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Abstract

Conventional data envelopment analysis (DEA) models normally assume all inputs and outputs are
real valued and continuous. However in most application- related problems some inputs and outputs
can only take integer values, also, both desirable and undesirable outputs can be generated (e.g.,
the number of traffic accidents and deaths in a transportation system). In this paper the effect of
undesirable outputs in integer DEA model is discussed. The proposed model distinguishes weak
disposability of outputs imposing non-uniform abatement factor. Compared with radial models, a
non radial model that directly deals with slacks is developed to calculate efficiency for integer-valued
data set. An empirical application is used to illustrate the approach.

Keywords : Data Envelopment Analysis (DEA); Weak-Disposability; Undesirable factors; Integer-
valued data; DMU; Efficiency.

—————————————————————————————————–

1 Introduction

F
or a long time, Data Envelopment Analysis
(DEA) has been serving as a methodology to

evaluate the performance of various decision mak-
ing units (DMU) that consumes multiple inputs
to generate multiple outputs. Conventional DEA
models have been created according to applica-
tion, radial models as CCR (Charnes et.al [3])
and BCC (Banker et.al [1]) or non-radial models
as SBM (Tone, [20]) and so on. These models
take real-valued desirable inputs and outputs. A
contribution of the conventional DEA model is
that some of the input and/or output data are
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characteristically integer- valued. Making use of
categorical or ordinal data usually allows includ-
ing integer-valued data into the analysis can be
seen in articles such as Banker and Morey [2];
Kamakura [10] and Rousseau and Semple [18]
among authors. The first DEA model allows
explicit integrality constraints was developed by
Lozano and Villa ([16],[17]). They proposed a
mixed linear programming (MILP) DEA model
which restricted the computed targets to inte-
gers. However, as later argued by Kuosmanen
and Kazemi Matin [11] this model does not com-
ply with the minimum extrapolation principle
(Banker et.al [1])which is the theoretical foun-
dation of DEA models. Furthermore, the pro-
posed model tends to overestimate the efficiency
score. To address these issues, Kuosmanen and
Kazemi Matin [14] developed an alternative pro-
gramming problem with constant return to scale
technology (CRS) based upon a new axiomatic
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foundation of natural disposability and natural
divisibility for production possibility set involv-
ing integers. To be in line with different technolo-
gies, the CRS framework was extended to other
situations like variable, non-decreasing and non-
increasing return to scale environments. Kuos-
manen and Kazemi Matin [14] established a new
notion of natural convexity, which restricts the
feasible convex combination to the subset made
up of integer-valued points, but the NDRS vari-
ant requires a new postulate of natural augment-
ability. The connection to NIRS technology is
characterized by making use of the earlier nat-
ural divisibility axiom. Recently, Kazemi Matin
and A. Emrouznejad [11] introduced the notion
of boundedness on the subset of output variables
in an integer-valued DEA model in an axiomatic
approach. Based on the new introduced axiom of
”outputs bounded scale,” the associated minimal
extrapolation PPS is constructed. A mixed inte-
ger linear programing (MILP) formulation similar
to integer-valued DEA models was suggested for
computing output efficiency scores of the units.
In a paper presented by D. Khezrimotlagh on
DEA conferences in 2015, committed that lin-
ear integer DEA models does not mathemati-
cally represent the Integer Production Possibil-
ity Set (IPPS). Therefore, the benchmarking may
not be appropriate. The paper was clearly eluci-
dated this gap and the proposed model can re-
move the gap. Also, the validity of the method
is mathematically proved. A real-life application
on university efficiency was examined to depict
the differences of several integer DEA models in
benchmarking decision making units. G. R. Ja-
hanshahloo and M. Piri [9] proposed a modified
model to evaluate the main units in the presence
of negative integer data. First, the semi-oriented
radial measure (SORM) based on negative data is
depicted. After distinguishing the drawbacks of
the model, the modified model is introduced, then
the model reformed in presence of negative inte-
ger values. On the other hand, in recent years,
there has been serious attention to modeling un-
desirable inputs/outputs in DEA literature. Fare
et.al [6] developed a non linear DEA model uti-
lizes Farrell -type of efficiency measure to simul-
taneously increasing of desirable outputs and de-
creasing the undesirable outputs by the same fac-

tor. As an alternative, toward modeling undesir-
able outputs, one may treat the undesirable out-
puts as inputs. Fare and Grosskopf [8] argued
that this treatment is inconsistent with the phys-
ical laws and standard axioms of production the-
ory. The authors imposed an assumption that
these undesirable outputs are weakly disposable,
also, assumed that all units in the sample ap-
ply a uniform abatement factor. Kuosmanen [13]
showed how weakly disposable technology can be
modeled in the linear structure such that non-
uniform abatement factor can be applied. As
a major contribution of inclusion of undesirable
factors in eco-efficiency measurement is the pa-
per offered by K. Herv Dakpo et.al [5]. The au-
thors acknowledged the new version of the ap-
proach by augmenting it with ’interdependence
constraints’. In this modeling, there are mainly
three options to reduce the levels of detrimen-
tal outputs for a fixed technology: firstly, an in-
crease in abatement options through resource di-
version (which is accompanied by a reduction of
the production of good outputs); secondly, a re-
duction in pollution-generating inputs (this de-
creases the levels of intended outputs except for
the case of a substitution with non-polluting in-
puts to maintain the same amount of good out-
puts production); and thirdly, the use of cleaner
inputs, that is to say inputs that generate less
bad outputs and maintain at least the same level
of good outputs’ production. The by-production
approach as presented in the paper offers the ad-
vantage of disentangling the operational perfor-
mance and the environmental performance. How-
ever, it assumes independence between the two
frontiers and thus autonomy of the two perfor-
mance measures. To overcome this situation, a
new modeling approach was proposed by adding
additional constraints relative to the pollution-
generating inputs. An important concern, that
we need to pay much attention in this study,
is how to cope with integer-valued undesirable
data. As a related contribution, Chen et.al [4]
proposed an additive DEA model to deal with
integer-valued undesirable output. The proposed
additive model compute efficiency scores based on
input and output slacks, which provide a clearer
view on which variables cause a specific DMU to
be inefficient by a certain amount. With these
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slack results, directions for improvement are eas-
ily obtained for each input and output measure.
Equipped with proposed set of axioms, we gener-
alize the method to the hybrid case where both
real and integer valued inputs and outputs are
present. Being able to distinguish weak dispos-
ability in current context, the modified Russell
measure of efficiency is proposed and a MILP for-
mulation for computing is derived. The specifica-
tion of weak disposability in this advocated model
not only provide decision maker with better in-
sight into the performance of peer DMUs but also
help carry out further analysis for managerial de-
cisions. The results are directly applicable to all
areas of economics where activity analysis mod-
els are employed. The remainder of this study is
going to be unfolded as follows: the next section
summarizes strategic concepts and previous DEA
works, which are clearly related to this study.
The weak disposability technology and integer-
based DEA models are fully covered in this sec-
tion. Section 3 describes in detail the concep-
tual and mathematical framework to measure ef-
ficiency under weak disposability assumption for
a hybrid case where some of data sets are deemed
to be integer while the others are not. An empir-
ical application to a real case is represented in
section ??. The contribution is summarized with
a conclusion.

2 Preliminaries

2.1 weakly disposable technology

In this section a brief aspect of weak disposability
of outputs is introduced. Using the same notation
of Kuosmanen [13] the input vector is denoted by
x = (x1, ..., xN ) ∈ RN

+ , desirable or good outputs
by v = (v1, ..., vM ) ∈ RM

+ and the undesirable or
bad outputs by w = (w1, ..., wJ) ∈ RJ

+ . Data
for firm k ∈ {1, ...K} is represented by the vector
(vk, wk, xk) , the production technology is char-
acterized by production set Y = {(v, w, x)|x ∈
RN

+ can produce (v, w)} , or alternatively, by the
output set P (x) = {(v, w)|(v, w, x) ∈ Y }. Follow-
ing Shephard [19], weak disposability of outputs
is defined as if (v, w) ∈ P (x) and 0 ≤ θ ≤ 1 then
(θv, θw) ∈ P (x) , x ∈ RN

+ . In case of variable re-
turn to scale, the production technology satisfies

the following requirements:
A1) Envelopment: (vk, wk, xk) ∈ Y, k ∈ K.
A2) Weak disposability for good and bad outputs:

(v, w, x) ∈ Y, 0 ≤ θ ≤ 1 then (`v, `w, x) ∈ Y.

A3) Free (strong) disposability of inputs and good
outputs:

(v, w, x) ∈ Y, (α, β) ∈ RM+N
+ , v ≥ β,

⇒ (v − β,w, x+ α) ∈ Y

A4) Convexity; Y is closed and convex.
Equipped with these sets of axioms, Fare and
Grosskopf [7] have formulated weak-disposable
technology in terms of single, scalar valued abate-
ment factor θ as:

TFG =
{
(v, w, x )|∑K

k=1 θz
kvkm ≥ vm m = 1, ...,M∑K

k=1 θz
kwk

j = wj j = 1, ..., J∑K
k=1 z

kxkn ≤ xn n = 1, ..., N∑K
k=1 z

k = 1

zk ≥ 0, 0 ≤ θ ≤ 1 k = 1, ..., K
}

(2.1)

Note that the variables z = (z1, ..., zk) are re-
ferred to intensity weights. To allow for non- uni-
form abatement factors across firms, Kuosmanen
[13] denotes the abatement factor of firm k by θk.
The author argued the empirical output set as

TK = {(v, w, x)|∑K
k=1 θ

kzkvkm ≥ vm,m = 1, ...,M,∑K
k=1 θ

kzkwk
j = wj j = 1, ..., J,

∑K
k=1 z

kxkn ≤ xn n = 1, ..., N,∑K
k=1 z

k = 1,

zk ≥ 0, 0 ≤ θk ≤ 1 k = 1, ...,K}

(2.2)

Note that formulation (2.1) is a constrained case
of formulation (2.2) imposing θ1 = θ2 = ... =
θk = θ.
In particular, the non linear above technology can
be restated in an equivalent linear form with a
simple substitution of Kuosmanen [13]

zk = λk + µk
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Then we must have

λk = θkzk, µk = (1− θk)zk

Rearranging the terms, the activity analysis tech-
nology (2.2) can be rewritten as:

T
(L)
K = {(v, w, x)|∑K
k=1 λ

kvkm ≥ vm, m = 1, ...,M∑K
k=1 λ

kwk
j = wj , j = 1, ..., J∑K

k=1(λ
k + µk) xkn ≤ xn, n = 1, ..., N∑K

k=1(λ
k + µk) = 1

λk, µk ≥ 0 k = 1, ...,K}

(2.3)

The above formulation (2.3) is now a linear form
and the right hand sides of the envelopment con-
straints are faced up with scaling variables.

2.2 Integer-Valued DEA

In conventional DEA, each observed data is pre-
sented by a pair of non negative input and output
vector (Xk, V k) ∈ RN+M

+ , k ∈ {1, ...,K}. Lozano
and Villa [16] assumed that some observed data
of DMUs are integer and they partitioned the set
of input variables as I = II

∪
INI and the set

of output variables as V = V I
∪

V NI , where II

and V I are the subsets of the corresponding di-
mensions that must be integer while the others
are not. Subsets II and INI as well as V I and
V NI are mutually disjoint also |II |= p ≤ N and
|V I |= q ≤ M . The authors proposed the follow-
ing possibility set:

T =
{
(x̂, v̂)| x̂k ≥

∑K
k=1 z

kxki ∀i,

v̂k ≤
∑K

k=1 λ
kvkr , ∀r,

x̂k, v̂k ∈ Z≥0, ∀i ∈ II , ∀r ∈ V I
}

Kuosmanen and Kazemi- Matin ([14], [15]) pro-
posed the axioms for the scope of integer-valued
input-output variables as:
B1) Natural disposability:

(x, v) ∈ T, (α,β) ∈ ZN+M
+ , y ≥ β

⇒ (x+ α, v − β) ∈ T.

B2) Natural divisibility:

(x, v) ∈ T, ∃λ ∈ [0, 1], (λx, λv) ∈ ZN+S
+

⇒ (λx, λv) ∈ T.

B3) Natural Convexity:

(x, v), (x′, v′) ∈ Y ⇒

(x̃.ṽ) = λ(x, v) + (1− λ)(x′, v′)

, 0 ≤ λ ≤ 1 (x̃, ṽ) ∈ ZN+M
+ ⇒ (x̃, ṽ) ∈ Y

B4) Integrality:(x, y) ∈ T ⇒ (x, y) ∈ ZN+S
+

B5) Natural augment ability:

(x, v) ∈ T, ∃λ ≥ 1, (λx,λv) ∈ ZN+M
+

⇒ (λx, λv) ∈ T.

B6)Minimum Extrapolation: T is the intersection
of all sets satisfying(B1)− (B5).

Based on the mentioned notations a hybrid
setting involving both real and integer valued
data set offers a generalized frameworks, which
refers to hybrid integer DEA (HIDEA) model.
The axiomatic foundation starting from free
disposability(A2) and convexity (A4)of real val-
ued variables(INI , V NI) and corresponding ax-
ioms of natural disposability(B1) and natural
convexity (B3) of integer-valued variables, also
axiom (A1) is jointly satisfied by all observed
data, the following reference technology for the
VRS case may be restated as:

THIDEA
V RS =



(
xI vI

xNI vNI

)
; (xI , yI) ∈ Zp+q

+ ;

(
xI

xNI

)
≥

∑K
k=1 z

k

(
xI
k

xNI
k

)
;

(
vI

vNI

)
≤

∑K
k=1 z

k

(
vIk
vNI
k

)
;

∑K
k=1 z

k = 1, zk ≥ 0 ∀k



(2.4)

Since this set is a discrete set of disconnected
point, to measure the radial fashion efficiency
based on PPS (THIDEA

V RS )the following mixed inte-
ger linear programming (MILP) in input-oriented
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format proposed by Kuosmanen and Kazemi-
matin ([14], [15]) as :

Min `− ”(
∑S

r=1 s
+
r +

∑N
n=1 s

−
n +

∑p
n=1 s

I
n)

s.t

vor + s+r =
∑K

k=1 z
kvkr , r ∈ V

θxo
n − s−n =

∑K
k=1 z

kxk
n, n ∈ INI

x̃n − s−n =
∑K

k=1 z
kxk

n, n ∈ II

θxo
n − sIn = x̃n n ∈ II

x̃n ∈ Zp
+ n ∈ II

zk ≥ 0, k = 1, ...,K

s+r ≥ 0,

∀r ∈ O, s−n ≥ 0, ∀n ∈ I, sIn ≥ 0, ∀n ∈ II .

(2.5)

Symbol ε denote a non-Archimedean infinites-
imal and variables s+r , s

−
n and sIn represent the

non-radial slacks and x̃n ∈ Zp
+ is the integer-

valued reference points for inputs II . DMUo is
efficient if the optimal value of θ equals one. It is
worth noting that (HIDEA) model above distin-
guishes between two input slacks. The first type
denoted by s−n (n ∈ II) and s−n (n ∈ INI) repre-
sents the absolute differences between the con-
vex combination

∑K
k=1 z

kxkn(or
∑K

k=1 z
kx k

n ) and
the reference points θxon( or x̃n), while the sec-
ond type sIn(n ∈ II) represents the absolute dif-
ferences between the reference point x̃n and the
projection θxon for integer -restricted inputs.

3 Weak Disposability with
Integer-valued DEA

The purpose of this section is to show how
weakly disposable technology can be modeled
whenever some inputs and outputs are restricted
to be integer. Based on preceding notations,
each feasible activity -which was characterized
by a triple non negative input and output vector
(vk, wk, xk) k = 1, ...,K can be rewritten as
x = (xI , xNI) v = (vI , vNI) and w = (wI , wNI).

Without a less of generality, xI(I ∈ II) , vI(I ∈
V I) and wI(I ∈ W I)are the dimensions satisfies

integrality assumptions (B4). Suppose that
|II |= p ≤ N ,|V I |= q ≤ M and |W I |= α ≤ J .
In order to deal with weak disposability in a
systematic fashion in hybrid setting- involving
both real and integer valued data- a revised set
of axioms is needed. Commencing from free
disposability of inputs and good outputs (A3),
weak disposability of good and bad outputs
(A2) and convexity (A4) for real-valued data
(xNI , vNI , wNI), the corresponding axioms of
integer-valued variables are proposed as:

B1) Natural disposability of inputs and good
outputs:
(x, v, w) ∈ T, (α,β) ∈ ZN+M

+ , v ≥ β ⇒
(x+ α, v − β,w) ∈ T .

B2) Integer weak disposability for good and
bad outputs:
(x, v, w) ∈ T, ∃θ ∈ [0, 1] , (x, θv, θw) ∈ ZM+J

+ ⇒
(x, θv, θw) ∈ T.

B3) Natural convexity:
(x, v, w), (x′, v′, w′) ∈ T (x̃, ṽ, w̃) = λ(x, v, w) +
(1 − λ)(x′, v′, w′), 0 ≤ λ ≤ 1, (x̃, ṽ, w̃) ∈ Z+ ⇒
(x̃, ṽ, w̃) ∈ T.

B4) Natural divisibility:
(x, v, w) ∈ T, ∃λ ∈ [0, 1], (λx, λv, λw) ∈
ZN+M+J
+ ⇒ (λx, λv, λw) ∈ T

B5) Natural augment ability:
(x, v, w) ∈ T, ∃λ ≥ 1, (λx, λv, λw) ∈ ZN+M+J

+ ⇒
(λx, λv, λw) ∈ T

The axioms of natural disposability (B1),
natural divisibility (B4), natural convexity (B3)
and natural augment ability (B5) have been
introduced in Kuosmanen and Kazemi-Matin
([14], [15]). The notation of integer weak dis-
posability (B′

2) is a substantial format of weak
disposability axioms (A2) .This axiom states
that the abatement of integer-valued undesirable
outputs takes place through scaling down of
the activity level if it results an integer valued
output vector. Rather, natural divisibility (B4)
and natural augment- ability (B5) postulate that
a division or augmentation of a production plan
is possible. Also, these axioms can be seen as
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alternative variants of return to scale axioms.
Equipped with these sets of assumptions, the hy-
brid integer DEA (HIDEA) reference technology
for the VRS case can be stated as:

THIDEA
V RS =

 xI vI wI

xNI vNI wNI

 ;

(xI , vI , wI) ∈ ZN+M+J
+ ,

xI ≥
∑K

k=1 z
kxkn, n ∈ II ,

xNI ≥
∑K

k=1 z
kxkn, n ∈ INI ,

vI ≤
∑K

k=1 θ
kzkvkm, m ∈ V I

vNI ≤
∑K

k=1 θ
kzkvkm, m ∈ V NI

wI =
∑K

k=1 θ
kzkwk

j , j ∈ W I

wNI =
∑K

k=1 θ
kzkwk

j , j ∈ WNI

∑K
k=1 z

k = 1

0 ≤ θk ≤ 1

zk ≥ 0



(3.6)

The following theorem establishes the axiomatic
foundation of this reference technology un-
der revised sets of assumptions to the subsets
(INI , V NI ,WNI) and (II , V I ,W I) respectively.

Theorem 3.1 Production set THIDEA
V RS is the

minimum extrapolation production possibility set
if subsets (INI , V NI ,WNI) Satisfy axioms (A2 −
A4) and subsets (II , V I ,W I) satisfy natural dis-
posability of inputs and good outputs (B1), in-
teger weak disposability of good and bad outputs
(B′

2) and natural convexity (B3) also axiom (A1)
is jointly satisfied by all observed data set.

Proof. It suffices to show that the axioms
(B1), (B′

2) and (B3) are simply integrality re-
stricted cases of (A3), (A2) and(A4). More-
over, the same intensity variable z apply to both
subsets (INI , V NI ,WNI) and (II , V I ,W I). The
minimum extrapolation theorem for the case of

real-valued data (INI , V NI ,WNI) with axioms
(A1 − A4) has been formally proved by Banker
et.al [1], the case of (II , V I ,W I) with axioms
B1, B

′
2 and B3 was proved in Kuosmanen and

Kazemi-Matin[15].
In spirit of alternative return to scale specifica-
tion in IDEA framework, the axioms of natu-
ral divisibility (B4) and natural augment -ability
(B5) along with other postulates can interpret
NIRS and NDRS variants of IDEA technology
respectively. Moreover, the multiplier θk used in
this VRS technology enables the reduction of the
level of bad outputs if accompanied by the reduc-
tion of desirable outputs in the same proportion
across all firms. To linearize reference technology
THIDEA
V RS , the intensity weight of firm k can be

partitioned into two components zk = λk + µk.
Using this substitution from Kuosmanen [13] the
production technology (3.6) converts into the fol-
lowing linear form:

THIDEA
V RS =

 xI vI wI

xNI vNI wNI

 ;

(xI , vI , wI) ∈ ZN+M+J
+ ,

xI ≥
∑K

k=1(λ
k + µK)xk

n, n ∈ II

xNI ≥
∑K

k=1(λ
k + µK)xk

n, n ∈ INI

vI ≤
∑K

k=1 λ
kvkm, m ∈ V I

vNI ≤
∑K

k=1 λ
kvkm, m ∈ V NI

wI =
∑K

k=1 λ
kwk

j , j ∈ W I

wNI =
∑K

k=1 λ
kwk

j , j ∈ WNI

∑K
k=1(λ

k + µK) = 1

λk, µk ≥ 0



(3.7)

The technology above is a non- monotonic and
non-convex set of disconnected points. As Ku-
osmanen and Kazemi-matin([14], [15]) noted,
a modified Farrell input efficiency measure is
needed. Applying this set, the modified efficiency
scores relative to the general THIDEA

V RS reference
technology can be formulated by solving the fol-
lowing mixed integer linear programming (MILP)
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problem:

σ = Min 1
N+J

[∑N
n=1 θn +

∑J
j=1 φj

]
s.t∑K

k=1(λ
k + µk)xk

n = x̃n − s−n , n ∈ II

x̃n = θnx
o
n−sIn, n ∈ II∑K

k=1(λ
k + µk)xk

n = θnx
o
n − s−n , n ∈ INI∑K

k=1 λ
kvkm = ṽm + s+m, m ∈ V I

ṽm = vom + sIm, m ∈ V I∑K
k=1 λ

kvkm = vom + s+m, m ∈ V NI∑K
k=1 λ

kwk
j = w̃j , j ∈ W I

w̃j = φjw
I
jo − sIj , j ∈ W I∑K

k=1 λ
kwk

j = φjw
O
jo, j ∈ WNI∑K

k=1(λ
k + µk) = 1

λk, µk ≥ 0
x̃n, ṽm, w̃j ∈ Z+

φj ≥ 1 j = 1, ..., J
0 ≤ θn ≤ 1 n = 1, ..., N
s−n , s

+
m ≥ 0

sIn, s
I
m, sIj ≥ 0, n ∈ II ,m ∈ V I , j ∈ W I .

(3.8)

The MILP formulation above measures the ef-
ficiency score of firm 0 in terms of the abate-
ment potential factor in integer and real val-
ued inputs and outputs. Also, the constraint
φj ≥ 1 j = 1, ..., J and 0 ≤ θn ≤ 1 n = 1, ..., N
are the requirements for dominance. It is worth
to note both data set exhibit that variable re-
turn to scale (VRS) and the objective function

can be represented as 1
N+J

[∑N
n=1 θn +

∑J
j=1 µj

]
, the Russell-input and bad output measure of
efficiency. So, the optimal value of model (3.8)
is equal to the Russell efficiency measure defined
with respect to the THIDEA

V RS reference technology.
In essence, model (3.8) and its constraints im-
posed both integer and real restrictions on inputs
and undesirable outputs whilst weak disposability
influences the output set. In terms of efficiency
measurement, we scope on minimizing the poten-
tial changes in inputs and undesirable outputs.
Top of all in the context of discrete set of points,
the evaluated DMU can be projected optimally
close to the non -negative integer feasible point
through solving MILP formulation above.

4 Application

In order to see how weak disposability influences
the hybrid output set, let us consider sixteen
decision making units with three inputs which

is denoted by x1 and x2as integer valued and
x3as real-valued and four outputs. The last out-
put component w1 is characterized as undesirable
one. w1 Is represented integer-values. The other
componentsv1 and v2 are considered to be the
number of desirable production. The first is inte-
ger and the last indicates real valued. Table (1)
summarizes all data set which was taken from
Chen et.al [4]. In order to shed a light on pro-
posed approach, the modified additive model in-
troduced by Chen et.al [4] is recorded here. Again
assume that, |II |= p ≤ N , |V I |= q ≤ M and
|W I |= α ≤ J . Also, according to the attributes
the input vector x = (xI , xNI) is categorized into
desirable and undesirable integer-valued and real-
valued. The notation xGn , x

B
n (n ∈ INI) presents

the real-valued input quantities and xGn , x
B
n (n ∈

II) depicts integer-valued desirable and undesir-
able inputs. Also the number of desirable and un-
desirable integer-valued input sets can be shown
as the index p1 and p2 with p = p1 + p2. Based
on preceding notations, the model has the format
as follows:

ρ = Max 1
(N−p)+p1+p2+q+(M−q)+α+(J−α)

×
[∑ soG−

n

xGo
n

+
soB−
n

xBo
n

+
soGI−
n

xGo
n

+
soBI−
n

xBo
n

+
soI+m

vo
m

+
soNI+
m

vo
m

+
soI+j

wo
j

+
soNI+
j

wo
j

]
s.t.∑K

k=1 λ
kxGk

n = xGo
n − soG−

n , n ∈ INI

∑K
k=1 λ

kxBk
n = xBo

n + soB−
n , n ∈ INI

∑K
k=1 λ

kxGk
n ≤ xGo

n − soGI−
n , n ∈ II∑K

k=1 λ
kxBk

n ≥ xBo
n + soBI−

n , n ∈ II∑K
k=1 λ

kvkm ≥ vom + soI+m , m ∈ V I

∑K
k=1 λ

kvkm = vom + soNI+
m , m ∈ V NI

∑K
k=1 λ

kwk
j ≤ wo

j − soI+j , j ∈ W I

∑K
k=1 λ

kwk
j = wo

j − soNI+
j , j ∈ WNI

∑K
k=1 λ

k = 1
λk ≥ 0, k = 1, ...,K,

soG−
n , soB−

n , soNI+
m , soNI+

j ≥ 0

soGI−
n ∈ ZP1

+ , soBI−
n ∈ ZP2

+ ,

soI+m ∈ Zq
+, s

oI+
j ∈ Zα

+

(4.9)
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Table 1: Efficiency Score and Dominance Factors.

DMU x1Int x2Int x2 Cont v1 Cont v2 Int w1Int

1 403 1120 5331608 18363085 31277605 154

2 411 1125 5883209 19695025 30840680 127

3 420 1112 5940485 19028804 30586165 152

4 452 1121 6626290 20103803 33175128 140

5 495 1126 8154603 21189140 36092750 194

6 473 1146 8502509 21189140 37271623 175

7 472 1087 9031125 21136856 38828087 161

8 454 1132 8788094 20801147 309107870 142

9 432 1108 9157097 21698043 38143325 180

10 427 1045 8868206 21051481 33723130 171

11 438 979 8398829 20114530 32698925 159

12 450 923 9083108 22023502 32641359 232

13 435 851 7470562 17400575 29972388 150

14 424 869 7188360 17101044 28763740 147

15 420 829 6665653 16937531 25005947 118

16 474 879 6489033 17681062 22596922 123

In the above model, soG−
n , soB−

n , soNI+
m , soNI+

j

and

soGI−
n ∈ ZP1

+

,

soBI−
n ∈ ZP2

+

,

soI+m ∈ Zq
+

,

soI+j ∈ Zα
+

are non-radial slack vectors of inputs and outputs
of under evaluated DMU. Although the optimal
value of the model does not depend on the units
of measurement in inputs and outputs. Top of
all, this additive model provides a closer on which
variables cause a specific DMU to be inefficient
by a certain amount. With these slack results,
directions for improvements are easily obtained
for each input and output measure. It is worth
noting that the inequality is used in model (4.9)
for integer-restricted inputs and outputs because
the convex combinations for frontier DMUs are
not necessarily integer-valued.

Therefore, xGo
n − soGI−

n (n ∈ II), xBo
n + soBI−

n (n ∈
II), vom + soI+m (m ∈ V I) and wo

j − soj , (j ∈ W I)
, the reference target for integer factors may or
may not be equal to the their projections on
the efficient frontier, but must be dominated
by their convex combinations of frontier DMUs.
To obtain an efficiency score between zero and
one, let the optimal solution of the model is
(λk∗, s∗oG−

n , s∗oB−
n , s∗oNI+

m , s∗oNI+
j , s∗oGI−

n ,

s∗oBI−
n , s∗oI+m , s∗oI+j ) , the efficiency score of
DMUo can be computed as below:

ρ∗o =
1−

(∑ s∗oG−
n
xGo
n

+
s∗oGI−
n
xGo
n

+
s∗oI+
j
wo
j

+
s∗oNI+
j
wo
j

)
(N−p)+p1+(J−α)+α

1 +

(∑ s∗oB−
n
xBo
n

+
s∗oBI−
n
xBo
n

+
s∗oI+m
vom

+
s∗oNI+
m
vom

)
(M−q)+q+(N−p)+p2

It is true that the value of ρ∗o falls between zero
and one. A larger efficiency value indicates that
the DMU is closer to the efficient frontier and has
a better performance. Also the unit is efficient if
and only if ρ∗o = 1. In other words, all slacks in
model (4.9) are zero. The results of employing
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Table 2: Efficiency Score and Dominance Factors.

DMU ρ∗o σ∗ θ∗1 θ∗2 θ∗3 φ∗
1

1 1 1 1 1 1 1

2 1 1 1 1 1 1

3 0.9397 0.98 0.9713 1 0.9558 1

4 1 0.97 0.9207 0.9921 0.9847 1

5 0.9132 0.94 0.8816 0.8853 0.9758 1

6 0.9415 0.96 0.9087 0.9393 0.9661 1

7 1 0.97 0.9081 1 0.9044 1.0630

8 1 1 1 1 1 1

9 1 1 1 1 1 1

10 1 1 1 1 1 1

11 1 0.98 0.9809 1 0.8828 1.0656

12 1 1 1 1 1 1

13 1 0.97 0.9698 1 0.9109 1

14 1 0.97 0.9881 0.9860 0.9151 1

15 1 1 1 1 1 1

16 1 1 1 1 1 1

model (4.9) are presented in the second column
of Table 2. Applying linear program (3.8), the
obtained efficiency score is presented in Table 2.
When weak disposability is introduced, employ-
ing the model based on technology (3.7) presents
the following scores. The first column of Table 2
reports the efficiency score of the additive model
(4.9) . Compared with the thirteen efficient units
which were reported in model (4.9), the proposed
approach records only eight efficient DMUs. For
this application, the additive model (4.9) is not
too helpful. Because model (4.9) considers un-
desirable factors behaving like inputs. There-
fore, in this computation effort through applying
weak disposable assumption for undesirable out-
puts the number of efficient unit decreases. It is
worth to stress that the dominance factor which
indicates weak disposability of undesirable out-
puts and inputs play notable role in these results.
The rest columns of Table 2 report the optimal
values for non uniform dominance factors across
all firms. As regards, the proposed formulations
can be fallen beyond the scope of hybrid return
to scale environments in efficiency measurement

contexts.

5 Conclusion

In many real practical problems it is not uncom-
mon to encounter production outputs that are
undesirable or can only take integer-values. Stan-
dard DEA models assume that all inputs and/or
outputs are continuous and real-valued; therefore,
the identified targets are likely to be fractional
and not applicable in practice. To tackle with
integer constraints and undesirable outputs dif-
ferent type of integer-valued efficiency measure
were proposed to calculate the performance of all
DMUs. Furthermore, the correct specification of
weak-disposability in two types of models was im-
portant not only for productivity and efficiency
measurment but also for estimating the domi-
nance possibility. As confirmed by the numer-
ical application the weak disposability property
for both real and integer valued data set can be
seen as abatement achieved through decrease in
the activity level. Finally, all the discussion can
be applied through hybrid return to scale (RTS)
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situations.
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