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Abstract

A new Schulz-type method to compute the Moore-Penrose inverse of a matrix is proposed. Every
iteration of the method involves four matrix multiplications. It is proved that this method always
converge with fourth-order. A wide set of numerical comparisons shows that the average number of
matrix multiplications and the average CPU time of our method are considerably less than those of
other methods. For each of sizes n× n and n× (n+ 10), n = 100, 200, 300, 400, ten random matrices
were chosen to make these comparisons.
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1 Introduction

M
any higher order iterative methods have been
developed to compute the Moore-Penrose

inverse of a matrix. Iterative algorithms are a
subject of current research (see, e.g., [11, 12, 18,
23, 25]), due to the importance of the topic in
engineering and applied problems such as linear
equations, statistical regression analysis, filtering,
signal and image processing, and control of robot
manipulators [5, 10, 15, 17].

In this article, we focus on presenting and
demonstrating a new method with a close atten-
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tion to reducing the computational time. To this
end, we investigate a convergent iterative method
to find the Moore-Penrose inverse, which could
be viewed as an extension of the famous Schulz
method for such a purpose. It is proved that this
method always converge with fourth-order, and
every iteration involves four matrix multiplica-
tions. A theoretical discussion will also be given
to show the behavior of the proposed scheme.

In the simple case, when A is a n × n nonsin-
gular matrix, to compute the matrix inverse, var-
ious iterative methods, called Schulz-type meth-
ods, were developed [1, 4, 6, 9, 11, 13, 16, 19, 22,
24, 25], almost all of which are based on iterative
solvers for the scalar equation f(x) = 1

x − a = 0
applied to the matrix equation

f(X) = X−1 −A = 0.

We should also point out that even if the ma-
trix A is singular, these methods converge to the
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Moore-Penrose inverse using a proper initial ma-
trix. A full discussion on this feature of this type
of iterative methods has been given in [1, 2].

The rest of this paper is organized as follows.
Section 2 is devoted to presenting some exist-
ing iterative schemes to find the Moore-Penrose
inverse. We propose our new method in Sec-
tion 3 and prove that it is fourth-order conver-
gent. In Section 4, some numerical examples are
given to show the performance of the presented
method compared with other higher order meth-
ods. For each of sizes n × n and n × (n + 10),
n = 100, 200, 300, 400, ten random matrices were
chosen to make these comparisons. Finally, some
conclusions are outlined in Section 5.

2 Schulz-type iterative methods

The MoorePenrose inverse of a matrix A ∈ Cm×n,
denoted by A† ∈ Cn×m, is a unique matrix X
satisfying the following four Penrose equations

AXA = A, (AX)∗ = AX,

XAX = X, (XA)∗ = XA,

where A∗ is the conjugate transpose of A. There
are various iterative methods, called Schulz-type
methods, to compute A†. In the sequel, we recall
some of them.

Perhaps, the most frequently used iterative
method to approximate A† is the famous New-
ton method

Bk = AXk

Xk+1 = Xk(2I −Bk),
(2.1)

originated in [16], in which I is the m×m identity
matrix. Schulz in [16] found that the eigenvalues
of I − AX0 must have magnitudes less than 1
to ensure the convergence. Since the residuals
Rk = I−AXk in each step (2.1) satisfy ∥Rk+1∥≤
∥A∥ ∥Rk∥2, the Newton method is a second-order
iterative method [1]. Similarly, in [11] the relation
∥AEk+1∥≤ ∥AEk∥2 is verified for errors of the
form Ek = Xk −A†.

Li et al. in [8] investigated the following third-
order method, known as Chebyshev method,

Bk = AXk

Xk+1 = Xk(3I −Bk(3I −Bk)),
(2.2)

and also proposed another iterative method to
find A† of the same order as given in

Bk = AXk

Xk+1 = Xk[I + 0.5(I −Bk)

(I + (2I −Bk)
2)].

(2.3)

Toutounian and Soleymani [24] proposed the fol-
lowing fourth-order method:

Bk = AXk

Xk+1 = 0.5Xk[9I −Bk(16I−
Bk(14I −Bk(6I −Bk))))].

(2.4)

Krishnamurthy and Sen [7] provided the following
fourth-order method:

Xk+1 = Xk(I + Yk(I + Yk(I + Yk))), (2.5)

in which Yk = I − AXk. As another example, a
ninth-order method could be presented as

Xk+1 = Xk[I + Yk(I + Yk(I + Yk(I+

Yk(I + Yk(I + Yk(I + Yk(I + Yk)))))))].

The number of matrix-matrix multiplications of
the above method can be reduced from 9 to 7 if
rewritten as follows:

Bk = Y 2
k , Ck = B2

k, Dk = C2
k ,

Xk+1 = Xk[(I + Yk)(I +Bk)(I + Ck) +Dk].
(2.6)

Soleymani et al. [21] provided the following sixth-
order method:

Bk = AXk

Sk = Bk(−I +Bk)

Xk+1 = Xk(2I −Bk)(3I − 2Bk + Sk)(I + Sk).
(2.7)

Soleymani and Stanimirović [19] investigated the
following ninth-order method:

Bk = AXk

Sk = −7I +Bk(9I +Bk(−5I +Bk))

Tk = BkSk

Xk+1 = −0.125XkSk(12I + Tk(6I + Tk)).
(2.8)

Also, Soleymani et al. [22] proposed another
ninth-order method as

Bk = AXk

Sk = 3I +Bk(−3I +Bk)

Tk = BkSk

Xk+1 = −1
9 XkSk[−29I + Tk(33I+

Tk(−15I + 2Tk))].

(2.9)
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Recently, Esmaeili and Pirnia [6] investigate a
quadratically convergent method as follows:

Bk = AXk

Xk+1 = Xk(5.5I −Bk(8I − 3.5Bk)).
(2.10)

Although their method is not a higher method,
numerical experiments showed that (2.10) is very
effective than other methods both in number of
matrix multiplications and CPU time.

To start each of methods, we need an initial
matrix X0. A discussion on choosing the initial
approximation X0 is given in [2, 14]. Perhaps, in
general, the simplest choice for X0 is

X0 = βA∗, (2.11)

in which β is a suitable real number.

3 The New Method

In this paper, we would like to propose a fourth-
order class of Schulz-type methods to find A† such
that is more effective than all of above methods
in terms of number of matrix multiplications and
CPU time. To this end, we consider the following
iterative class of methods:

Bk = AXk

Xk+1 = Xk

(
aI + bBk + cB2

k + dB3
k + eB4

k

)
,

(3.12)
in which a, b, c, d, e are parameters. Note that
every iteration of the method (3.12) involves four
matrix multiplications. In the sequel, we prove
that the method (3.12) is fourth-order convergent
to A† for appropriate chooses of parameters.

Note that, using mathematical induction, it
would be easy to check that the iterates produced
at each cycle of (3.12) satisfy the following rela-
tions:

(AXk)
∗ = AXk, A†AXk = Xk,

(XkA)
∗ = XkA, XkAA

† = Xk.
(3.13)

We can study the convergence properties of the
algorithm (3.12) using the error matrix Ek =
Xk − A†. The matrix formula representing Ek+1

is a sum of possible zero-order term consisting of
a matrix which does not depend upon Ek, one
or more first-order matrix terms in which Ek or
E∗

k appears only once, one or more second-order

terms in which Ek and E∗
k appear at least twice,

and so on [15]. To compute error estimates, first
note that

A†AEk = Ek, EkAA† = Ek,

according to (3.13). Therefore,

XkBk = A† + 2Ek + EkAEk,

XkB
2
k = A† + 3Ek + 3EkAEk + (EkA)

2Ek,

XkB
3
k = A† + 4Ek + 6EkAEk + 4(EkA)

2Ek

+(EkA)3Ek,

XkB
4
k = A† + 5Ek + 10EkAEk + 10(EkA)

2Ek

+5(EkA)
3Ek + (EkA)

4Ek.

Now, substituting Xk = A† + Ek in (3.12), we
have

A† + Ek+1 = (a+ b+ c+ d+ e)A†

+(a+ 2b+ 3c+ 4d+ 5e)Ek

+(b+ 3c+ 6d+ 10e)EkAEk

+(c+ 4d+ 10e)(EkA)
2Ek

+(d+ 5e)(EkA)
3Ek

+e(EkA)
4Ek.

Fourth-order convergent is obtained when
a+ b+ c+ d+ e = 1

a+ 2b+ 3c+ 4d+ 5e = 0

b+ 3c+ 6d+ 10e = 0

c+ 4d+ 10e = 0,

that result in

a = 4 + e, b = −(6 + 4e),

c = 4 + 6e, d = −(1 + 4e)
.

So, we have

Ek+1 = (e− 1)(EkA)
3Ek + e(EkA)4Ek. (3.14)

Hence, the following theorem can be obtained.

Theorem 3.1 Let A be a m × n nonzero com-
plex matrix. Moreover, suppose that the initial
approximation X0 is defined by (2.11). If the real
number β is chose such that

∥A(X0 −A†)∥< 1,
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then the iterative method (3.12) converges to A†

with fourth-order. Its first, second, third, fourth
and fifth order error terms are given by

error1 = error2 = error3 = 0,

error4 = (e− 1)(EkA)
3Ek,

error5 = e(EkA)
4Ek.

(3.15)

in which Ek = Xk −A† denotes the error matrix.

Proof. We can immediately derive (3.15) from
(3.14). Furthermore, (3.14) results in

AEk+1 = (e− 1)(AEk)
4 + e(AEk)

5.

Hence,

∥AEk+1∥≤ (e− 1 + e∥AEk∥) ∥AEk∥4,

and therefore ∥AEk∥→ 0, since ∥AE0∥< 1. On
the other hand,

∥Ek+1∥= ∥A†AEk+1∥≤ ∥A†∥ ∥AEk+1∥
≤ ∥A†∥(e− 1 + e∥AEk∥) ∥AEk∥4

results in

∥Ek+1∥≤[
∥A†∥ ∥A∥4(e− 1 + e∥A∥ ∥Ek∥)

]
∥Ek∥4.

Consequently, Xk → A† and the order of conver-
gence is four. 2 Now, suppose that rank(A) =
r ≤ min{m,n} and consider the singular value
decomposition of A as follows:

A = U

[
S 0
0 0

]
V ∗, S = diag(σ1, . . . , σr),

σ1 ≥ · · · ≥ σr > 0.

It is well known that

A† = V

[
S−1 0
0 0

]
U∗.

If we take X0 as (2.11), then

X0 = βA∗ = V

[
S0 0
0 0

]
U∗,

where
S0 = βS

is a diagonal matrix. Therefore,

V ∗X0U =

[
S0 0
0 0

]
.

Now, the principle of mathematical induction and
(3.13) lead to

V ∗XkU =

[
Sk 0
0 0

]
, (3.16)

in which Sk = diag(s
(k)
1 , . . . , s

(k)
r ) is a diagonal

matrix satisfying the following relation:

Sk+1 = Sk[(4 + e)I − (6 + 4e)SSk

+(4 + 6e)(SSk)
2 − (1 + 4e)(SSk)

3

+e(SSk)
4].

(3.17)
Therefore, the diagonal matrices Dk := SSk =

diag(d
(k)
1 , . . . , d

(k)
r ), where d

(k)
i = σis

(k)
i , satisfy

Dk+1 := g(Dk) = (4 + e)Dk − (6 + 4e)D2
k

+(4 + 6e)D3
k − (1 + 4e)D4

k + eD5
k,

that means

d
(k+1)
i = g(d

(k)
i ) = (4 + e)d

(k)
i

−(6 + 4e)d
(k)2
i + (4 + 6e)d

(k)3
i

−(1 + 4e)d
(k)4
i + ed

(k)5
i .

(3.18)

In the following theorem, we show that, for e = 8,
the sequences (3.18) are fourth-order convergent

to di = 1 for any d
(0)
i ∈ (0, 1.45).

Theorem 3.2 For any initial point d(0) ∈
(0, 1.45), the sequence d(k+1) = g(d(k)) is fourth-
order convergent to d = 1, in which the function
g(x) is defined by

g(x) = 12x− 38x2 + 52x3 − 33x4 + 8x5. (3.19)

Proof. We can find the real fixed points and the
critical points of g(x) as follows:

g(x) = x =⇒ x = 0, 1, 1.45,

g′(x) = 0 =⇒ x = 0.3 , 1, 1, 1.

Noting g′′(0.3) < 0 and g(4)(1) > 0, we can
deduce that 0.3 is a local maximizer and 1 is
a local minimizer of g(x). On the other hand,
g(0) = 0 < 1 = g(1) and g(0.3) ≈ 1.34 < 1.45 =
g(1.45). Therefore, x = 0, 1 and x = 0.3, 1.45
are minimizers and maximizers of g(x) in the in-
terval [0, 1.45], respectively. Moreover, the in-
terval [0, 1.45] maps into itself by the function
g(x). Considering an arbitrary initial point d(0) ∈
(0, 1.45), one can easily obtain the following con-
siderations (For clarification, see Figure 1):
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Table 1: Convergence order and number of matrix multiplications for different methods

Method (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.9) (2.10) (3.20)

Convergence
order 2 3 3 4 4 9 6 9 9 2 4
Matrix
multiplications 2 3 4 5 4 7 5 7 7 3 4

Table 2: Average values of matrix multiplications and elapsed times for different methods

Methods (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.9) (2.10) (3.20)

DIM:100× 100
MAT 59.8 57.9 70.4 74.0 63.2 72.8 63.0 69.3 70.7 46.7 43.6
TIME 0.047 0.038 0.060 0.050 0.047 0.072 0.040 0.050 0.053 0.034 0.036
DIM:100× 110
MAT 44.6 43.8 52.4 55.5 47.6 56.0 48.0 55.3 56.0 39.6 35.6
TIME 0.037 0.033 0.0547 0.036 0.038 0.053 0.039 0.039 0.041 0.032 0.031
DIM:200× 200
MAT 65.2 63.6 76.0 80.5 68.4 79.8 67.5 74.9 77.7 51.4 46.8
TIME 0.319 0.316 0.464 0.400 0.330 0.560 0.338 0.367 0.386 0.260 0.292
DIM:200× 210
MAT 50.8 49.2 60.0 62.0 53.2 63.0 54.5 58.8 63.0 42.7 37.6
TIME 0.270 0.248 0.380 0.314 0.264 0.445 0.284 0.297 0.325 0.239 0.234
DIM:300× 300
MAT 70.0 76.8 81.2 85.5 73.2 84.7 72.0 79.1 82.6 51.9 49.2
TIME 1.225 1.184 1.764 1.505 1.263 2.078 1.281 1.380 1.444 0.916 1.086
DIM:300× 310
MAT 53.2 51.6 62.0 65.5 56.4 64.4 55.5 63.0 63.7 44.5 40.0
TIME 0.956 0.917 1.363 1.166 0.988 1.589 1.002 1.114 1.116 0.983 0.899
DIM:400× 400
MAT 73.6 71.7 84.8 89.5 76.8 88.9 75.5 83.3 86.1 53.3 51.6
TIME 2.991 2.916 4.306 3.675 3.100 5.121 3.119 3.386 3.505 2.189 2.667
DIM:400× 410
MAT 56.6 55.8 66.4 70.0 60.0 70.0 60.0 65.1 70.0 46.9 40.4
TIME 2.364 2.308 3.406 2.892 2.455 4.034 2.511 2.675 2.883 2.012 2.111

• The unique solution of the equation g(x) = 1
in the interval [0, 1) is 1

8 .

• The function g(x) is increasing in the interval
(0, 18). Therefore, if d(k) ∈ (0, 18), for some
k, then there exists an index k0 ≥ k such
that either d(k0) = 1

8 , and so d(k0+1) = 1, or

d(k0+1) ∈ (18 , 1).

• If d(k) ∈ (18 , 1), for some k, then d(k+1) ∈
(1, 1.45).

• If d(k) ∈ (1, 1.45), for some k, then the se-
quence {d(k+ℓ)}ℓ≥1 ⊆ [1, 1.45) is a strictly
decreasing sequence converging to d = 1.

Noting the above assertions, we can conclude that

the sequence d(k+1) = g(d(k)) is convergent to d =
1. On the other hand, g′(1) = g′′(1) = g′′′(1) = 0
implies that the convergence is fourth-order (See
[3]). 2

Using the iteration function (3.19), we obtain
the following iterative method to find A†:

Xk+1 = Xk[12I − 38(AXk) + 52(AXk)
2

−33(AXk)
3 + 8(AXk)

4],

which can be written as follows:

Bk = AXk

Ck = B2
k

Xk+1 = Xk[12I − 38Bk

+Ck(52I − 33Bk + 8Ck)].

(3.20)
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Figure 1: Graphs of the line y = x and the func-
tion y = g(x).

Considering Theorem 3.2, we conclude that

if βσ2
1 = d

(0)
1 ∈ (0, 1.45), then βσ2

i = d
(0)
i ∈

(0, 1.45), for all i, and

lim
k→∞

Dk = I.

Hence,

lim
k→∞

Sk = S−1,

so

lim
k→∞

Xk = A†.

Moreover, the order of convergence is four.
Therefore, the following theorem is proved.

Theorem 3.3 Consider the m× n complex ma-
trix A of rank r, and suppose that σ2

1 denotes the
largest singular value of A. Moreover, assume
that the initial approximation X0 is defined by
(2.11), in which

0 < β <
1.45

σ2
1

. (3.21)

Then, the sequence {Xk}k≥0 generated by (3.20)
converges to A† with fourth-order.

Remark 3.1 Consider the initial matrix X0

given in (2.11), with β from (3.21). Since σ2
1

is a (the) largest singular value of A, we have
σ2
1 = ∥A∥22≤ ∥A∥1 ∥A∥∞. Therefore, the selec-

tion

β =
1

∥A∥1 ∥A∥∞
(3.22)

satisfies (3.21). Furthermore, it is proved in [4]
that for such a β, we have ∥A(X0 −A†)∥< 1.

Note that every iteration of the method (3.20)
involves four matrix multiplications. Although

(3.20) is not a higher order scheme, the numer-
ical experiments show that its total number of
matrix multiplications and its CPU time are con-
siderably less than those of other methods. So,
method (3.20) will be the fastest one among con-
sidered iterative methods in this article.

The Schulz-type iterations, including (3.20),
are strongly numerically stable, that is, they have
the self-correcting characteristic and are essen-
tially based upon matrix multiplication per an
iterative step. The iterative scheme (3.20) could
be combined efficiently with sparse techniques in
order to reduce the computational load of matrix
multiplications per step.

Remark 3.2 If m ≤ n, then we apply (3.20)
in the same form, in which I denotes the m×m
identity matrix. On the other hand, for m > n
we must apply (3.20) with A∗ instead of A and
use the n × n identity matrix. So, for the case
m > n, we compute (A∗)†, that is (A†)∗.

Theorem 3.4 If the same assumptions as in
Theorem 3.3 are considered, then the use of the
iterative method (3.20) for finding the Moore-
Penrose generalized inverse has an asymptotical
stability.

Proof. The steps of proving the asymptotic sta-
bility of (3.20) are similar to those taken for a gen-
eral family of methods in [20]. Hence, the proof
is omitted. 2

4 Numerical experiments

In this section, we will make some numerical
comparisons of our proposed method (3.20) with
other methods presented here. To this end, we fo-
cus on the total number of matrix multiplications
and CPU times required for convergence. Table 1
denotes the number of matrix multiplications in
any iteration of different methods.

All tests were carried out with Matlab, while
the computer specifications are Microsoft Win-
dows XP Intel(R), Pentium(R) 4, CPU 2.60 GHz,
with 2 GB of RAM.

We used the initial matrix X0 defined in (2.11),
with β from (3.21). The stop criterion was

∥Xk+1 −Xk∥∞
1 + ∥Xk∥∞

< 10−7
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and the maximum number of iterations was set to
100. Following [6, 21, 24], for each of sizes n× n
and n× (n+ 10), n = 100, 200, 300, 400, we have
performed 10 random tests and compared aver-
age values of matrix multiplications and elapsed
times in seconds. The results are listed in Table
2, where DIM, MAT, and TIME denote the size
of A, average values of matrix multiplications and
elapsed times in seconds, respectively.

From Table 2, we observe that the method
(3.20) is much better than others both in matrix
multiplications and CPU time. The worst one
is the ninth-order method (2.4). The third-order
method (2.2) and the second-order method (2.1)
are better than the higher order methods, al-
though they are not comparable with our method.
We can almost arrange these methods in the form

{(2.4), (2.6)} < {(2.3), (2.8), (2.9)} <
{(2.5), (2.7)} < {(2.1)} < {(2.2)} ≪
{(2.10)} < {(3.20)},

meaning that methods belonging to a set have
a similar efficiency, while ”<” denotes less effi-
ciency.

5 Conclusions

In this paper, we proposed a new Schulz-type
method to find the Moore-Penrose inverse. It was
proved that the method converge with fourth-
order. Although our method is not a higher order
scheme, a wide set of random numerical experi-
ments showed that the required number of ma-
trix multiplications and CPU time is considerably
less than those of higher order methods. So, our
method could be considered as a fast method.
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