢’z + %xTQx

subject to_ (1.1)

where ¢,z € R, A € R™", [ and h € R™,
Rank(A) = m and @ € R™™" is symmetric and
positive definite matrix.

Problem (1.1) is a general form of quadratic pro-
gramming problem. In the most of existing neu-
ral network models for solving (1.1), constraint
[ < Az < h divided two part, [ < Az and Az < h,
thus dimension of problem increases. First time,
Xia et al. studied [22] a neural network for solving
(1.1) without dividing I < Az < h into two part.
Proposed model in [22] motivates us to propose a
neural network model with one layer structure for
solving (1.1) with lower model complexity respect
to proposed model in [22]. The proposed neural
network is shown to to be globally convergent to
unique exact solution of (1.1)within a finite time.
Simulation results show that the proposed neu-
ral network is effective for solving strictly convex
quadratic programming problems. This paper is
divided into six sections. In next section prelim-
inary information is introduced to facilitate later
discussions. In section III, first we present that
problem (1.1) is equivalent with solving a piece-
wise equation and then introduce a neural net-
work model for solving this piecewise equation.
In section IV, we analyze stability condition and
global convergence. In section V, illustrative ex-
amples are discussed. Section VI gives the con-
clusion of this paper.

2 Preliminaries

Definition 2.1 Let X = {x € R™|l; < z; <
u;,Vi € N C L} where L = {1,2,...,m}, Px :
R™ — X is a projection operator to set X defined
by
Px(x) = arg min ||z —y||
yeX

Where ||.|| denotes the la-norm of R™ [24]. Since
X is a box set, Px(x) can be presented by

Px(z) = [Px(z1),..., Px(zm)]T, where for i €
L — N, Px(x;) = z; and fori € N
li, x; < ll
Px(.ilfz) = ZT; li S ZT; S Us (2.2)
U Ti > U

Lemma 2.1 [5] For ally € R™ and all x €

XCR™

(y— Px()" (Px(y) —z) >0

and for x,y € R™
1Px(x) = Px (y)[|< |z -yl

Definition 2.2 The finite-dimensional varia-
tional inequality problem VI(F,K) is to deter-
mine a vector x* € K C R", such that

F(z*)(x — 2%) >0, Ve e K
where F is a given continuous function from K
to R™, K is a given closed convex set [5].

Theorem 2.1 [5] Assume that K is closed and
convexr. Then x* € K is a solution of the varia-
tional inequality problem VI(F, K) if and only if
for any v >0

Pr(z* —~F(z*)) = x*

Let f: R* — R"™, now we introduce some basic
properties of the following differential equation:

z(ty) € R (2.3)

Theorem 2.2 [29] Assume that f in (2.3) is
a continuous mapping, then for arbitrary to > 0
and xo € R" there ezists a local solution x(t) to
(2.3) where t € [to,T] for some T > to. Fur-
thermore if f is locally Lipschitzian continuous
at xqo then the solution is unique, and if f is Lip-
schitzian continuous in R™ then T can be extended
to 4o00.

Theorem 2.3  [29] Let x* is an equilibrium
point of (2.3) and X C R"™ be an open neigh-
borhood of x*, if V : R™ — R is a continuously
differentiable function over X and V satisfies in
the following conditions:

e V(z¥)=0, ) _g
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o W) <0 V(z)>0, Voe X —{z%}
o [lz]|= 0o = [[V(2)]|— o0

then =* is a lyapunov stable equilibrium and the
solution always exist globally,if

%<0 Ve e X — {z*}

then x* is a globally asymptotically stable equilib-
TIUM.

Theorem 2.4 [I] Let S be a nonempty open
convex set in R"™, and letf : S — R be differen-
tiable on S then f is strictly convex if and only
if, for each distinct x;,xo € S, we have

(Vf(z2) = V(@) (22 —21) >0

Figure 1: Architecture of the recurrent neural
network (3.7).

3 Neural network model

Throughout this paper, we assume that the fea-
sible set of problem(1.1)is nonempty.

The Karush-Kuhn-Tucker conditions of (1.1) has
the following form [1]:

Qr+c+ ATu =0, (3.4)
QA.CL‘)l = l;, ~ u; >0
ll' S (Aa:)j S hl' U; = 0 (3.5)
(A:c)i = h;, u; <0

where v € X = {x € R"|l <x < h} and u € R™.

Lemma 3.1 [21]z € X is an optimal solution
of (1.1) if and only if there exist u such that (Z, )
satisfies in (3.4) and (3.5).

z is called a KKT point of (1.1) and @ is called
the lagrangian multiplier vector corresponding to
z.

Now, let x(.) and wu(.) be some time depen-
dent variables.
work method to solve (1.1), a neural network sys-
tem have to be constructed and make the steady
points of neural network system to satisfy the
KKT conditions (3.4) and (3.5). By definition
2.1, we can rewrite (3.4) and (3.5) the following
form:

In order to use a neural net-

{ QPX(m)—{—c—ATu:O (3.6)
Py(AP)((:C) — u) = AP)(<I‘) '
where ¥ = {y € R"Il < y < h},

X ={r € Rl < 2 < h}, u € R™ and
r e R™

Using (3.6), we propose a new neural network
for solving (1.1) as follows:

4 = —\QPx(x) +c— ATu)
du — _\(APx(z) — Py(APx(z) — u))

di

where A > 0 is scalar. The architecture of the
neural network described in (3.7)is depicted in
Figure 1. The system described by Eq.(3.7) can
be applied for solving (1.1) with positive definite
matrix () and can be easily realized by a recurrent
neural network with a one-layer structure.The
proposed neural network can be implemented by
using a simple hardware only without analog mul-
tipliers for the variables or the penalty parame-
ter. The operator Py-and Px may be implemented
by using a piecewise activation function. The
model contains some amplifiers( Pyand Py ), inte-
grator, summations, multipliers and interconnec-
tions. Among them, the number of amplifiers,
integrator and interconnections is important in
determining the structural complexity of neural
network model.

For comparison purpose, we list the numbers
of amplifiers, integrators and interconnections of
proposed neural network in (3.7)and proposed
neural network in [22] in Table 1. we have the fol-
lowing observations: 1) the numbers of amplifiers
and integrator are same in both models; 2) the
proposed model requires fewest interconnections
respect to model in [22]. These observations then
lead to the conclusion that the proposed model
(3.7) is simplest in structure. In what follows, we
introduce some basic properties of (3.7).

(3.7)

Theorem 3.1 = = Px(z*) is optimal solution
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Table 1: Comparisons of proposed model and model in [22] for solving (1).

Neural network model Number of amplifiers

number of integrator

number of interconnections

m+4+n
m-+n

proposed model
model in [22]

m-+n
m-+n

n? + 2mn + 3n + 5m
(m+n+6)(m+n)

of (1.1) where [‘Z*} denotes the equilibrium point
of (3.7).

Proof. Using lemma 3.1, proof is complete.

Corollary 3.1 Right hand side of (3.7) is Lips-
chitz continuous function.

Proof. Let the right hand side of (3.7) be
denoted by L(w), where w = [ﬂ e R™m,
by lemma 2.1, for any w = [ﬁ € R™™ and
w = j € R™" we have:

|| L( w w =

)l
(z) — Px(2)) + AT (2 — u)

IN
>

/\/—\/—\
2

&2\

S

= &>

_l_

P

= |

S\/

;—A(:c—i)
<l g(_:zﬂ-@ +AT(“—11)>H
PGt
PG SN - (3)]

Which gives the desired results.

Lemma 3.2  For each initial point[x(to)] €

u(to)

R™™  there exist a unique continuous solution

[igg] € R (t € [to, 7)) for (3.7) and the equi-

librium of neural network in (3.7) correspond to
unique optimal solution of (1.1).

Proof. Theorem 2.2 and Corollary 3.1 yield a
x(t)
u(t)
ist for (3.7). Since the feasible set of problem(1.1)
is nonempty and @ is a positive definite matrix

unique continuous solution [ } over [tg,T) ex-

so there exist a unique optimal solution for (1.1)
[1], then using theorem 3.1 and (3.7), proof is
complete.

4  Convergence Analysis

In this section, we prove globally asymptotically
convergent of (3.7).

The neural network in (3.7) is said to be stable in
the sense of Lyapunov and globally convergent,
globally asymptotically stable, if the correspond-
ing dynamic system is so [24].

Theorem 4.1  The proposed neural network
in (3.7) is stable in the sense of Lyapunov
and is globally asymptotically convergent to the
unique solution of (1.1) if Q is positive definite.
Moreover, the convergence rate of the neural
network in (3.7) increase as A increases.

Proof. By Lemma 3.2, we know that for each
z(to)
(to)

continuous solution

initial point [ ] € R™™ there exist a unique

x(t) z*
u(t) for (3.7). Let o
be equilibria point of (3.7), define a lyapunov
function below:

V(x(t),u(t)) = 5 || =(t) — Px(a*) |2
vt > o,

Let x = x(t) and u = wu(t), then time derivative
of V along the trajectory of (3.7) as follows:

d dVdx dV du
4.
dtv( ) = dr dt ' du dt (4.8)
We have
S8 = “A(QPx(a) + ¢ — ATw) (z — Px(a))

Define g(z) = ¢’z + $27Qz — u” Az where u is
fix scaler. Since @ is positive definite so g(z) is

*
strictly convex. since [i*] be equilibrium point
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of (3.7) so Vg(Px(z*)) = QPx(x
0, using theorem 2.4 we have

Ntc— ATu* =

(Vg(x) = Vg(Px(z*))" (x — Px(z*)) > 0,
x # Px(x")
So

—~AMQPx(x) +c— ATu)T (x — Px(z*)) <0,
x # Px(x*)

On the other hand by lemma 2.1 we have:
(v = Py ()" (Py(v)
Let v = APx(x) —u and y = APx(x

(4.9)

_y)zoa UERmayGY
*) then
(APx(x) —u — Py (APx(z) —u))T

(Py (APx(z) —u) — APx(z*)) > 0,
Vr € R", Yu € R™

(4.10)

By using definition 2.2 and theorem 2.1 we have:
(u*)"(y — APx(
Let y = Py (APx(z) — u) so

(u*)T(Py (APx (x) — u) — Px(*)) >0,
Ve € R", YVue R™

) >0, WyevY

(4.11)

Sum of (4.10) and (4.11) yields:

(AP)((.IZ) —u+ut— Py(AP)((CC) — u))T
(Py (APx(z) — u) — APx(z*)) > 0,
Vr € R*, Yu e R™

Then

(u—u*)"

(Py (APx () — I(u))

—APx(z)) <

—[[(Py (APx (z) — I(u)) — APx (z))]?
—(u—u")T(APx(z) — APx(z"))

By using (3.6) we have

Px(x)
PX (1’*)

(4.12)

=Q 'ATu - Q¢
— QflATu* _ Qflc

Substitution (4.13) into (4.12) yields

(4.13)

(u—u*)T

(Py (APx (z) — I(u)) — APx (x)) <
—|I(Py (APx () — I(u)) - APX<x>>||2
—(u—u*)TAQ AT (u—u*) <

(4.14)

Then
dV du _
U

)\(udt— u*)T
(Py (APx ()

(4.15)
—1I(u)) — APx(x)) <0

By using(4.8),(4.9) and (4.15) we have

V) =TF+ %% <0
V(x,u) 7& (PX( )a *)

So we have

{(@@),u®)to <t <7} C P
= {(z,u) € R™T"|V(z,u) < V(z(to),

On the other hand we have:

Ve,u)> b @~ Px(a) |,
Vieu)> b u—u|?

u(to))}

1
7|
1
3 |

Since Py is bounded and {(z(t),u(t))|to < t <
T} C Py, (z(t),u(t)) is bounded and thus 7 = co.
Moreover

dV (z,u)

7 =0
QPx(z) +c— ATu=0
Py(AP)((x) — u) — AP)((.%) =0
dx
az _
dt
< du =0

dt

So by applying the theorem 2.3, we get result that
the proposed neural network is globally asymp-
totically convergent to the unique solution of

(1.1).

Since % < 0 then we can result that as A in-
creases, the convergence rate of the neural net-
work in (3.7) increases. This proof is completed.

O

5 Illustrative examples

In this section, we demonstrate the effectiveness
and performance of the proposed neural network
model with four illustrative examples. The ordi-
nary differential equation solver engaged in ode23
in matlab 2011.

Example 5.1 Consider the following quadratic
programming problem [22]:

Minimize 2% + 23 + z122 — 3021 — 302
. 5 35
subject to %—Zwl — T2 §3;2
521+ 22 < F
-5 S I S 5
-5 S i) S 5

Optimal solution of the above problem is x* =
(5,5). We use the neural network in (3.7) to solve
this problem. All simulation results show that the
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neural network in (3.7) is globally asymptotically
stable to x*. Figure 2 shows the performance of
the neural network in (3.7) with a random initial
point and four A.

Example 5.2 Consider the following quadratic
programming problem [22]:

Minimize % 4 23 + 523 + 2129
+ xix3 — 41 — 310 — 223
subject to  x1 4+ 29 + 223 < 3
3{[}1 — 9{[,‘2 + 9{L‘3 =1
0<a1, v, v3< 3

This problem has a unique optimal solution z* =
(%, %, %). We use the proposed neural network in
(3.7) to solve Example 5.2. Figure 3 and Figure 4
display the convergence behavior proposed model

in example 5.2.

°

xxxxx

o

of x(t) and u(t)
o b v w s o o

jectories
trajectories of x(t) and u(t)
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xxxxx
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b o kN ow
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tories of x(t) and u(t
>
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2() 2(d)

|
o

Figure 2: Transient behavior of the neural net-
work in (3.7) in terms of trajectories in Example
5.1.

Example 5.3 Consider the following quadratic
programming problem:

Minimize 3z% + 323 + 423 + 523 + 3z122
+ 5x1x3 + xory — 111 — D2y
subject to 3x1 — 3xo — 2x3+ 424 =0
4z + x9 — 13 — 2414 =0
—x1 + 12 < —1
—2<3r1+x3<4

This problem has an optimal solution z* =
(0.5, —0.5, 1.5,0)T. We use the proposed neural
network in (3.7) to solve Example 5.3. Figure
5.a illustrates the convergence behavior of the o

N
8
o

Trajectories of x(t) and u()

Traectories of x(t) and u(f)

Time Time
A=15 A=20
3() 3(d)

Figure 3: Transient behavior of the neural net-

work in (3.7) in terms four A and one random ini-
tial point to solve Example 5.2.

09

Figure 4: Transient behavior of the neural net-
work in (3.7) in terms of two initial points to solve
Example 5.2.

norm error |x(t) — *|| based on the neural net-
work in (3.7). Figure 5.b displays the trajectories
of the state trajectories x(t) started from 10 ran-
dom initial points.

Example 5.4 Consider the quadratic program-
ming problem (1.1) [22] where

2 1 0 0
1 1 0
Q= : : : Lo
o ... 1 2 1
o ... 0 1 2

c=[-1,4,-1,1,0,0,1,0,1,0]%,
1=[1,-1,00", uw=1[7,51"
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Table 2: Results of (3.7) and proposed model in [22] for Example 5.4.

Model iteration 1 iteration 2 iteration 3 iteration 4
CPU Error CPU Error CPU Error CPU Error

model(7) 0.2188 1x10-° 0.2344 8x1076 0.2188 7x107° 0.2344 8x106

model in [22] 1 3x107° 0.9844 1x1075 0.8906 3x107° 0.8750 2x107°

11 x(®)—
11 x(®)—

Figure 5: Convergence behavior of the proposed
model in terms of the norm error |z(¢) — z*| in
Example 5.3. (a) with one random initial point
and four A. (b) with 10 random initial points and
A = 200.

-1 -1
0 0
0

0

o

—_

o
==
==
—_ = O
—_

1
1
0

Optimal solution of the above problem is z* =
(0.5,-1.5,0,1,—1.5,2,—1,0.5,0,0). We use the
neural network in (3.7) to solve this problem.
Figure 6 shows the transient behavior of the pro-
posed model in Example 5.4.
For a comparison, we compute this example us-
ing the proposed neural network in (3.7) and pro-
posed model in [22] in four iteration. The compu-
tational results are listed in Table 2. From Table
2, we see that the proposed neural network not
only gives a better solution, but also has faster
convergence rate than proposed model in [22].

6 Conclusion

In this paper, a recurrent neural network intro-
duced for solving strictly convex quadratic pro-
gramming problem so it can solve a broad class
of the constrained optimization problems. The

— =100
— =200
—— =300 2
— =400

1=
Trajectories of x(t)

0 05 1 15 2 25 3 ) 0 05 1 15 2 25 3
Time Time
(@ (b)

Figure 6: (a) Convergence behavior of the pro-
posed model in terms of the norm error ||z(t) —z*||
in Example 5.4 with one random initial points and
four A. (b) Transient behavior of the proposed
model in Example 5.4 in terms of one random ini-
tial point and A = 100

proposed model has a lower structure complexity
respect to existing models to solve such problem.
It is shown here that the proposed neural net-
work is stable in the sense of Lyapunov and glob-
ally asymptotically convergent to the optimal so-
lution. Numerical examples are provided to show
the performance of the proposed neural network.
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