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Abstract

In this study, a new numerical solution of singular nonlinear differential equations, stemming from
biology and physiology problems, is proposed. The methodology is primarily based on the shifted
Chebyshev polynomials operational matrix of derivative and collocation. Furthermore, the conver-
gence analysis on the proposed method is carried out. To assess the accuracy and analysis of perfor-
mance of the method, five numerical problems, based on the singular nonlinear differential equations,
on different subjects, such as the human head, Oxygen diffusion in a spherical cell and Bessel dif-
ferential equation, were solved. The numerical results were compared with other existed methods in
tables for verification and further discussions.
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1 Introduction

T
he differential equations arise from various ap-
plications in fluid mechanics, biology, physics

and engineering [1]-[16]. Such equations also ap-
pear in electromagnetic and electrodynamic, elas-
ticity and dynamic contact, heat and mass trans-
fer, fluid mechanic, acoustic, chemical and elec-
trochemical processes, molecular physics, popu-
lation, medicine and in many other fields [3]-[14].
For numerical solution of the differential equa-
tions, there are some well-known numerical meth-
ods [11]-[15].

In this paper, we consider the singular prob-
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lems of the type

y′′(x) + p(x)y′(x) + q(x)y(x) = g(x), 0 < x ≤ 1,
(1.1)

subject to the conditions{
α1y(0) + β1y

′(0) = γ1,
α2y(1) + β2y

′(1) = γ2,
(1.2)

where x = 0 is a singular point in p(x), also
p(x), q(x) and g(x) are continuous functions on
(0, 1] and the parameters α1, α2, β1, β2, γ1, γ2 are
real constants.

The Chebyshev polynomials have been in exis-
tence for over a hundred years and they have been
used for solving many different problems [2].

In this paper, we propose a suitable way to
approximate the solution of singular nonlinear
differential equations with initial or boundary
value problems on the interval (0, L), by use
of shifted Chebyshev collocation method based
on the shifted Chebyshev operational matrix ot
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derivative. Also the convergence analysis of the
proposed method is discussed in this paper.

This paper is organized as follows: In section
2, the shifted Chebyshev polynomials with their
properties are introduced. In section 3, we de-
rive an approximate formula for derivatives us-
ing shifted Chebyshev polynomials and estimate
proposed formula. In section 4, we give the er-
ror analysis for the method. In section 5, the
proposed method is applied to several examples.
Finally Section 6 concludes the paper with some
remarks.

2 Properties of Shifted Cheby-
shev Polynomials

The well known Chebyshev polynomials are de-
fined on the interval [−1, 1] and can be deter-
mined with the aid of the following recurrence
formula [2, 4]:

Tn+1(x) = 2xTn(x)− Tn−1(x), n = 1, 2, · · ·
(2.3)

where T0(x) = 1 and T1(x) = x. The analytic
form of the Chebyshev polynomial of degree n is
given by :

Tn(x) =
n

2

[n
2
]∑

r=0

(−1)r
(n− r − 1)!

r! (n− 2r)!
(2x)n−2r. (2.4)

In order to apply the Chebyshev polynomials
in the interval [0, 1], we defined the so called
shifted Chebyshev polynomials by introducing
the change of variable t = 2x

L − 1. Let the shifted
Chebyshev polynomials Ti(

2x
L − 1) be denoted by

TL,i(x). Then TL,i(x) can be generated by using
the following recurrence relation:

TL,i+1(x) = 2(
2x

L
− 1)TL,i(x)− TL,i−1(x),

i = 1, 2, · · ·
(2.5)

where TL,0(x) = 1 and TL,1(x) =
2x
L − 1. The an-

alytic from of the shifted Chebyshev polynomials
TL,i(x) of degree i is given by

TL,i(x) = i

i∑
k=0

(−1)i−k (i+ k − 1)! 22k

(i− k)! (2k)!Lk
xk, (2.6)

where TL,i(0) = (−1)i and TL,i(L) = 1. The or-
thogonality condition is∫ L

0
TL,k(x)TL,j(x)WL(x)dx = hkδjk, (2.7)

where WL(x) = 1√
Lx−x2

and hk = ϵk
2 π, with

ϵ0 = 2, ϵi = 1, i ≥ 1. Any function u(x), square
integrable in (0, L), may be expressed in terms of
shifted Chebyshev polynomials as

u(x) = Σ∞
j=0ajTL,j(x), (2.8)

where the coefficients aj are given by

aj =
1

hj

∫ L

0
u(x)TL,j(x)WL(x)dx, j = 0, 1, 2, · · ·

(2.9)
In practice, only the first (N + 1)-terms shifted
Chebyshev polynomials are considered. Hence, if
we write

u(x) ≃ ΣN
j=0cjTL,j(x) = CTϕ(x), (2.10)

where shifted Chebyshev polynomials coefficient
vector C and the shifted Chebyshev polynomials
vector ϕ(x) are given by

CT = [c0, c1, . . . , cN ], (2.11)

ϕ(x) = [TL,0(x), TL,1(x), . . . , TL,N (x)]T , (2.12)

then the derivative of the vector ϕ(x) can be ex-
pressed by [4]

dϕ(x)

dx
= D1ϕ(x), (2.13)

where D1 is the (N + 1) × (N + 1) operational
matrix of derivative given by

D1 = (dij) =

{
4i
ϵjL

, i=j+k,

0, otherwise.
(2.14)

If N is odd k = 1, 3, 5, · · · , N , if N is even k =
1, 3, 5, · · · , N−1, for example for even N , we have
D1 as follows:

2

L



0 0 0 0 · · · 0 0
1 0 0 0 · · · 0 0
0 4 0 0 · · · 0 0
3 0 6 0 · · · 0 0
0 8 0 8 · · · 0 0
5 0 10 0 · · · 0 0
...

...
...

...
...

...
...

N − 1 0 2N − 2 0 · · · 0 0
0 2N 0 2N · · · 2N 0


(2.15)
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By using Eq. (2.3), it is clear that

dnϕ(x)

dxn
= (D1)nϕ(x), (2.16)

where n ∈ N and the superscript, inD(1), denotes
matrix power thus

D(n) = (D(1))
n
, n = 1, 2, · · · (2.17)

3 Implementation of Shifted
Chebyshev Polynomials
Method on Physiology Prob-
lems

In this section we use shifted Chebyshev vector
and its operational matrix of derivative to solve
nonlinear singular boundary value problem of the
form Eqs. (2)-(3), we approximate y(x) and g(x)
by Chebyshev polynomials as

y(x) ≃ CTϕ(x), (3.18)

g(x) ≃ GTϕ(x), (3.19)

we have
y′(x) ≃ CTD1ϕ(x), (3.20)

y′′(x) ≃ CT (D1)2ϕ(x), (3.21)

by employing Eqs. (3.18)-(2.13) in Eq. (2) we
have

CT (D′)2ϕ(x) + p(x)CTD′ϕ(x)+

q(x)(CTϕ(x)) = GTϕ(x).
(3.22)

Also by using Eqs,(3),(3.18) and (3.20) we have

α1C
Tϕ(0) + β1C

TD1ϕ(0) = γ1, (3.23)

α2C
Tϕ(1) + β2C

TD1ϕ(1) = γ2. (3.24)

Equations (3.23) and (3.24) give 2 linear equa-
tions. Since the total unknowns for vector C in
Eq. (3.22) are N + 1, we collocate that in N − 1
roots of Chebyshev polynomials as:

xp = cos
pπ

2N
, p = 1, . . . , N − 1. (3.25)

Then we have Eq. (3.22) as following system
of nonlinear equations

CT (D′)2ϕ(xp) + p(xp)C
TD′ϕ(xp)+

q(xp)(C
Tϕ(xp)) = GTϕ(xp),

p = 1, 2 · · · , N − 1.

(3.26)

Now the resulting Eqs. (3.23), (3.24) and
(3.26) generate a system of N+1 nonlinear equa-
tions which can be solved using Newton’s itera-
tive method. So we have the approximate solu-
tion of Eq. (2) with the initial conditions (3) by
Chebyshev polynomials as:

ym(x) =

N∑
j=0

cjTL,j(x) = CTϕ(x). (3.27)

4 Error Analysis

Theorem 4.1 (Chebyshev truncation theorem)
The error in approximating y(x) by the sum of
its first N terms is bounded by the sum of the
absolute values of all the neglected coefficients. If

yN (x) =

N∑
j=0

cjTL,j(x) = CTϕ(x), (4.28)

then

|ET (N)|= |y(x)− yN (x)|≤
∞∑

k=m+1

|ck|, (4.29)

for all y(x), all N , and all x ∈ [−1, 1].
Proof. See [26]. 2

Error estimate are, most of the time, obtained
for functional spaces weighed with the Chebyshev
weight, in the Hp

w(−1, 1)-norm, is found to satisfy

∥y − yN∥Hp
w(−1,1)≤ CN− 1

2
+2p−m∥u∥Hm

w (−1,1).
(4.30)

for p ≥ 1, if y ∈ Hm
w (−1, 1) for some m ≥ 1.

The constant C is independent of N . The space
Hp

w(−1, 1) is the weighted Sobolev space of order
p whose norm is defined by

∥y∥Hp
w(−1,1)= (

p∑
k=0

∫ 1

−1
|yk(x)|2w(x)dx)

1
2 . (4.31)

The functions are approximated with the colloca-
tion Chebyshev method. The first one is defined
by yα(x) = xα, 0 ≤ x < 1, yα(x) = 0, − 1 ≤
x < 0, where α > 0.

This function exhibits a singular behaviour at
the center of the interval (−1, 1) and belong to
Hm

w (−1, 1) with m < α+ 1
2 . Let eN (x) the differ-

ence between the function yα(x) and its interpo-
lation polynomials yN (x), namely,
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Table 1: Approximate and exact solutions for Example 5.1.

xi Present method N=12 Method in [20] Method in [17] Method in [12]

0.0 0.367517 0.367518 0.367516 0.367516
0.1 0.366362 0.366362 0.366362 0.366362
0.2 0.362894 0.362895 0.362894 0.362894
0.3 0.357098 0.357097 0.357097 0.357097
0.4 0.348948 0.348948 0.348948 0.348948
0.5 0.338412 0.338412 0.338412 0.338412
0.6 0.325444 0.325443 0.325443 0.325443
0.7 0.309986 0.309986 0.309986 0.309986
0.8 0.291971 0.291971 0.291971 0.291971
0.9 0.271371 0.271317 0.271317 0.271310
1.0 0.247928 0.247927 0.247927 0.247927

Table 2: Approximate and exact solutions for Example 5.2.

xi Present method N=10 Present method N=13 Method [7] M=10 Exact solution

0.1 0.683211 0.683197 0.68319682 0.68319685
0.2 0.653939 0.653927 0.65392655 0.65392646
0.3 0.606981 0.606970 0.60696936 0.60696948
0.4 0.544738 0.544727 0.54472710 0.54472718
0.5 0.470013 0.470004 0.47000366 0.47000362
0.6 0.385560 0.385663 0.38566250 0.38566248
0.7 0.294377 0.294371 0.29437106 0.29437106
0.8 0.198455 0.198451 0.19845088 0.19845093
0.9 0.099822 0.099820 0.09982033 0.09982033
1.0 2.48702× 10−17 −7.10152× 10−18 0 0

Table 3: Approximate and exact solutions for Example 5.3.

xi Present method N=4 Method [7] k=0, M=4 Exact solution

0.0 −1.32775× 10−16 −0.281 0
0.1 0.001 0.100 0.001
0.2 0.008 0.271 0.008
0.3 0.027 0.292 0.027
0.4 0.064 0.224 0.064
0.5 0.125 0.125 0.125
0.6 0.216 0.056 0.216
0.7 0.343 0.077 0.343
0.8 0.512 0.249 0.512
0.9 0.729 0.630 0.729
1.0 1 0 1

eN (x) = yα(x)− yN (x) (4.32)

Equation(4.30), give the following estimates

∥eN∥L2
w(−1, 1) ≤ C1N

− 1
2
−α, (4.33)

∥eN∥L∞(−1, 1) ≤ C2N
−α, (4.34)

∥eN∥H1
w(−1, 1) ≤ C3N

1
2
−α. (4.35)

where C1, C2 and C3 are positive constants in-
dependent of N . The continuous L2

w(−1, 1) and
H1

w(−1, 1) norms are calculated by evaluating the
value of the interpolating polynomial uN (x) and
its derivative y

′
N (x) on the M +1 Gauss-Lobatto

points xj = cosπjM , j = 0, 1, · · ·M with M
much larger than N . Then the integrals are eval-
uated by means of the Gauss-Lobatto based on
the points xj , j = 0, 1, · · ·M . In an analogous
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Table 4: Approximate and exact solutions for Example 5.4.

xi Present method Method [21] Method [7] Exact solution
with N=11 with M=3, K=2 with M=10, K=0 of J0(x)

0.1 0.997501562 0.997502 0.997501562 0.997501562
0.2 0.990024972 0.990024 0.990024972 0.990024972
0.3 0.977626246 0.977625 0.977626246 0.977626246
0.4 0.960398226 0.960396 0.960398226 0.960398226
0.5 0.938469807 0.938468 0.938469807 0.938469807
0.6 0.912004863 0.912004 0.912004863 0.912004863
0.7 0.881200888 0.881200 0.881200888 0.881200888
0.8 0.846287352 0.846285 0.846287352 0.846287352
0.9 0.807523798 0.807524 0.807523798 0.807523798
1.0 0.765197686 0.765197 0.765197686 0.765197686

Table 5: Approximate and exact solutions for Example 5.5.

xi Present method N=7 Method [6] N=13 Method [13] N=14 Method [9] N=20

0.0 0.828483 0.828483 0.828432 0.828483
0.1 0.829706 0.829706 0.829706 0.829706
0.2 0.833375 0.833374 0.833374 0.833374
0.3 0.839489 0.839489 0.839489 0.839473
0.4 0.848053 0.848052 0.848052 0.848052
0.5 0.859065 0.859064 0.859064 0.859064
0.6 0.872528 0.872528 0.872528 0.872528
0.7 0.888445 0.888445 0.888445 0.888445
0.8 0.906819 0.906818 0.906818 0.906818
0.9 0.927951 0.927950 0.927650 0.927650
1.0 0.950946 0.950945 0.950957 0.950945

way, the L∞(1, 1)-norm is calculated by taking
the maximum of eN (x) on the aboveM+1 Gauss-
Lobatto points. Numerical estimates of the order
of the error, namely,eN = O(N−q).

Theorem 4.2 Suppose X = C[0, 1] and
Y be Banach spaces with the norm ∥z∥=
max|z(x)|, x ∈ X. Let N : X → Y which sat-
isfies the Lipschitz condition

∥y(x1)− y(x2)∥≤ β∥x1 − x2∥, ∀x1, x2, 0 ≤ β < 1.
(4.36)

If we assume the ∥y0∥< ∞, then the sequence
sn = C + N(sn−1), converges to the exact
solution y.

Proof : See [23].

Now we have to prove that the result is
true for n = k + 1.

Hence the result is true for all values of n.
We complete the proof by showing that sn is a
Cauchy sequence on the Banach space X.

For every m,n ∈ N,m ≤ n, we have

∥sn − sm∥= ∥(sn − sn−1) + (sn−1 − sn−2) +
. . . (sm+1 − sm)∥

≤ ∥sn − sn−1∥+∥sn−1 − sn−2∥+ . . .+ ∥sm+1 −
sm∥

≤ βn−1∥y0∥+βn−2∥y0∥+ . . . +
βm−+1∥y0∥+βm∥y0∥

≤ ∥y0∥βm(1 + β + β2 + . . .+ βn−1−m)

≤ ∥y0∥βm(1−βn−m

1−β ).

since 0 < β < 1, 1− βn−m < 1 and ∥y0∥< ∞,

∥sn − sm∥≤ ∥y0∥
βm

1− β
. (4.37)

Taking limit as n,m → ∞,

lim
n,m→∞

∥sn − sm∥= 0. (4.38)

Therefore, sn is a Cauchy sequence in the Ba-
nach space X. This implies that the series solu-
tion ym(x) =

∑N
j=0 cjTL,j(x) = CTϕ(x) by the

present method is convergent to exact solution y
. 2
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5 Numerical examples

To illustrate the effectiveness of the proposed
methods in the present paper, several test exam-
ples are carried out in this section.

Example 5.1 Consider this problem that is co-
incided by heat conduction model of the human
head,

y′′(x) +
2

x
y′(x) = −e−y. (5.39)

we consider the solution this problem with condi-
tion as follows:

y′(0) = 0, y(1) + y′(1) = 0. (5.40)

In this example, we do not have exact solution.
We solved this equation by presented method and
compared our results by method of [12, 17, 20].
The results can be seen in Table 1.

Example 5.2 Consider the singular boundary
value problem for 0 ≤ x ≤ 1 as:

y′′(x)+
0.5

x
y′(x) = ey(x)(0.5−ey(x)), (5.41)

y(0) = ln(2), y(1) = 0. (5.42)

which has the exact solution y(x) = ln( 2
x2+1

). We
applying the method with N = 10, N = 13 and
compared the results by Wavelet method results
on paper [7]. The numerical results can be seen
in Table 2.

Example 5.3 Consider the singular boundary
value problem, which has been considered in [7]
for x ∈ (0, 1] as:

y′′(x)+e
1
x y′(x)+y(x) = 6x+x3+3x2e

1
x , (5.43)

y(0) = 0, y(1) = 1. (5.44)

The exact solution of this problem is

y(x) = x3. (5.45)

We solve this problem by applying the presented
method with N = 4 and compared the results by
results of method [7] in Table 3. As its clear from
the table present method has exact solutions by
small number of basis and has very better results
than previous method.

Example 5.4 Consider the Bessel differential
equation of order zero [21, 7]

xy′′(x) + y′(x) + xy(x) = 0, x ∈ (0, 1] (5.46)

y(0) = 1, y′(0) = 0. (5.47)

A solution known as the Bessel function of the
first kind of order of zero denoted by J0(x) is

J0(x) =

∞∑
q=0

(−1)q

(q! )2
(
x

2
)2q. (5.48)

Table 4 compares the y(x) obtained by the pro-
posed method in this paper and the method of
[21] and [7].

Example 5.5 Consider the following oxygen dif-
fusion problem

y′′(x) +
2

x
y′(x) =

0.76129y

y + 0.03119
, (5.49)

y′(0) = 0, 5y(1) + y′(1) = 5. (5.50)

As this problem is a real world problem we don’t
have its exact answer, because of this we com-
pare different numerical method answers for this
example [6, 13, 9] that are presented in Table 5.

6 Conclusion

In this paper, we implemented an efficient numer-
ical method for solving the singular nonlinear dif-
ferential equations. The properties of the Cheby-
shev polynomials matrix of derivative are used to
reduce the differential equations to a system of
algebraic equations. The convergence analysis of
the proposed method is introduced. From illus-
trative examples, it can be seen that the proposed
numerical approach can obtain very accurate and
satisfactory results and has better results analogy
to other existed methods.
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