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Abstract

This paper proposes a numerical method to deal with the two-dimensional hyperbolic equations with
nonlocal integral conditions. The nonlocal integral equation usually is of major challenge in the frame
work of the numerical solutions of partial differential equations. The method benefits from collocation
radial basis function method, the generalized thin plate splines (GTPS) radial basis functions are used.
Therefore, it does not require any struggle to determine shape parameter (In other RBFs, it is time-
consuming step). The present technique is one of the truly meshless methods in where it does not
require any background integration cells over local or global domains and it is in contrast to weak
form methods in where all integrations are carried out locally or globally over quadrature domains of
regular shapes, such as lines in one dimensions, circles or squares in two dimensions and spheres or
cubes in three dimensions. The obtained results for some numerical examples reveal that the proposed
technique is very effective, convenient and quite accurate to such considered problems.

Keywords : Radial basis function; Hyperbolic equations with purely integral conditions; Kansa method;
Finite differences θ− method.
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1 Introduction

T
his paper is devoted to the numerical compu-
tation of the two-dimensional equation. In

the domain D = {(x, y, t) : 0 < x < l , 0 < y <
l , 0 < t < T}, we consider a third order two
dimensional hyperbolic equation:

∂2u

∂t2
=
∂2u

∂x2
+
∂2u

∂y2
+ f(x, y, t), (1.1)
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with initial conditions

u(x, y, 0) = g(x, y) ,
∂u

∂t
(x, y, 0) = h(x, y) ,

(1.2)
and nonlocal (integral) boundary conditions∫ l

0
u(x, y, t) dx = 0 ,

∫ l

0
x u(x, y, t) dx = 0,

(1.3)∫ l

0
u(x, y, t) dy = 0 ,

∫ l

0
y u(x, y, t) dy = 0,

(1.4)
where f, g and h are given functions.
Many problems in science and engineering mod-
elled as differential equations. Solving equations
by traditional numerical methods such as finite
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difference (FDM), finite element (FEM) needs
generation of a regular mesh in the domain of
the problem which is computationally expensive
[1, 2, 3, 4, 5]. During the last decade, mesh-
less methods have received much attention. Due
to the difficulty of the mesh generation problem,
meshless methods for simulation of the numeri-
cal problems are employed. Radial basis func-
tions (RBFs) interpolation is a technique for rep-
resenting a function starting with data on scat-
tered points [6, 7, 8, 9, 10, 11]. The RBFs can
be of various types, such as: polynomials of a
given degree; linear, quadratic, cubic, etc; thin
plate spline (TPS), multiquadrics (MQ), inverse
multiquadrics (IMQ), Gaussian forms (GA), etc.
Most differential equations do not have exact an-
alytic solutions, so approximation and numerical
techniques must be used.

Development of constructive methods for the
numerical solution of mathematical problems is a
main branch of mathematics. Meshless methods
have attracted much attention in the both mathe-
matics and engineering community, recently. Ex-
tensive developments have been made in sev-
eral varieties of meshless techniques and ap-
plied to many applications in science and en-
gineering. These methods exist under differ-
ent names, such as: the diffuse element method
(DEM) [12], the hp-cloud method [13], Meshless
Local Petrov-Galerkin (MLPG) method [14, 15,
16], the meshless local boundary integral equa-
tion (LBIE) method [17], the partition of unity
method (PUM) [18], the meshless collocation
method based on radial basis functions (RBFs)
[19, 20, 21, 22], the smooth particle hydrody-
namics (SPH)[23], the reproducing kernel particle
method (RKPM) [24], the radial point interpola-
tion method [25], meshless local radial point in-
terpolation method (MLRPI) [26, 27], and so on.
Recently, increasing attention has been paid to
the development, analysis, and implementation
of stable methods for the numerical solutions of
hyperbolic equations. There have been many nu-
merical methods for hyperbolic equations, such
as the finite difference, the finite element, and
the collocation methods, etc. [19, 27]. Mohanty
et al. [31, 32] developed some alternating di-
rection implicit schemes for the two- and three-
dimensional linear hyperbolic equations. Most of

these schemes are second-order accurate in both
space and time.
The first investigation of this type of problems in
one-dimensional case, goes back to [33] in 1996,
in which the author proved the existence, unique-
ness, and continuous dependence of the solution
upon the data of certain hyperbolic problems
with only integral boundary conditions. Later,
similar problems have been studied in [34, 35] by
using the energetic method and the Rothe time-
discretization method. We refer the reader to
[28, 29, 31, 33, 34, 36, 37, 39, 41, 42] for hyper-
bolic equations with Neumann and integral con-
dition. For other problems with nonlocal con-
ditions, related to other equations, we refer to
[28, 29, 30, 33] and references therein.

2 Basic Definitions

For implementation of this method, we need the
following definitions.

Definition 2.1 Radial basis functions
Considering a finite set X ⊆ Rd and a function
u : X → Rd, according to the process of interpo-
lation using radial basis functions [6], the inter-
polant of u is constructed in the following form:

(Su)(x) =
M∑
i=1

λiφ(∥x− xi∥) + p(x), x ∈ Rd,

where ∥.∥ is the Euclidean norm and φ(∥.∥) is a
radial function.

Also, p(x) is a linear combination of polynomials
on Rd of total degree at most m− 1 as follows:

p(x) =

M+l∑
j=M+1

λjqj(x), l = (m+d−1
d ).

Moreover, the interpolant Su and additional con-
ditions must be determined to satisfy the system:

(Su)(xi) = u(xi) , i = 1, 2, . . . ,M
M∑
i=1

λiqj(xi) = 0, , ∀qj ∈ Πd
m−1

(2.5)
where Πd

m−1 denotes the space of all polynomials
on Rd of total degree at mostm−1. Now we have
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a unique interpolant (Su) of u if φ(r) is a condi-
tionally positive definite radial basis function of
order m. Some of the most important radial basis
functions are shown in Table (1) (c is shape pa-
rameter). We will use the generalized thin plate
splines(GTPS) which have the following form:

φ(∥x− xi∥) = φ(ri) = r2mi log(ri),
, i = 1, 2, 3, . . . ,m = 1, 2, 3, . . . ,

(2.6)

that in two-dimensional case we have

rij =
√

(xi − xj)2 + (yi − yj)2.

We note that φ is C2m−1 continuous. Therefore,
the higher order of partial differentials needs the
higher order of thin plate splines. As u(x) can be
approximated by

u(x) ∼=
∑
xi∈X

λiφ(∥x− xi∥) + p(x),x ∈ Rd, (2.7)

For any partial differential operator L, Lu can be
represented by:

Lu(x) =
∑
xi∈X

λiLφ(∥x− xi∥) + Lp(x),x ∈ Rd.

(2.8)
The coefficients λi will be obtained by solving the
system of linear equations.

Remark 2.1 Note that θ = 0 gives the explicit
scheme, θ = 1

2 the Crank-Nicolson, and θ = 1 a
fully implicit backward time-difference method.
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Figure 1: Numerical solution and exact solution
at time t = 1s and yl = 1 for Example 4.1. with
∆t = 1

50 and h = 1
50 .
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Figure 2: Comparison between exact and nu-
merical solutions for the Example 4.1 with M =
100, θ = 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

x

u
(
x
,
y
,
t
)

 

 

Numerical solution
Exact solution

Figure 3: Numerical solution and exact solution
at time t = 2s and yl = 1 for Example 4.2 with
∆t = 1

50 and h = 1
50 .

3 Discretization of the equation

Consider the two-dimensional equation

∂2u

∂t2
=
∂2u

∂x2
+
∂2u

∂y2
+ f(x, y, t),

with u(x, y, t) in the region Ω = {(x, y) : 0 <
x < l , 0 < y < l }, for t > 0 and mentioned ini-
tial conditions and nonlocal (integral) boundary
conditions.
According to definitions (2.1) and remark (2.1),
from eq. (1.1) and θ-method we get:

∂u(x, y, tn+1)

∂t2
= [θ∇2un+1 + (1− θ)∇2un],

+fn+1,
(3.9)
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Figure 4: Comparison between exact and nu-
merical solutions for the Example 4.2 with M =
50, θ = 0.5.

where ∇2 is the laplacian operator and 0 ≤ θ ≤ 1.
In the current work, we employ a time-stepping
scheme to approximate the time derivative. For
this purpose, the following finite difference ap-
proximation can be used:

∂2u(x, t)

∂t2
∼=

1

(∆t)2
(
un+1(x)− 2un(x)

+un−1(x)
)
.

(3.10)

By substituting finite difference for left hand into
(3.9) we have:

un+1 − 2un + un−1

(∆t)2
= [θ∇2un+1

+(1− θ)∇2un] + fn+1,
(3.11)

that ∆t is the time step size and

un = u(x, y, tn), tn+1 = tn +∆t,

fn+1 = f(x, y, tn+1),

and for (∆t)2 = µ:

un+1 − µθ∇2un+1 = 2un − un−1+
µ(1− θ)∇2un + µfn+1.

(3.12)

In other words, we get:

(1− µθ∇2)un+1 = 2un − un−1

+µ(1− θ)∇2un + µfn+1.
(3.13)

From (3.11) we have:

un+1 − 2un + un−1

(∆t)2
= θ

(
∂2un+1(x)

∂x2
+

∂2un+1(x)

∂y2

)
+ (1− θ)

(
∂2un(x)

∂x2

+
∂2un(x)

∂y2

)
+ fn+1,

(3.14)

and for (∆t)2 = µ:

un+1 − µθ

(
∂2un+1(x)

∂x2
+
∂2un+1(x)

∂y2

)
=

2un + µ(1− θ)

(
∂2un(x)

∂x2
+
∂2un(x)

∂y2

)
−un−1 + µfn+1.

(3.15)
Now, according to the mentioned method in two-
dimensional case, we have:

un+1(x, y) =
M−1∑
j=1

λn+1
j φ(rj) + λn+1

M x

+λn+1
M+1y + λn+1

M+2,

(3.16)

and the collocation method is used at every point
(xi, yi), i = 1, 2, ...,M − 1 ,we have

un+1(xi, yi) =
M−1∑
j=1

λn+1
j φ(rij) + λn+1

M xi

+λn+1
M+1yi + λn+1

M+2.
(3.17)

Three additional conditions can be described as:

M−1∑
j=1

λn+1
j =

M−1∑
j=1

λn+1
j xj =

M−1∑
j=1

λn+1
j yj = 0.

(3.18)
Finally, by combining equations (3.17), (3.18), we
obtain a matrix form:

[u]n+1 = A[λ]n+1, (3.19)

where:

[u]n+1 = [un+1
1 , un+1

2 , . . . , un+1
M−1, 0, 0, 0]

T ,

and

[λ]n+1 = [λn+1
1 , λn+1

2 , . . . , λn+1
M+2]

T ,

and the matrix A = (aij)(M+2)×(M+2) is given by:

A =

[
Φ P
P T O3

]
. (3.20)
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By substituting (3.16) into (3.11), (3.12) and con-
sidering (3.18) and initial and boundary condi-
tions we obtain a matrix form:

[c]n+1 = B[λ]n+1, (3.21)

where:

[c]n+1 = [cn+1
1 , cn+1

2 , . . . , cn+1
M−1, 0, 0, 0]

T

and the matrices A and B are given in detailed
after Table 2. In other form

B =

[
L(Φ) L(P )
P T O3

]
. (3.22)

where L represents an operator given by

L(∗) =
{

(1− µθ∇2)(∗), 1 < i < M − 1,
(∗), i = 1ori =M − 1,

(3.23)
and

cn+1
i =


2un − un−1 + µ(1− θ)∇2un

+µfn+1, n ≥ 0, 1 < i < M − 1,
g(xi, t

n+1) i = 1 or i =M − 1.
(3.24)

For solving the system (3.21) we need other nec-
essary equations that discuss below and then we
find (M +2) unknowns λn+1

j then with (3.16) we
approximate the value of u.
For purely integral conditions, we have:∫ l

0
u(x, y, t)dx = 0,

∫ l

0
xu(x, y, t)dx = 0, (3.25)

and∫ l

0
u(x, y, t)dy = 0,

∫ l

0
yu(x, y, t)dy = 0, (3.26)

that with discretization:∫ l
0 u

n(x, y, t)dx = 0,∫ l
0 xu

n(x, y, t)dx = 0, 0 < x < l,
(3.27)

and ∫ l
0 u

n(x, y, t)dy = 0,∫ l
0 yu

n(x, y, t)dy = 0, 0 < y < l,
(3.28)

We have four equations that with numerical inte-
gration methods we obtain to values of u on the

boundary.

A =

φ11 · · · φ1j · · ·
...

. . .
...

. . .

φi1 · · · φij · · ·
...

. . .
...

. . .

φ(M−1)1 · · · φ(M−1)j ·
x1 · · · xj · · ·
y1 · · · yj · · ·
1 · · · 1 · · ·

(3.29)

φ1(M−1) x1 y1 1
...

...
...

...
φi(M−1) xi yi 1

...
...

...
...

φ(M−1)(M−1) xM−1 yM−1 1

xM−1 0 0 0
yM−1 0 0 0
1 0 0 0

.

B =

L(φ11) · · · L(φ1j) · · ·
...

. . .
...

. . .

L(φi1) · · · L(φij) · · ·
...

. . .
...

. . .
...

...
...

...
L(φ(M−1)1) · · · L(φ(M−1)j) · · ·

x1 · · · xj · · ·
y1 · · · yj · · ·
1 · · · 1 · · ·

(3.30)
L(φ1(M−1)) L(x1) L(y1) L(1)

...
...

...
...

L(φi(M−1)) L(xi) L(yi) L(1)
...

...
...

...
L(φ(M−1)(M−1)) L(xM−1) L(yM−1) L(1)

xM−1 0 0 0
yM−1 0 0 0
1 0 0 0

.

Remark 3.1 At the first time level, when n =
0, according to the initial conditions that were
introduced in Eq. (1.2), we apply the following
assumptions:

u(0) = u(x, y, 0) = g(x, y),

and
u−1 = u1 − 2(∆t)h(x, y),
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Table 1: Some types of RBF functions.

Name Abbreviation Formula

Cubic CU φ(r) = r3

Generalized Thin plate splines GTPS φ(r) = r2m log(r), m ∈ N

Inverse quadrics(or Cauchy) IQ φ(r) =
1

c2 + r2

Multi-quadrics MQ φ(r) =
√
c2 + r2

Inverse Multi-quadrics IMQ φ(r) =
1√

c2 + r2

Gaussian RBF GA φ(r) = exp(−r2/c2)

Table 2: The L1, L2 and L∞ errors for Example 4.1. with different ∆x,∆y and ∆t at time t = 1s.

∆t h ∥ e ∥∞ ∥ e ∥2 ∥ e ∥1
1

10

1

10
3.123345e− 01 4.741428e− 01 6.321501e− 01

1

20

1

20
2.612115e− 02 8.307718e− 02 2.453231e− 01

1

50

1

50
3.604830e− 03 1.005214e− 02 4.482354e− 02

1

100

1

100
2.761684e− 04 6.338475e− 04 3.758741e− 03

Table 3: The L1, L2 and L∞ errors for Example 4.2 with different ∆x,∆y and ∆t at time t = 2s.

∆t h ∥ e ∥∞ ∥ e ∥2 ∥ e ∥1
1

10

1

10
5.345578e− 02 8.963640e− 02 3.337215e− 01

1

20

1

20
4.834327e− 03 9.521487e− 03 4.678523e− 02

1

50

1

50
5.826059e− 04 2.143351e− 03 6.604587e− 03

1

100

1

100
4.2145783e− 05 8.521543e− 05 5.125897e− 04

because

u0t = h(x, y) ∼=
u1 − u−1

2(∆t).

Remark 3.2 The Laplacian operator ∇2 for φ
function is given by

∇2(φ(r)) = ∂φ
∂r

(
∂2r
∂x2 + ∂2r

∂y2

)
+∂2φ

∂r2

[(
∂r
∂x

)2
+

(
∂r
∂y

)2
]
,

(3.31)

Remark 3.3 The derivatives of u(x) are easily
obtained and discretization of ∇2 is as follows:

∂2u(x)

∂x2
=

∑M−1
j=1 λn+1

j

∂2φ(rj)

∂x2
,

∂2u(x)

∂y2
=

∑M−1
j=1 λn+1

j

∂2φ(rj)

∂y2
.

(3.32)

therefore,

∇2u(x) =
∂2u(x)

∂x2
+
∂2u(x)

∂y2
=

∑M−1
j=1 λn+1

j

(
∂2φ(rj)

∂x2
+
∂2φ(rj)

∂y2

)
=

∑M−1
j=1 ψ(rj),

(3.33)

Thus, substituting the collocation points gives

∇2u(xi) =

M−1∑
j=1

ψ(rij), (3.34)
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4 Numerical examples

In this section the numerical results obtained
from application of the method for solving the
two-dimensional equation with purely integral
conditions are presented.

Example 4.1 In the domain D = {(x, y, t) :
0 < x < 1, 0 < y < 1, 0 < t < T}, we consider eq.
(1.1) with initial conditions

u(x, y, 0) = g(x, y) = 0,

∂u

∂t
(x, y, 0) = h(x, y) = 0,

(4.35)

and nonlocal (integral) boundary conditions∫ 1

0
u(x, y, t)dx = 0,

∫ 1

0
xu(x, y, t)dx = 0,

(4.36)∫ 1

0
u(x, y, t)dy = 0,

∫ 1

0
yu(x, y, t)dy = 0,

(4.37)
where the exact solution is given by:

u(x, y, t) = t3cos(4πx)cos(4πy),

0 < x < 1, 0 < y < 1, 0 < t < T.

The function f with the initial and purely inte-
gral conditions can be obtained by using the exact
solution, where f(x, y, t) is defined:

f(x, y, t) = (6t+ 32π2t3)cos(4πx)cos(4πy),

Example 4.2 In the domain D = {(x, y, t) :
0 < x < 1, 0 < y < 1, 0 < t < T}, we consider eq.
(1.1) with initial conditions

u(x, y, 0) = g(x, y) = cos(πx)cos(πy),
∂u

∂t
(x, y, 0) = h(x, y) = −cos(πx)cos(πy),

(4.38)
and nonlocal (integral) boundary conditions∫ 1

0
u(x, y, t)dx = 0,

∫ 1

0
xu(x, y, t)dx = 0,

(4.39)∫ 1

0
u(x, y, t)dy = 0,

∫ 1

0
yu(x, y, t)dy = 0,

(4.40)

where the exact solution is given by:

u(x, y, t) = exp(−t)cos(πx)cos(πy),

0 < x < 1, 0 < y < 1, 0 < t < T.

The function f with the initial and purely inte-
gral conditions can be obtained by using the exact
solution, where f(x, y, t) is defined:

f(x, y, t) = exp(−t)(1 + 2π2)cos(πx)cos(πy),

5 Conclusions

In this paper we have presented a numerical
scheme based on meshless collocation radial basis
function (so-called Kansa’s method) to solve two
dimensional equation with purely integral condi-
tions. The θ−method has been applied to deriva-
tive. The method has been tested on two illustra-
tive numerical examples. The computational re-
sults are found to be in good agreement with the
exact solutions. In the current work, to demon-
strate the accuracy and usefulness of this method,
two numerical examples have been presented. As
demonstrated by the computational results, it is
very easy to implement the proposed method for
similar problems.
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unity finite element method: basic theory
and applications, Comput. Methods Appl.
Mech. Engrg. 139 (1996) 289-314.

[19] E. J. Kansa, Multiquadrics-A scattered data
approximation scheme with applications to
computational fluid-dynamics II solutions to
parabolic, hyperbolic and elliptic partial dif-
ferential equations, J. Comput. Math. Appl.
19 (1990) 147-161

[20] Z. Avazzadeh, V. R. Hosseini, W. Chen, Ra-
dial basis functions and FDM for solving
fractional diffusion-wave equation, IRAN J.
SCI. TECHNOL. A 38 (2014) 205-212

[21] H. R. Shooroki, R. R. Meybodi, S. M. Kar-
bassi, G. B. Loghmani, Numerical solution
of Reynold’s equation governing noncircular
gas bearing system using radial basis func-
tion, IRAN J. SCI. TECHNOL. A 38 (2014)
389-397

[22] M. Ghasemi, Numerical technique for
integro-differential equations arising in oscil-
lating magnetic fields, IRAN J. SCI. TECH-
NOL. A 38 (2014) 473-479

[23] L. B. Lucy, A numerical approach to the test-
ing of fusion process, Astron. J. 88 (1977)
1013-1024.



E. Shivanian et al., /IJIM Vol. 11, No. 1 (2019) 25-34 33

[24] W. K. Liu, S. Jun, Y. F. Zhang, Reproduc-
ing kernel particle methods, Int. J. Numer.
Methods Fluids 21 (1995) 1081-1106.

[25] G. R. Liu, Mesh Free Methods: Moving be-
yond the Finite Element Method, CRC Press
(2003).

[26] E. Shivanian, Analysis of meshless local ra-
dial point interpolation (MLRPI) on a non-
linear partial integro-differential equation
arising in population dynamics, Eng. Anal.
Boundary. Elem. 37 (2013) 1693-1702.

[27] M. Dehghan, A. Ghesmati, Numerical sim-
ulation of two-dimensional sine-gordon soli-
tons via a local weak meshless technique
based on the radial point interpolation
method (RPIM), Computer Physics Com-
munications 181 (2010) 772-786.

[28] M. Ciment, S. H. Leventhal, Higher order
compact implicit schemes for the wave equa-
tion, Math. Comp. 29 (1975) 985-994.

[29] M. Ciment, S. H. Leventhal, A note on the
operator compact implicit method for the
wave equation, Math. Comp. 32 (1978) 143-
147.

[30] G. Dahlquist, On accuracy and uncondi-
tional stability of linear multi-step methods
for second order differential equations, BIT
18 (1978) 133-136.

[31] R. K. Mohanty, M. K. Jain, An uncondi-
tionally stable alternating direction implicit
scheme for the two space dimensional linear
hyperbolic equation, Numer. Methods PDEs
17 (2001) 684-688.

[32] R. K. Mohanty, M. K. Jain, U. Arora, An
unconditionally stable ADI method for the
linear hyperbolic equation in three space di-
mensions, Int. J. Comput. Math. 79 (2002)
133-142.

[33] A. Bouziani, Problemes mixtes avec condi-
tions integrales pour quelques equations aux
derivees partielles, Ph.D. thesis, Constantine
University, (1996).

[34] A. Bouziani, Initial-boundary value problem
with nonlocal condition for a viscosity equa-
tion, Int. J. Math. and Math. Sci. 30 (2002)
327-338.

[35] A. Bouziani, On the solvabiliy of parabolic
and hyperbolic problems with a boundary
integral condition, Internat. J. Math. and
Math. Sci. 31 (2002) 435-447.

[36] A. Bouziani, On a class of nonclassical hy-
perbolic equations with nonlocal conditions,
J. Appl. Math. Stochastic Anal. 15 (2002)
136-153.

[37] A. Bouziani, Mixed problem with only inte-
gral boundary conditions for an hyperbolic
equation, Internat. J. Math. and Math. Sci.
26 (2004) 1279-1291.

[38] D. G. Gordeziani, G. A. Avalishvili, Solution
of nonlocal problems for one-dimensional
oscillations of a medium, Mat. Model. 12
(2000) 94-103.

[39] S. Meslounb, A. Bouziani, On a class of sin-
gular hyperbolic equation with a weighted
integral condition, Int. J. Math. Math. Sci.
22 (1999) 511-519.

[40] L. S. Pul’kina, A non-local problem with in-
tegral conditions for hyperbolic equations,
Electron. J. Differential Equations 45 (1999)
1-6.

[41] L. S. Pul’kina, On the solvability in L2 of a
nonlocal problem with integral conditions for
a hyperbolic equation, Differ. Equ. 36 (2000)
316-318.

[42] A. Merad, A. Bouziani, Solvability the tel-
geraph equation with purely integral condi-
tions, TWMS J. App. Eng. Math. 3 (2013)
245-253.

[43] G. Liu, Y. Gu, An introduction to mesh-
free methods and their programing, Springer
(2005).

[44] M. Dehghan, A. Shokri, A numerical method
for solution of the two dimensional sine-
Gordon equation using the radial basis func-
tions, Mathematics and Computers in Simu-
lation 79 (2008) 700-715.



34 E. Shivanian et al., /IJIM Vol. 11, No. 1 (2019) 25-34

Dr. Elyas Shivanian was born
in Zanjan province, Iran in Au-
gust 26, 1982. He started his mas-
ter course in applied mathemat-
ics in 2005 at Amirkabir Univer-
sity of Technology and has fin-
ished MSc. thesis in the field

of fuzzy linear programming in 2007. After
his Ph.D. in the field of prediction of multi-
plicity of solutions to the boundary value prob-
lems, at Imam Khomeini International Univer-
sity in 2012, he became an Assistant Profes-
sor at the same university. His research inter-
ests are analytical and numerical solutions of
ODEs, PDEs and IEs. He has published sev-
eral papers on these subjects. He also has pub-
lished some papers in other fields, for more infor-
mation see please http://scholar.google.com/
citations?user=MFncks8AAAAJ&hl=en

Mohammad Aslefallah is cur-
rently a PhD candidate in Numer-
ical Analysis at the Department
of Applied Mathematics, Imam
Khomeini International Univer-
sity, Qazvin, Iran. He received
his BS and MSc degree in ap-

plied mathematics at Imam Khomeini Interna-
tional University. Main research interest in-
cludes Numerical analysis, Differential equations,
Meshless methods, Fractional calculus and so
on. He has several papers on these sub-
jects. More details about his papers may be
found online at http://scholar.google.com/

citations?user=ryuYG2IAAAAJ&hl=en

http://scholar.google.com/citations?user=MFncks8AAAAJ&hl=en 
http://scholar.google.com/citations?user=MFncks8AAAAJ&hl=en 
http://scholar.google.com/citations?user=ryuYG2IAAAAJ&hl=en
http://scholar.google.com/citations?user=ryuYG2IAAAAJ&hl=en

	Introduction
	Basic Definitions
	Discretization of the equation
	Numerical examples
	Conclusions

