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Abstract

This paper uses a new framework for solving a class of linear matrix differential equations. For doing
so, the operational matrix of the derivative based on the shifted Bernstein polynomials together with
the collocation method are exploited to decrease the principal problem to system of linear matrix
equations. An error estimation of this method is provided. Numerical experiments are reported to
show the applicably and efficiency of the propounded method.
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1 Introduction

I
n this paper, we focus on the following first-
order linear matrix differential problem:{
P ′(t) = A(t)P (t) +B(t), a ≤ t ≤ b,
P (a) = P0,

(1.1)

Where P ∈ Rp×q is an unknoun matrix, the
matrices P0 ∈ Rp×q, A : [a, b] → Rp×p and
B : [a, b] → Rp×q are given. Let us assume that
in (1.1), A,B ∈ Cs([a, b]) for s ≥ 1 which guar-
antees the existence of a unique and continuously
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differentiable solution P (t) of (1.1); for more de-
tails see [15].

Considering the fundamental role of matrix dif-
ferential models in the numerous areas of Mathe-
matics, Chemistry, Physics and Engineering, de-
velopment and implementation of the accurate
methods for solving these equations are the sub-
ject of interest and have been examined inten-
sively in the literature; see [1, 2, 10, 11, 16, 26]
and the references therein.

The matrix differential equations are widely
used for modelling the complex real world prob-
lems occurring in scientific and engineering ap-
plications. Thus these equations are an impor-
tant aspect which finds many applications. So,
we presented to solve the numerical method of
this equations. It is clear that the collection
methods are the specific type of spectral meth-
ods. These methods have been used for solv-
ing various types of the differential and integral
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equations. Simple usage and high accuracy are
the two main advantages of the collocation meth-
ods. In fact, the collocation methods take ad-
vantage of an assumption of smoothness of the
solution in random space to achieve quick con-
vergence. For further details see [8, 9]. How-
ever, the numerical implementation of stochas-
tic collocation is trivial, because it requires only
repetitive runs of an existing deterministic solver,
similar to Monte Carlo methods. The computa-
tional cost of the collocation methods depends on
the choice of the collocation points, so we present
two different collocation points. The main pur-
pose of the current study is to implement the col-
location method for evaluating a rough solution
for the linear matrix differential equations given
by (1.1). In this regard, first, each entry of the
approximate solution P (t) is expanded in terms
of the Bernstein polynomials. Afterwards, with
the appropriate collocation knots and properties
of the Bernstein polynomials, we arrive at a sys-
tem of linear matrix equations. Therefore, the
computations can be simply solved and the un-
known coefficients will be calculated by solving
the matrix equations. In this paper results er-
ror are about 10−13. The structure of this pa-
per is organized as follows. Section 2, presents a
brief survey on some preparatory definitions and
concepts of the Bernstein polynomials which are
required for our subsequent development. Then,
we present the operational matrix of derivative of
the Bernstein’s polynomials. In Section 3, first, it
reveals that how the Bernstein polynomials can
be implemented to reduce solving (1.1) into re-
solving matrix equations. In addition, an upper
error bound for the approximated solution ob-
tained by our method is established. Section 4
is devoted to reporting some numerical examples
which turn out the accuracy of the proposed nu-
merical scheme for solving (1.1). Eventually, the
paper is ended with a brief conclusion in Section
5.

2 An overview on Bernstein
polynomials

In this section we will first outline some of the ba-
sic definitions and properties of Bernstein’s poly-
nomials. Then, we derive the operational matrix

of derivative of the Bernstein’s polynomials.
The Bernstein polynomials of m-th degree are

defined on the interval [0, 1] as follows [7]

Bi,m(x) =

(
m

i

)
xi(1− x)m−i, 0 ≤ i ≤ m,(

m

i

)
=

m!

i! (m− i)!
.

A recursive definition also can be used to gener-
ate the Bernstein polynomials over [0, 1], so that
the i, m-th degree Bernstein polynomial can be
written as

Bi,m(x) = (1− x)Bi,m−1(x) + xBi−1,m−1(x).

It can be readily shown that each of the Bern-
stein polynomials is unity for all real x belonging
to the interval [0, 1], that is,

∑m
i=0Bi,m(x) = 1.

In order to utilize these polynomials on an arbi-
trary interval [a, b], we define the so-called shifted
Bernstein polynomials by applying the change of
variable

x =
(t− a)

h
, a ≤ t ≤ b,

where h = b− a. Consequently,

Bi,m(t) =

(
m

i

)(
t− a

h

)i(
1−

(
t− a

h

))m−i

=
1

hm

(
m

i

)
(t− a)i(b− t)m−i.

Presume that H := L2[a, b] and

Y = span{B0,m, B1,m, · · · , Bm,m},

where m ∈ N ∪ {0} and Bi,m’s are the Bern-
stein polynomials. Since Y ⊂ H is a finite di-
mensional vector space, for every u ∈ H, there
exists a unique g ∈ Y such that

∥u− g∥2≤ ∥u− y∥2 ∀y ∈ Y,

in which ∥u∥2=
√

⟨u, u⟩. Here, the function g is
called the best approximation to u out of Y . As
g ∈ Y , we may conclude that

u(t) ≈ g(t) =
m∑
j=0

CjBj,m(t) = CTΨ(t),

where

ΨT (t) = (B0,m(t), B1,m(t), · · · , Bm,m(t)) , (2.2)
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and CT = (c0, c1, · · · , cm) such that CT uniquely
calculated by

CTQ =

∫ b

a
u(t)Ψ(t)dt, (2.3)

where Q is an (m + 1) × (m + 1) matrix and is
called the dual matrix of Ψ(t) and given by

Q =

∫ b

a
Ψ(t)ΨT (t)dt.

For more details about best approximation see
[18]. The subsequent proposition is useful for the
next sections. As in [9], the weighted L2

ω[a, b]
norm is defined as

∥u∥2L2
ω [a,b]

=

∫ b

a
|u(t)|2ω(t)dt.

Definition 2.1 A function, u : [a, b] → R, be-

longs to Sobolev space Hk,2
ω , if its jth weak deriva-

tive, lies in L2
ω[a, b] for 0 ≤ j ≤ k with the norm

∥u∥2
Hk,2

ω (a,b)
=

k∑
j=0

∥u(j)∥2L2
ω
.

Proposition 2.1 ([9]) Assume that u ∈
Hk,2

ω (a, b), Imu is the interpolation of u at
Chebyshev-Gauss points and the weight function
defined as ω(t) = (1− t2)−1/2. Then

∥u− Imu∥L2
ω(a,b)

≤ C̃hmin(k,m)m−k|u|
Hk,2

ω (a,b)
,(2.4)

where

|u|2
Hk,2

ω (a,b)
=

k∑
j=min(k,m+1)

∥u(j)∥2L2
ω
,

and C̃ is a constant independent of m and u.

Recently, Yousefi and Behroozifar in [25] have ex-
panded the Bernstein polynomials on the interval
[0, 1] in terms of Taylor basis. Then proposed a
general method for forming operational matrices
for these polynomials. We apply an analogous
approach for these polynomials on an orbitrary

interval [a, b] ⊆ [0, 1]. By using bionomial ex-
pansion of (1− x)m−i =

∑m−i
k=0 (−1)k

(
m−i
k

)
xk, we

have

Bi,m(t) =

(
m

i

)(
t− a

h

)i(
1−

(
t− a

h

))m−i

=

(
m

i

)(
t− a

h

)i

×

(
m−i∑
k=0

(−1)k
(
m− i

k

)(
t− a

h

)k
)

=

m−i∑
k=0

(−1)k
(
m

i

)(
m− i

k

)(
t− a

h

)i+k

For i = 0, 1, · · · ,m, we mention the vector Vi+1

as follow:

Vi+1 = i times︷ ︸︸ ︷
0, 0, · · · , 0, (−1)0

hi

(
m

i

)
,
(−1)1

hi+1

(
m

i

)(
m− i

1

)

, · · · , (−1)m−i

hm

(
m

i

)(
m− i

m− i

)]
.

(2.6)

The definition of the ith-order Bernstein polyno-
mials implies that

Bi,m(t) = Vi+1Tm(t),

where

Tm(t) =


1

t− a
...

(t− a)m

 .

Let us define the matrix V ∈ R(m+1)×(m+1) such
that

V =


V1

V2
...

Vm+1

 , (2.7)

Then above matrix is an upper triangular matrix
and it can be verified that V is an invertible ma-
trix. It is not difficult to see that

Ψ(t) = V Tm(t), (2.8)

where Ψ(t) defined in (2.2).
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2.1 Bernstein polynomials operational
matrix of differentiation

In this subsection, we want to determin e an ex-
plicit formula for Bernstein polynomials of m-th-
degree operational matrix of differentiation. Sup-
pose that D ∈ R(m+1)×(m+1) is an operational
matrix of differentiation, then d

dtΨ(t) = DΨ(t)
where a ≤ t ≤ b.

From (2.8) we have,

d

dt
Ψ(t) = V


0
1

2(t− a)
...

m(t− a)m−1

 ,

= V


0 0 0 · · · 0
1 0 0 · · · 0
0 2 0 · · · 0
...

...
...

...
0 0 0 · · · m



×


1

(t− a)
(t− a)2

...
(t− a)m−1

 ,

= V∆Z.

where ∆ is (m+ 1)×m matrix

∆ =


0 0 0 · · · 0
1 0 0 · · · 0
0 2 0 · · · 0
...

...
...

...
0 0 0 · · · m

 ,

and

Z =


1

(t− a)
(t− a)2

...
(t− a)m−1

 .

Now, we develop vector Z in terms of {Bi,m}mi=0

. By (2.8), we have Tm(t) = V −1Ψ(t), then for
k = 0, 1, · · · ,m

(t− a)k = V −1
k+1Ψ(t), (2.9)

where V −1
k+1 is (k + 1)-th row of V −1 for k =

0, 1, · · · ,m, that is

V −1 =


V −1
1

V −1
2
...

V −1
m+1

 .

By using (2.9), we can write Z = GΨ(t), where

G =


V −1
1

V −1
2
...

V −1
m

 ,

thus

d

dt
Ψ(t) = V∆GΨ(t),

and therefore we have operational matrix of
derivative as

D = V∆G.

3 Proposing the main approach
for solving the first-order lin-
ear matrix differential prob-
lem

Let us approximate each of the entries of P (t) =
[pij(t)]p×q in (1.1), on the interval [a, b] by the
Bernstein polynomials. Consequently, we have

P (t) ≈ C(Iq ⊗Ψ(t)). (3.10)

where the notation ⊗ stands for the well-known
Kronecker product, Iq defines the identity ma-
trix of order q, Ψ(t) is given by (2.2) and C ∈
Rp×q(m+1) is the unknown constant matrix to be
determined. The definition of the operational ma-
trix of derivative implies that

P ′(t) ≈ C(Iq ⊗DΨ(t)), (3.11)

By substituting Eqs. (3.10) and (3.11) in (1.1),
we derive

C(Iq ⊗DΨ(t)) = A(t)C(Iq ⊗Ψ(t))

+ B(t) +Rm(t).

(3.12)
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In order to calculate the unknown cofficients in
(3.12), we collocate this equation atm collocation
points, which is named ti and Rm(ti) = 0 for i =
1, · · · ,m. We chose the Chebyshev-Gauss nodes
in [a, b] as suitable collocation points. Therefore,
by replacing the above knots in (3.12), we reach
the following coupled linear matrix equations

CAi = DiCNi + Fi, i = 1, · · · ,m,

where Ai = Iq ⊗ DΨ(ti), Di = A(ti), Ni =
Iq ⊗ Ψ(ti) and Fi = B(ti). In addition for
i = m + 1 from initial condition, we set Am+1 =
[0]q(m+1)×q, Dm+1 = Ip, Nm+1 = Iq ⊗ Ψ(a) and
Fm+1 = −P (a). Hence, in order to numerically
solve the problem (1.1), we may solve the follow-
ing coupled linear matrix equation

XAi −DiXNi = Fi, i = 1, · · · ,m+ 1, (3.13)

where Ai, Di, Ni and Fi are constant matrices
and the unknown matrix X := C is to be deter-
mined. By using the following relation (see [6])

vec(AXB) = (BT ⊗A)vec(X),

it can be found that the coupled matrix equa-
tions (3.13) are equivalent to the following linear
system Ax = b, with subsequent parametrs AT

1 ⊗ Ip −NT
1 ⊗D1

...
AT

m+1 ⊗ Ip −NT
m+1 ⊗Dm+1

 vec(X)

=

 vec(F1)
...

vec(Fm+1)

 , (3.14)

The above linear system can be solved via the
classical methods such as the GMRES or con-
jugate gradient method [20]. However, the size
of the coefficient matrix of the system (3.14) is
pq(m + 1) and it may become too large even for
moderate values of p, q and m. This stimulates
us to use an iterative method for solving the cou-
pled linear matrix equations (3.13) rather than
the linear system. In the literature, a large num-
ber of papers are devoted to applying different
kinds of iterative algorithm for solving various lin-
ear coupled matrix equations, for more details see
[3, 4, 5, 13, 14, 23] and the references therein.

3.1 Implementing the method

For solving (1.1), we use a step-by-step method.
To do so, we first choose a step length h ̸= 0 and
consider the points xi = x0 + ih, i = 0, 1, 2, · · ·.
Then, starting with the given initial values x0 :=
a, W0 := P (x0). Now, by using the approach
described in the previous section we solve the fol-
lowing matrix differential equation{

W ′(t) = A(t)W (t) +B(t), xi ≤ t ≤ xi+1,
W (xi) = Wi,

and successively compute the rough solution
W (t) to P (t) on [xi, xi+1) for i = 0, 1, · · · ,

[
1
h

]
−1.

Afterward we set Wi+1 = W (xi+1), to compute
the approximate solution W (t) of P (t) on the
next subinterval.

3.2 Estimation of an upper error
bound

In this subsection,we present an upper error
bound analytically that reveals the spectral rate
of convergence. In what follows, the (i, j)th entry
of the matrix P (t) is denoted by pij(t).

Definition 3.1 Let U(t) = [uij(t)] be an arbi-
trary p × q matrix defined on the interval [a, b]
such that uij(t) ∈ L2[a, b]. Then, we define

∥U∥∞= max
i,j

∥uij∥L2
ω
, 1 ≤ i ≤ p, 1 ≤ j ≤ q.

Theorem 3.1 Consider the problem (1.1) where

pij ∈ Hk,2
ω (xl, xl+1), A(t) = [aij(t)]p×p and

B(t) = [bij(t)]p×q are given such that aij(t) and
bij(t) are sufficiently smooth. In addition, assume
that Pm = C(Iq⊗Ψ) stands for the Bernstein col-
location approximation of P . Furthermore, sup-
pose that M1 = maxi,j maxt∈(xl,xl+1)|aij(t)| and

C̃1 and C̃2 are constants independent of m and
u. Then limm→∞ Pm(t) = P (t). Besides the fol-
lowing statement holds:

∥P − Pm∥∞ ≤ C̃1M1h
min(k,m)+1m−1−k

× max
j

p∑
ν=1

|pνj |Hk,2
ω (xl,xl+1)

+ C̃2h
min(k,m)m−k

× max
ij

|pij |Hk,2
ω (xl,xl+1)

.
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Integrating (1.1) in [xl, t] results in

P (t) =

∫ t

xl

(A(x)P (x) +B(x))dx+ P (xl).(3.15)

Since we assume that Pm(xl) = P (xl), we can
rewrite (3.13) as follows:

Pm(ξn) =

∫ ξn

xl

(A(x)Pm(x) +B(x))dx

+ P (xl), n = 1, · · · ,m+ 1,

(3.16)

where ξn, n = 1, · · · ,m, Chebyshev-Gauss knots
on the interval [xl, xl+1] and ξm+1 = xl.

It follows from (3.16) that

Pm(ξn) =

∫ ξn

xl

A(x)H(x)dx

+

∫ ξn

xl

(A(x)P (x) +B(x))dx

+ P (xl),

(3.17)

such that H = [hij ]p×q = Pm − P . Mul-
tiplying both sides of the n-th equation of
(3.17) by Largrange interpolating polynomial, Ln

and summing up over n from 1 to m+1 results in∑m+1
n=1 Ln(t)Pm(ξn) =

m+1∑
n=1

Ln(t)

∫ ξn

xl

A(x)H(x)dx

+

m+1∑
n=1

Ln(t)(

∫ ξn

xl

(A(x)P (x) +B(x))dx

+ P (xl)).

Subtracting from (3.15) yields

m+1∑
n=1

Ln(t)Pm(ξn)− P (t) =

∫ t

xl

A(x)H(x)dx

+ E2(t) + E1(t),

(3.18)

where

E1(t) =

m+1∑
n=1

Ln(t)

∫ ξn

xl

A(x)H(x)dx−
∫ t

xl

A(x)H(x)dx,

and

E2(t) =

m+1∑
n=1

Ln(t)(

∫ ξn

xl

(A(x)P (x) +B(x))dx+ P (xl))

−
∫ t

xl

(A(x)P (x) +B(x))dx− P (xl).

We may rewrite (3.18) in the following form

H(t) =

∫ t

xl

A(x)H(x)dx+ S(t), (3.19)

By implying Gronwall inequality in [9] on (3.19)
we have

∥H∥∞≤ C∥S∥∞. (3.20)

Since we assume that the A and B are sufficiently
smooth, for E1(t) and E2(t) we obtain the follow-
ing results. From Definition (3.1)

∥E1∥∞= max
ij

∥Imu− u∥L2
ω
,

in which u(t) =
∫ t
xl

∑p
ν=1 aiν(x)hνj(x)dx. Using

(2.4) for k = 1, it can be deduced that

∥E1∥∞ = C̃1hm
−1max

ij
∥

p∑
ν=1

aiνhνj∥L2
ω

≤ C̃1M1h
min(k,m)+1m−1−k

max
j

p∑
ν=1

|pνj |Hk,2
ω (xl,xl+1)

.

(3.21)

Also, for E2(t), we derive that

∥E2∥∞ = max
ij

∥Impij − pij∥L2
ω
,

≤ C̃2h
min(k,m)m−k

max
ij

|pij |Hk,2
ω (xl,xl+1)

.

(3.22)

Now the assertion can be concluded from (3.20),
(3.21) and (3.22).
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4 Numerical experiments

In this section, several numerical examples are
presented to demonstrate the capability and ac-
curacy of the present method for solving (1.1).
All of the numerical computations are performed
using Mathematica 10 with a machine unit round
off precision of around 10−16. The computer spec-
ifications are Microsoft Windows 7 32-bit , In-
tel(R)Core(TM)i5 CPU 2.27GHz, with 4GB of
RAM . The comparison results for m = 3, 4, 5, 6
between the method of [11, 12] and present
method can be seen in Tables 1 to 5 . The fol-
lowing examples are chosen from [11, 12].

Example 4.1 Consider the following first-order
linear matrix differential problem


P ′(t) = A(t)P (t) +B(t), 0 ≤ t ≤ 1,

P (0) =

(
3 0
1 1

)
,

(4.23)

where A(t) =

(
1 −1
1 et

)
, B(t) =(

−3e−t − 1 2− 2e−t

−3e−t − 2 1− 2 cosh(t)

)
. The ex-

act solution of equation (4.23) is equal

P (t) =

(
2e−t + 1 e−t − 1

e−t 1

)
.

Figure 1: Approximated solutions of example 4.1
for Shifted Chebyshev points.

The computational results for various m have
been reported in Table 1. The logarithmic abso-
lute errors are computed in Fig . 1 . The time
required to execute this algorithm, when m = 5,
was 2 : 56 seconds. These results show that the
results obtained from the method described in
this paper are highly accurate .

Example 4.2 Consider the following first-order
linear matrix differential problem


P ′(t) = 1

t3−t−1

(
2t2 − 1 t2 − 2t− 1
−t− 1 t3 + t2 − t− 1

)
P (t),

P (0) =

(
1
0

)
, 0 ≤ t ≤ 1,

(4.24)

The exact solution of equation (4.24) is equal

P (t) =

(
et

tet

)
.

Figure 2: Approximated solutions of Example
4.2.

The computational results between the Spline
method of [11] and present method have been re-
ported in Table 2. The logarithmic absolute er-
rors are computed in Fig . 2 . The time required
to execute this algorithm , when m = 5 , was
2 : 23 seconds .

Example 4.3 Consider the following first-order
linear matrix differential problem


P ′(t) = A(t)P (t) +B(x), 0 ≤ t ≤ 1,

P (0) =

1 1
0 −1
0 0

 ,
(4.25)

Where

A(t) =

−1− t 0 −1 + et + t
et −t 1
0 −1 et


and

B(t) =−2 + (−3 + et)t −1− t− t2 − et(2 + t)
t+ et(1 + t) e2t + tet − (5 + t)(1 + t2)
−1 + tet 1− t(5 + t)
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Table 1: The maximal absolute error of example 4.1

Interval [0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5]

Method [11] for (m = 4) 5.06× 10−8 1.02× 10−7 1.54× 10−7 2.10× 10−7 2.70× 10−7

Current method for (m = 4) 5.52× 10−11 4.79× 10−8 8.25× 10−8 6.87× 10−9 7.16× 10−8

Method [11] for (m = 5) 5.75× 10−10 1.36× 10−9 2.06× 10−9 2.80× 10−9 3.60× 10−9

Current method for (m = 5) 1.31× 10−12 6.57× 10−10 1.29× 10−9 6.60× 10−11 9.71× 10−10

Interval [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1]

Method [11] for (m = 4) 3.38× 10−7 4.19× 10−7 5.21× 10−7 6.59× 10−7 8.51× 10−7

Current method for (m = 4) 3.71× 10−6 4.36× 10−5 2.62× 10−5 1.07× 10−4 3.41× 10−4

Method [11] for (m = 5) 4.50× 10−9 5.57× 10−9 6.93× 10−9 8.75× 10−9 1.13× 10−8

Current method for (m = 5) 1.30× 10−7 2.79× 10−6 2.66× 10−5 1.57× 10−4 6.83× 10−4

Table 2: The maximal absolute error of example 4.2

Interval [0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5]

Method [11] for (m = 4) 1.14× 10−7 2.62× 10−7 4.51× 10−7 6.89× 10−7 9.89× 10−7

Current method for (m = 4) 2.19× 10−10 1.61× 10−7 3.45× 10−7 3.61× 10−8 4.02× 10−7

Method [11] for (m = 5) 1.80× 10−9 4.09× 10−9 7.00× 10−9 1.07× 10−8 1.53× 10−8

Current method for (m = 5) 4.37× 10−12 2.65× 10−9 6.48× 10−9 3.97× 10−10 7.49× 10−9

Interval [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1]

Method [11] for (m = 4) 1.36× 10−6 1.83× 10−6 2.37× 10−6 3.05× 10−6 3.86× 10−7

Current method for (m = 4) 2.65× 10−5 3.98× 10−5 2.99× 10−5 1.52× 10−5 6.04× 10−5

Method [11] for (m = 5) 2.10× 10−8 2.80× 10−8 3.65× 10−8 4.67× 10−8 5.90× 10−8

Current method for (m = 5) 1.09× 10−7 2.98× 10−6 3.55× 10−6 2.62× 10−6 1.41× 10−6

Table 3: The maximal absolute error of example 4.3

Interval [0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5]

Current method for (m = 3) 1.33× 10−8 1.68× 10−6 3.25× 10−6 4.74× 10−7 3.80× 10−6

Method [12] for (m = 5) 1.39× 10−6 1.39× 10−6 1.43× 10−6 1.43× 10−6 1.49× 10−6

Current method for (m = 5) 7.10× 10−13 4.29× 10−10 1.03× 10−9 5.32× 10−11 1.17× 10−9

Interval [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1]

Current method for (m = 3) 1.14× 10−5 9.07× 10−5 4.19× 10−5 1.44× 10−5 4.09× 10−5

Method [12] for (m = 5) 1.49× 10−6 1.57× 10−6 1.57× 10−6 1.65× 10−6 1.65× 10−6

Current method for (m = 5) 4.53× 10−6 5.31× 10−6 3.86× 10−6 2.62× 10−6 7.67× 10−7

. The exact solution of equation (4.25) is equal

P (t) =

1 + t et + t
0 −1 + 5t+ t2

t 0

. The logarithmic

absolute errors are plotted in Fig . 3 . The time
required for this algorithm was 1 : 25 seconds . As
the results in Table 3 show that, this method is a
highly efficient and accurate method for solving
the first-order linear matrix differential equations
.

Example 4.4 Consider the following first-order
linear matrix differential problem


P ′(t) = A(t)P (t) +B(t), 0 ≤ t ≤ 1,

P (0) =

(
1 0
0 1

)
,

(4.26)

Where

A(t) =

(
0 tet

t 0

)
and
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Table 4: The approximate solution for example 4.4

Interval Approximation value for m = 4

[0, 0.1]

(
1 − t + 0.4t2 − 0.1t3 + 0.1t4 −1.4 × 10−15t + 7.5 × 10−14t2 − 1.1 × 10−12t3 + 4.9 × 10−12t4

t − 1.4 × 10−9t2 + 3.1 × 10−8t3 − 1.6 × 10−7t4 1 + 1.4 × 10−14t − 4.5 × 10−13t2 + 5.4 × 10−12t3 − 1.1 × 10−11t4

)

[0.1, 0.2]

(
1 − 0.9t + 0.4t2 − 0.1t3 + 0.1t4 8.8 × 10−14t − 9.1 × 10−13t2 + 4.1 × 10−12t3 − 7.1 × 10−12t4

−1.8 × 10−10 + t − 5.7 × 10−8t2 + 2.6 × 10−7t3 − 4.4 × 10−7t4 1 − 4.5 × 10−13t + 2.7 × 10−12t2 − 1.8 × 10−11t3 + 2.5 × 10−11t4

)

[0.2, 0.3]

(
0.9 − 0.9t + 0.4t2 − 0.1t3 + 0.1t4 −6.4 × 10−13t + 3.9 × 10−12t2 − 1.1 × 10−11t3 + 1.1 × 10−11t4

−2.4 × 10−9 + t − 2.4 × 10−7t2 + 6.7 × 10−7t3 − 6.7 × 10−7t4 1 + 4.5 × 10−13t + 3.6 × 10−12t2 + 7.2 × 10−12t4

)

[0.3, 0.4]

(
0.9 − 0.9t + 0.4t2 − 0.1t3 + 0.1t4 −2.4 × 10−14t + 3.8 × 10−13t2 − 6.1 × 10−13t3 + 4.7 × 10−13t4

−1.2 × 10−8 + t − 6.2 × 10−7t2 + 1.1 × 10−6t3 − 8.5 × 10−7t4 1 + 3.6 × 10−12t − 1.1 × 10−11t2 + 1.4 × 10−11t3 − 1.8 × 10−11t4

)

[0.4, 0.5]

(
0.9 − 0.9t + 0.4t2 − 0.1t3 + 0.1t4 4.8 × 10−13t − 1.5 × 10−12t2 + 2.4 × 10−12t3 − 1.4 × 10−12t4

−3.9 × 10−8 + t − 1.2 × 10−6t2 + 1.7 × 10−6t3 − 9.9 × 10−7t4 1 + 1.8 × 10−12t − 7.2 × 10−12t2 + 2.9 × 10−11t3 − 7.2 × 10−12t4

)

[0.5, 0.6]

(
0.9 − 0.9t + 0.4t2 − 0.1t3 + 0.1t4 3.1 × 10−13t + 2.6 × 10−13t2 + 3.3 × 10−13t3 − 2.8 × 10−13t4

−9.9 × 10−8 + t − 1.9 × 10−6t2 + 2.4 × 10−6t3 − 1.1 × 10−6t4 1 − 7.2 × 10−12t + 3.6 × 10−11t2 − 1.4 × 10−11t3 + 1.1 × 10−11t4

)

[0.6, 0.7]

(
0.9 − 0.9t + 0.4t2 − 0.1t3 + 0.1t4 −7.4 × 10−13t + 6.7 × 10−12t2 − 4.9 × 10−12t3 + 1.5 × 10−12t4

−2.1 × 10−7 + t − 2.9 × 10−6t2 + 3.1 × 10−6t3 − 1.1 × 10−6t4 1 + 2.9 × 10−11t − 2.9 × 10−11t2 + 2.9 × 10−11t3 − 1.4 × 10−11t4

)

[0.7, 0.8]

(
0.9 − 0.9t + 0.4t2 − 0.1t3 + 0.1t4 1.9 × 10−12t + 5.8 × 10−12t2 − 2.5 × 10−12t3 + 3.1 × 10−13t4

−3.8 × 10−7 + t − 4.1 × 10−6t2 + 3.6 × 10−6t3 − 1.2 × 10−6t4 1 + 2.9 × 10−11t − 1.4 × 10−11t2 + 4.3 × 10−11t3 − 1.4 × 10−11t4

)

[0.8, 0.9]

(
0.9 − 0.9t + 0.4t2 − 0.1t3 + 0.1t4 5.8 × 10−12t + 1.1 × 10−11t2 − 5.1 × 10−12t3 + 6.8 × 10−13t4

−6.5 × 10−7 + t − 5.4 × 10−6t2 + 4.2 × 10−6t3 − 1.2 × 10−6t4 1 − 1.1 × 10−10t + 1.7 × 10−10t2 − 1.1 × 10−10t3 + 3.2 × 10−11t4

)

[0.9, 1]

(
0.9 − 0.9t + 0.4t2 − 0.1t3 + 0.1t4 −9.4−13t + 2.4 × 10−11t2 − 1.4 × 10−11t3 + 3.2 × 10−12t4

−1.03 × 10−6 + t − 6.9 × 10−6t2 + 4.8 × 10−6t3 − 1.2 × 10−6t4 1 − 1.4 × 10−11t + 5.8 × 10−11t2 − 1.4 × 10−11t3 + 7.2 × 10−12t4

)

Table 5: The maximal absolute error of example 4.4

Interval [0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5]

Current method for (m = 5) 6.57× 10−13 3.28× 10−10 6.48× 10−10 3.66× 10−11 5.74× 10−10

Current method for (m = 6) 3.58× 10−15 3.97× 10−12 9.13× 10−12 9.62× 10−11 4.01× 10−10

Interval [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1]

Current method for (m = 5) 6.51× 10−8 1.39× 10−6 1.33× 10−5 7.88× 10−5 3.42× 10−5

Current method for (m = 6) 2.68× 10−9 6.90× 10−8 1.14× 10−6 9.63× 10−6 5.70× 10−6

Figure 3: Approximated solutions of Example
4.3.

B(t) =

(
−et(1 + t2) −te−t

1− te−t 0

)
.

The exact solution of equation (4.26) is equal

P (t) =

(
e−t 0
t 1

)
.

Figure 4: Approximated solutions of Example
4.4.

In Table 4, we report the approximate solution
to the exact solution of the fourth example com-
puted by present method. The maximal absolute
error have been reported in Table 5. The loga-
rithmic absolute errors are computed in Fig. 2
.
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5 Conclusion

The properties of the Bernstein polynomials and
their operational matrices of derivative have been
utilized to numerically solve a class of the first-
order matrix differential problems. The proposed
approach reduces the main problem to a linear
coupled matrix equations. An upper bound for
error of offered method was presented. Numerical
examples have illustrated to demonstrate the ef-
ficiency and applicably of our approach. Finally,
we showed that the proposed new strategy can
be examined for more complicated types of ma-
trix differential models.
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