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Abstract

In this paper, just-in-time scheduling problem with batch delivery and due date assignment for hybrid
flow shop robotic cells is considered. A mixed integer linear programming (MILP) model is presented
to determine the sequence of jobs and robot moves. Two meta-heuristic algorithms including Artificial
Immune System (AIS) and Tabu Search (TS) are proposed. The results show that AIS performs well
for this problem.
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1 Introduction

O
ne of the most important scheduling problems
that is commonly encountered in manufac-

turing environments is hybrid flow shop schedul-
ing (HFS) problem. The HFS consists of two or
more stages that at least one of them has two
or more parallel machines which can be identical,
uniform or unrelated. During the last decade, re-
searches in this field have been focusing on more
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realistic problems including machine eligibility,
blocking constraints, transportation constraints,
etc. When machine eligibility constraints are
considered, machines are not eligible to process
all the jobs at stages. It means that not all
jobs can be processed on all machines. Apply-
ing blocking constraints is a well-known charac-
teristic which is widely considered in scheduling
problems. In real life situation, there is no buffer
space between two successive machines for jobs
to wait for next operation; this causes the job
that has completed its processing, cannot move
from the current machine to the other which is
occupied. The most effective factors in increas-
ing the productivity of manufacturing systems are
material handling time and cost. Since these fac-
tors make bottleneck, efficient material handling
has become very important. Today, many indus-
tries use computer-controlled material handling
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systems such as robots for this purpose. Indus-
trial robots play an important role in advanced
manufacturing systems [19]. In these manufac-
turing systems, job loading, unloading and trans-
portation are done by robots. Indeed, in ad-
vanced manufacturing systems, cost reduction is
the main purpose of manufacturers. With respect
to cost reduction, the most important scheduling
problem that has received considerable attention
in last decades is just in time (JIT) scheduling.
In fact, a vast variety of practical problems are
related to just in time (JIT) scheduling environ-
ment. Because of practical importance and indus-
trial application of JIT scheduling, investigations
on scheduling problems include both earliness and
tardiness penalty. In most scheduling models, a
job that is completed after its due date, incurs a
tardiness penalty due to customer dissatisfaction;
a possible contractual cost for late delivery and
potential loss of reputation. On the other hand,
the completion of jobs before their due date could
result in additional storage or insurance costs, or
even product deterioration [20].

One of the principal features of JIT scheduling
relies on the way the due dates are considered:
they can be given parameters or decision variables
[24]. While traditional scheduling models consid-
ered due dates as given by exogenous decisions, in
an integrated system, they are determined by tak-
ing into account the systems ability to meet the
quoted delivery dates. In order to avoid tardiness
penalties, including the possibility of losing cus-
tomers, companies are under increasing pressure
to quote attainable delivery dates. At the same
time, promising delivery dates too far into the fu-
ture may not be acceptable to the customers or
may force a company to offer price discounts in
order to retain the business. Thus, there is an
important trade-off between assigning relatively
short due- dates to customer orders and avoiding
tardiness penalties. This is the reason that in-
creasingly large number of recent studies have re-
garded due date assignment as a part of schedul-
ing process, and shows how the ability to con-
trol due dates can be a major factor in improving
system performance [20]. The initial researches
in the field of due date assignment in schedul-
ing focused on the constrained version where the
scheduler must decide on a common due date for

all jobs. This method is usually referred to as the
CON method; while dealing with the unrestricted
case, each job can have a different due date which
is referred to as the DIF method [22].

Considering the variety of production and flex-
ibility of manufacturing systems, the due date
assignment of product batches and consequently
the ability to deliver them just in time is one of
the key factors in todays competitive world such
that trying to adjust its production scheduling
with customers order is inevitable for every com-
pany to survive. Therefore, JIT scheduling has
emerged as a response to the necessity of fulfill-
ing each customers order at his most desired time.
On the other hand, the accurate handling flow is
one of the fundamental characteristics of produc-
tivity in advanced serial manufacturing systems.
Hence, taking these two concepts into account to-
gether which means keep being customer-oriented
in order to acquire their satisfaction and meet
companys potential share of market and simul-
taneously managing material handling time and
cost in a production plant, makes robots employ-
ment very reasonable. With these motivations,
utilizing robots aroused and constantly has be-
come more and more applied in all types of mod-
ern production systems and their corresponding
sequencing and scheduling models. Blocking hy-
brid flow shop robotic cells scheduling (BHFS-
RCS) is a notable development on the well-known
classic hybrid flow shop scheduling problem. Al-
though BHFS-RCS have been increasingly stud-
ied during last decade, but there has not been any
research yet where the strongly connected due
date assignment and JIT scheduling are consid-
ered mutually together as an objective along with
batch delivery costs. Most researchers treated de-
livery costs as either negligible or irrelevant, how-
ever, delivery costs are a significant factor, and
hence production costs depend not only on when
jobs are processed but also when finished jobs are
delivered [20].

This research addresses blocking hybrid flow
shop scheduling problem with transport resources
as robots in JIT environment. In fact, in this pa-
per we study blocking hybrid flow shop robotic
cell scheduling problem incorporating additional
constraints such as unrelated parallel machines
and machine eligibility constraints with respect
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to JIT scheduling, due date assignment by DIF
method and batch delivery. We considered this
problem with unloading, transferring and loading
jobs which are performed by robots. According to
our survey on the literature which is described in
detail in the next section, the BHFS-RCS prob-
lem as explained above has not been studied in
the literature before and there is a gap here.

The rest of the paper is organized as follows:
the related literature is reviewed in the next sec-
tion. Section 3, gives the definition of the prob-
lem and details of the proposed MILP model. In
section 4, AIS and TS algorithms are proposed.
Section 5 presents the computational experiments
and analysis and finally conclusion of this re-
search and future extensions are given in Section
6.

2 Literature review

Most of the literature of robotic cells scheduling
deals with cyclic scheduling in which the objec-
tive is to maximize the throughput rate, or equiv-
alently, minimize the cycle time. For this rea-
son, minimizing makespan has been considered
as maximizing throughput in the literature.

Bilge and Ulusoy [3] studied the simultaneous
scheduling of automatic guided vehicles (AGVs)
in flexible manufacturing system. They devel-
oped an iterative procedure in which the objective
is makespan minimization. Hurink and Knust
[14] considered flow shop scheduling with trans-
portation times and a single robot. They assumed
an unlimited buffer space between the machines
to determine a feasible schedule while minimizing
the makespan. Furthermore, Hurink and Knust
[13] proposed a Tabu search algorithm for the job
shop scheduling problem with a single transporta-
tion resource. Soukhal and Martineau [23] stud-
ied the flow shop robotic cell scheduling problem
with multiple part-types and a single transporta-
tion robot. They assumed that there is no inter-
mediate buffer between machines and proposed
a genetic algorithm to solve the problem. Car-
lier et al. [4] considered an approximate decom-
position algorithm for the flow shop automated
cells scheduling problem with a single transporta-
tion robot and a blocking constraint. Their pre-
sented approach divides the problem into two sep-

arate scheduling problems which are solved se-
quentially. To solve each of these two problems,
they proposed an exact branch-and-bound algo-
rithm and a two-phase genetic algorithm. Khar-
beche et al. [15] studied the flow shop robotic cell
scheduling problem with single robot. They pro-
posed an exact branch-and-bound algorithm to
solve the problem and also a genetic algorithm
to deal with large-scale problems. Geismer et
al. [11] considered the bufferless robotic cells flow
shop with parallel machines and constant travel
time. Geismer et al. [12] also studied the same
problem with multiple robots.

Elmi and Topaloglu [6] considered blocking hy-
brid flow shop robotic cells scheduling problem in
which the objective is to minimize the makespan.
They proposed simulated annealing (SA) algo-
rithm to solve the problem. Elmi and Topaloglu
[9] also studied the robotic scheduling problem
considering multiple part-types in a blocking hy-
brid flow shop cells environment including differ-
ent speed parallel machines at each stage, ma-
chine eligibility constraints and a single robot to
convey parts between stages. They developed
a SA solution approach to solve the proposed
MILP model. Batur et al. [2] focused on a hy-
brid flexible flow shop robotic cells scheduling
problem considering multiple part-type produc-
tion and tried to determine the best cycle time
and the robot move sequence which transports
parts between machines. They presented a SA
based meta-heuristic and solved the problem us-
ing two different neighborhood structures. Arviv
et al. [1] studied two-robot job transfer flow-shop
scheduling problem with the aim of minimizing
makespan. In order to achieve that, they con-
structed a new collaborative reinforcement learn-
ing algorithm using dual Q-learning functions.
Shabtay and Arviv [21] considered a non-cyclic
three-machine robotic flow-shop scheduling prob-
lem. A single robot is assumed for transferring
jobs between machines. The objective is to min-
imize the makespan. They solved the problem
by decomposing it into a set of sub-problems and
provide an optimal schedule for each of them.

Elmi and Topaloglu [8] investigated multi-
degree cyclic flow shop robotic cell scheduling
problem considering multiple gripper robots and
developed an ant colony optimization (ACO)



148 J. Rezaeian et al., /IJIM Vol. 13, No. 2 (2021) 145-162

meta-heuristic to determine the optimal sequence
of robots’ moves along with the optimal degree
of the cyclic schedule and the robot assignments
for the transportation operations. Che et al. [5]
developed a bicriteria polynomial algorithm to
find the Pareto front for a stable robotic flow
shop scheduling with interval times and a fixed
robot route. Their objectives were cycle time
minimization and stability radius maximization
at the same time. Zabihzadeh and Rezaeian [26]
studied flexible flow shop scheduling problem con-
taining release time and robotic transportation.
They presented a MILP model to minimize the
maximum completion time of all parts and pro-
posed two meta-heuristics including SA and ACO
to solve the problem. Lei et al. [16] proposed a
hybrid algorithm based on a hybrid quantum evo-
lutionary algorithm to solve the cyclic scheduling
problem with single robot and flexible process-
ing time. Another study by Elmi and Topaloglu
[7] concentrated on multi-degree cyclic flow shop
robotic cell scheduling problem in which multi-
ple robots are supposed to handle the transporta-
tion operation of parts between machines. A new
MILP model was proposed by them to maximize
the throughput rate.

To the best of the authors knowledge, JIT
scheduling along with due date assignment and
batch delivery have not been considered together
in hybrid flow shop robotic cells systems in the
literature and therefore this research is quite in-
novative in the area trying to fill this gap. This
paper considers earliness, tardiness, due date as-
signment and batch delivery costs in these sys-
tems as objective function and unrelated parallel
machines, multiple part types and machine eligi-
bility as constraints.

3 Problem statement and for-
mulation

In this section, first we present definitions and
notations of the proposed problem; next a mixed
integer linear programming model is described.
The manufacturing environment of the BHFS-
RCS is considered as an extension of the flow shop
in which the handling resource is multiple robots.
In a robotic flow shop cell with parallel machines,
there are J jobs that need to be processed at all

stages in the same order, starting at stage 1 un-
til finishing in stage S. Each stage s consists of a
given number of unrelated parallel machines Ms

(Ms ≥ 1). Each job j can be processed at the sth
stage by any machine from the eligible machine
set which is denoted by Ej,s. The transfer of a
job j from one machine to another is performed
by robots. In each stage, there is no buffer space
between successive machines. It means that after
processing a job j on one machine in stage s, the
machine remains blocked until a robot picks up
job j and transfers it to another machine in the
next stage.

Figure 1: An example of a BHFS-RCS with par-
allel machines considered in this research.

Figure 2: ARPD comparison of proposed algo-
rithms.

Fig. 1 presents the considered BHFS-RCS
problem with unrelated parallel machines at each
stage. In this figure, trapezoids show the stages,
rectangles present the machines placed at each
stage, the disjunctive lines show transporting
robots’ movements between machines to load
or unload them, the conjunctive arcs illustrate
the processing sequence of parts throughout the
stages and finally three robots (noted as R1, R2

and R3) on their paths between machines are de-
picted as manipulators.
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Table 1: Solution encoding in artificial immune system.

Operation 2 4 7 9

Job 1 1 1 1

Stage 1 2 3 4

Batch 2 2 2 2

Table 2: Considered parameters in [6].

Parameters Values

The number of jobs 10

The number of stages 4,6,8

The number of machines in each stage U(6,1)

The number of robots 2,4,6,8,10

The processing times U(10,100)

The processing speeds U(1,3)

Table 3: Considered parameters in computational experiments.

Parameters Values

The number of jobs 10,20

The number of stages 4,6,8

The number of machines in each stage* U(1,4)

The number of robots 2,4,6,8,10

The number of batches 3

The processing times U(10,100)

The processing speeds U(1,3)

The acceptable lead time of jobs round

(
U (0, 1) ∗

∑stage
i=1 P ij

)
+
∑stage

i=1 P ij∀j

cost per batch delivery U(1,20)

earliness penalty weight per job U(1,20)

tardiness penalty weight per job U(1,20)

due date penalty weight per job U(1,20)

* All of these machines are not eligible to process all jobs; hence the number of eligible machines is generated
randomly.

For each job there is an acceptable lead time,
that is reasonable for its customer who doesn’t
want to receive his order earlier or later than due
date. Hence, if due date won’t be greater than the
acceptable lead time, there will be no penalty.

After finishing job processing, the finished jobs

are to be delivered to customer in batches. A de-
livery batch is defined as a set of jobs with com-
mon due dates. There is no capacity limitation
on a batch delivery. The delivery time of all jobs
in a batch is equal to the maximum departure
time of them from last stage. If a job is delivered
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Table 4: Problems categorized into three intervals.

Size of solution = job ∗ (stage− 1)

Problem size 30-60 70-100 110-140

small ✓
average ✓
large ✓

Table 5: Considered levels of AIS parameters

2*AIS parameters Size of solution = job ∗ (stage− 1)
30-60 70-100 110-140

3*maxgen 100 100 100
120 120 120
150 150 150

3*Pop size 50 50 50
60 60 60
70 70 70

3*nc 7 7 7
8 8 8
9 9 9

Table 6: Considered levels of TS parameters.

21.6cmTS parameters Size of solution = job ∗ (stage− 1)
30-60 70-100 110-140

3*iteration 100 100 110
150 110 120
200 120 130

3*TL Round (0.3* nAction) Round (0.6 * nAction) Round (0.75 * nAction)
Round (0.4 * nAction) Round (0.7 * nAction) Round (0.85 * nAction)
Round (0.5 * nAction) Round (0.8 * nAction) Round (0.9 * nAction)

* Number of allowable moves in neighborhood.

Table 7: Considered levels of AIS parameters

2*AIS parameters Size of solution = job ∗ (stage− 1)
30-60 70-100 110-140

maxgen 100 100 100

Pop size 50 50 50

nc 7 7 7

before the due date, it has to be held until its due
date and incurs earliness penalty. On the other
hand, if a job is delivered after the due date, it
causes tardiness penalty. The objective is to min-

imize sum of earliness penalty, tardiness penalty,
due date assignment and batch delivery costs.
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Table 8: Considered levels of TS parameters

21.6cmTS parameters Size of solution = job ∗ (stage− 1)
30-60 70-100 110-140

iteration 100 110 110

TL Round (0.3 * nAction) Round (0.8 * nAction) Round (0.85 * nAction)

Table 9: The effectiveness of the proposed algorithms in comparison with SA algorithm of Elmi’s paper [6].

2*jobs 2*stages 2*algorithm Number of robots (NR)
2 4 6 8 10

9*10 3*4 AIS 757.60 426.96 295.73 279.49 282.90
TS 724.16 456.39 407.60 305.86 266.53
SA 804.54 584.63 521.48 523.64 519.31

3*6 AIS 820.20 682.89 530.16 480.96 426.83
TS 1171.93 686.89 584.19 469.56 527.19
SA 874.48 798.96 737.84 646.74 643.71

3*8 AIS 1191.33 993.83 793.70 657.03 620.36
TS 1384.33 1018.43 843.29 783.53 623.50
SA 1201.74 1033.58 925.56 897.82 862.75

Table 10: The comparison of GAP between proposed algorithms and Elmi’s SA algorithm [6].

multirow2*jobs 2*stages 2*algorithm Number of robots (NR)
2 4 6 8 10

6*10 3*4 AIS 5.83 26.96 43.29 46.62 45.52
TS 9.99 21.93 21.83 41.58 48.67

2*6 AIS 6.20 14.52 28.14 25.63 33.69
TS 0 14.02 20.82 27.39 18.10

2*8 AIS 0.86 3.84 14.24 26.81 23.92
TS 0 1.46 8.88 12.72 27.73

Figure 3: CPU time comparison of proposed al-
gorithms.

3.1 Notation

Indices:

J= number of jobs, j ∈ {1, 2, . . . , J}.

S= number of stages, s ∈ {1, 2, . . . , S}.

Ms= number of machines at stage s, such that
there is one machine in input and output stages,
m ∈ {1, 2, . . . ,Ms}.

W= number of operations that are performed
by robots, f ∈ {1, 2, . . . ,W}.

B= number of batch, b ∈ {1, 2, . . . , B}.
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Table 11: Randomly generated problems using data from Table 2.

Problem Number of jobs Number of stages Number of robots Number of batchs
1 10 4 2 3

2 10 4 4 3

3 10 4 6 3

4 10 6 2 3

5 10 6 4 3

6 10 6 6 3

7 10 8 2 3

8 10 8 4 3

9 10 8 6 3

10 20 4 2 3

11 20 4 4 3

12 20 4 6 3

13 20 6 2 3

14 20 6 4 3

15 20 6 6 3

16 20 8 2 3

17 20 8 4 3

18 20 8 6 3

Figure 4: Average objective reduction using dif-
ferent numbers of robots for each problem in AIS
algorithm.

Parameters:

Pj,s= processing time of the jth part at stage s,
where the processing times of all jobs at input
and output stages are equal to zero.
Rs,m= processing speed of the mth machine at
stage s, where the speed of the machines at input
and output stages are zero.
Ej,s= number of machines that are eligible to pro-

cess the jth job at stage s, m ∈ {1, 2, . . . , Ej,s}.

Aj= acceptable lead time for job j.
αj= earliness penalty weight for job j.
βj= tardiness penalty weight for job j.
γj= due date penalty weight for job j.
θ= cost per batch delivery.
SP= the time required for the robot to travel
each distance.
BM= a very large number.

Decision Variables:

Xj,j′,s=1 if the j′th part is processed after the jth
job at stage s, 0 otherwise.
Yj,s,m=1 if job j is processed on machine m at
stage s, 0 otherwise.
Zj,s,f=1 if job j at stage s is the fth operation
that would be unloaded by any robot to be trans-
ported to the next stage.
RSr,f=1 if the fth operation is unloaded by rth
robot, 0 otherwise.
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Table 12: ARPD in terms of objective value for proposed algorithms.

Problem Bestsol AIS sol Time Spentsol TS sol Time SpentTS

1 646.33 126.34 17.44 368.55 22.21

2 3 5646.66 17.8 2580 22.71

3 12 573.33 17.96 105 22.91

4 57 6348.53 28.72 6480.52 37.24

5 18 1691.09 29.39 3111.47 37.27

6 24 47.5 29.6 50 37.2

7 4974.83 51.5 40.48 98.56 46.29

8 194.33 747.6 40.9 784.51 45.95

9 12 570.83 40.99 1188.88 46.54

10 1284.33 242.92 30.48 298.55 217.59

11 287 240.77 31.21 1005.29 218.99

12 18 840.54 31.87 7436.66 226.68

13 6241 80.97 53.04 107.82 443.83

14 561.66 518.95 54.19 367.94 438.43

15 129.33 1084.5 53.83 613.97 437.18

16 5581.66 172.54 72.97 202.92 717.58

17 3161 191.9 75.32 233.7 718.31

18 57 5820.51 76.85 3041.62 839.23

Table 13: The average objective value for proposed algorithms.

2*Problem AIS TS
Number of robots

10 4 1482.93 172.4 80.8 3028.53 80.4 24.6

10 6 3675.66 322.39 35.4 3750.9 578 36

10 8 7537.09 1647.16 80.5 9878.46 1718.89 154.66

20 4 4404.33 978.03 169.29 5118.76 3172.2 1356.6

20 6 11294.59 3476.43 1531.93 12970.6 2628.36 923.39

20 8 15212.96 9227.16 3374.69 16908.2 1048.6 1449.53

Y Y j,b=1 if job j belongs to batch b, 0 otherwise.
ZZb=1 if there is at least one job in batch b. 0
otherwise.
Dj,s= the departure time of the jth job from
stage s.
ddj= due date of job j.
DT j= delivery time of job j.
Tj= tardiness of job j, which is equal to
max{0, DT j − ddj}.

Ej= earliness of job j, which is equal to
max{0, ddj −DT j}.
Gj= delay in delivery of job j which is equal to
max{0, ddj −Aj}.
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Objective function and constraints:

Minimize:

J∑
j=1

αjTj +

J∑
j=1

βjEj +

J∑
j=1

γjGj +

B∑
b=1

θZZb

s.t.

Dj,s +BM ×
(
2− (Yj,s,m + Yj,s−1,m′)

)
≥ Dj,s−1 +

(
SP × (|s− (s− 1)|+

|m−m′|)

)
+ (Pj,s ×Rs,m),

i ∈ {1, 2, . . . , J}; s ∈ {2, . . . , S − 1});
m ∈ {1, 2, ..., Es,j}; m′ ∈ {1, 2, ..., Ej,s−1} (3.1)

( Ej,s∑
m=1

Yj,s,m

)
= 1

j ∈ {1, 2, . . . , .J}; s ∈ {1, 2, . . . , S} (3.2)

(
Ms∑

m=Ejs+1

Yj,s,m

)
= 0

j ∈ {1, 2, . . . , J}; s ∈ {1, 2, . . . , S} (3.3)

Dj,s−1 +BM × (4− Yj,s,m − Yj′,s,m−

Yj′,s−1,m′ −Xj,j′,s) ≥ Dj,s −
(
SP×

(1− |m−m′|)
)

j, j′ ∈ {1, 2, ..., J}, j ̸= j′; s ∈ {2, ..., S − 1};
m ∈ {1, 2, ..., Ej,s}; m′ ∈ {1, 2, ..., Ej′,s−1} (3.4)

Dj,s−1 +BM × (3− Yj,s,m − Yj′,s,m−

Yj,s−1,m′ +Xj,j′,s) ≥ Dj′,s −
(
SP×

(1 + |m−m′|)
)

j, j′ ∈ {1, 2, ..., J}, j ̸= j′; s ∈ {2, ..., S − 1};
m ∈ {1, 2, ..., Ej,s}; m′ ∈ {1, 2, ..., Ej,s−1} (3.5)

(
W∑
f=1

Zj,s,f

)
= 1

j ∈ {1, 2, . . . , J}; s ∈ {1, 2, . . . , S − 1} (3.6)

(
J∑

j=1

S−1∑
s=1

Zj,s,f

)
= 1, f ∈ {1, 2, . . . ,W} (3.7)

(
f ′∑

f=1

Zj,s,f

)
−BM × (1− Zj,s−1,f ′) ≤ 0

j ∈ {1, 2, . . . , J}; s ∈ {2, . . . , S − 1};
f ′ ∈ {1, 2, . . . ,W} (3.8)

(
f ′∑

f=1

Zj,s−1,f

)
−BM × (3− Yj′,s,m−

Yj,s,m − Zj′,s,f ′ +Xj,j′,s) ≤ 0

j, j′ ∈ {1, 2, ..., J}, j ̸= j′; s ∈ {2, ..., S − 1};
m ∈ {1, 2, . . . , Ej,s}; f ′ ∈ {1, 2, . . . ,W} (3.9)

(
f ′∑

f=1

Zj′,s,−1,f

)
−BM × (4− Yj′,s,m

− Yj,s,m − Zj,s,f ′ −Xj,j′,s) ≤ 0

j, j′ ∈ {1, 2, ..., J}, j ̸= j′; s ∈ {2, ..., S − 1};
m ∈ {1, 2, . . . , Ej′,s}; f ′ ∈ {1, 2, . . . ,W} (3.10)

R∑
r=1

RSrf = 1 f ∈ {1, 2, . . . ,W} (3.11)

Dj,s +
(
BM × (7−RSr,f −RSr,f ′ − Zj,s,f

− Zj′,s′,f ′ − Yj,s,m − Yj′,s′,m′
1−

Yj′,s′+1,m′
2)
)
≥ Dj′,s′ + SP×(

(|s′ − (s′ + 1)|+|m′
1 −m′

2|)+

(|(s′ + 1)− s|+|m′
2 −m|)

)
j, j′ ∈ {1, 2, . . . , J} j ̸= j′;

s, s′ ∈ {1, 2, ..., S − 1}; m ∈ {1, 2, ..., Ej,s};
m′

1 ∈ {1, 2, ..., Ej′,s′};
m′

2 ∈ {1, 2, ..., Ej′,s′+1};
f, f ′ ∈ {2, ,̇W}, f < f ′; r ∈ {2, . . . , R} (3.12)

B∑
b=1

Y Y j,b = 1 j ∈ {1, 2, . . . , J} (3.13)
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DT j ≥ Dj′,S−1 + (SP × (|S − (S − 1)|+
|1−m|))−BM × (2− Y Y j,b − Y Y j′,b)

j, j′ ∈ {1, 2, . . . , J}; b ∈ {1, 2, . . . , B};
m ∈ {1, 2, . . . , Ej′,S−1} (3.14)

ddj ≥ ddj′ −BM × (2− Y Y j,b − Y Y j′,b)

j, j′ ∈ {1, 2, . . . , J}; b ∈ {1, 2, . . . , B} (3.15)

ddj ≤ ddj′ +BM × (2− Y Y j,b − Y Y j′,b)

j, j′ ∈ {1, 2, . . . , J}; b ∈ {1, 2, . . . , B} (3.16)

DT j + Ej − Tj = ddj j ∈ {1, 2, . . . , J}
(3.17)

ZZb ≥ Y Y j,b

j ∈ {1, 2, . . . , J}; b ∈ {1, 2, . . . , B} (3.18)

ZZb−1 ≥ ZZb b ∈ {2, . . . , B} (3.19)

Gj≥ddj −Aj j ∈ {1, 2, . . . , J} (3.20)

Gj , Tj , Ej ≥ 0 j ∈ {1, 2, . . . , J} (3.21)

Constraint 3.1 ensures that if a job is processed
at a stage it must also be processed at the pre-
vious stage. Constraints 3.2 and 3.3 state that,
only one of the eligible machines at each stage is
able to process a job. Constraints 3.4 and 3.5 de-
termine the sequence of job processing operations
on the same machine at each stage. These con-
straints ensure that a machine isnt able to pro-
cess two jobs at the same time. Constraints 3.6
and 3.7 indicate that each robot is able to trans-
fer only one job from a stage to the next one.
Constraint 3.8 ensures that a job can be trans-
ferred to current stage only if it was completed
in previous stage. Constraints 3.9 and 3.10 state
that, the sequence of job processing operations
determines the sequence of robots move. These
constraints guarantee that each job is able to be
loaded on a machine, only if a previous job was
unloaded from it. Constraint 3.11 ensures that
only one robot is assigned for each unloading op-
eration. Constraint 3.12 states that the two un-
loading operations are not able to be handled at

the same time. Constraint 3.13 prevents assign-
ing more than one batch to each job. Constraint
3.14 states that the delivery time of each job in
a batch is equal to maximum departure time of
all jobs in the same batch from last stage. Con-
straints 3.15 and 3.16 express that all jobs in the
same batch have equal due dates. Constraint 3.17
ensures that the delivery time of each job should
be determined according to the earliness, tardi-
ness and due date of that job. Constraints 3.18
and 3.19 determine the number of batches. Con-
straint 3.20 indicates that the delay of each job is
greater than minimum deviation of jobs due date
from its acceptable lead time. Constraint 3.21
ensures that the earliness, tardiness and delay of
each job is greater than or equal to zero.

The large number of decision variables and con-
straints of the proposed model cause the exact
methods not to be able to solve it for small-size
problems. Hence artificial immune system and
Tabu search algorithms are developed in the next
sections to solve this issue.

Figure 5: Average objective reduction using dif-
ferent numbers of robots for each problem in TS
algorithm.

Figure 6: Average objective rise using different
numbers of stages for each problem in AIS algo-
rithm
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Figure 7: Average objective rise using different
numbers of stages for each problem in TS algo-
rithm.

4 The proposed algorithms

4.1 Artificial immune system

The operative mechanisms of immune system are
very important; hence the proposed artificial im-
mune system in this paper is based on clonal se-
lection and affinity maturation.

The main task of immune system is to iden-
tify and destroy viruses, bacteria and other for-
eign substances which are denoted as pathogens.
These pathogenic substances are recognized by
structure molecules on their surfaces which are
known as antigens. After identifying antigens,
the immune system develops defensive mecha-
nisms against them. Hence the most common
types of immune cells which are called lympho-
cytes (B cells and T cells) interact to initiate an-
tibody production. These antibodies immobilize
antigens and prevent them from causing infection.

In other words, pathogens will be swallowed
by phagocytes and their antigen is represented
on these cells’ surface. The lymphocytes have
receptor molecules on their surface which is able
to recognize antigens. When antigen and receptor
molecules have complementary shape, they can
bind together; this binding ensures recognition
of antigen [10]. The evaluation of the receptor
matching is called affinity. The procedure from
the intrusion to the recognition of pathogens is
called the primary immune response.

T cells that match the antigen are prolifer-
ated and differentiated to kill the pathogenic sub-
stances and so do B cells, and then secrete anti-
bodies into body. After that, if a similar anti-
genic substance enters the human body again,
the memory B cells will be quickly activated at

a high stimulation level so that the human body
can effectively respond to the recognized or simi-
lar pathogen. This process is called the secondary
immune response [25]. Therefore, the entire pro-
cess from the intrusion to the elimination of the
pathogens is called the immune response.

According to the clone selection procedure, this
algorithm starts searching with generating pop-
ulation of antibodies. These antibodies indicate
the feasible solutions. The objective of these solu-
tions is called antigens. After generating antibod-
ies, each antibody is evaluated according to its
affinity measure. Then all antibodies are sorted
according to their affinity measures. After sort-
ing, defined number of high affinity antibodies are
selected to proliferate according to their affinity
measure. The clone number of an antibody is
proportional to its affinity measure. Then the
clones mutate according to their origin’s affinity
measures, the clones of the fitter origin will suf-
fer less mutation [25]. Finally, after determin-
ing the affinity measures of the mutants, the de-
fined number of high affinity mutants would be re-
placed with low affinity population of antibodies.
The whole processes are repeated until the stop
criteria are satisfied. The proposed algorithm is
summarized below: Initialization:
Step 1: assign the parameters of AIS such as
popsize (population of antibody), maxgen (stop
criterion), Nc (number of selected antibodies to
clone).
Step 2: generate population of antibodies and
evaluate their costs and affinity measures and sort
them according to their affinity measure, gen=0.
Main loop:
For each generation do:

Step 3: select Nc antibodies from the highest
affinity antibodies of population to clone.

Step 4: cloning according to affinity measures.
For each generated clone do:

Step 5: mutation according to affinity mea-
sures.

Step 6: determine the affinity measures of mu-
tants.
Step 7: select Nc antibodies of mutants with the
highest affinity measures and replace them with
Nc antibodies of population which have the low-
est affinity measures, gen=gen+1.
Step 8: repeat the whole steps until the stop cri-
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terion is satisfied (gen> maxgen).

4.1.1 Basic concepts of the algorithm

4.1.1.1 Solution encoding
The representation of each solution is called so-

lution encoding. According to the main purpose
of this paper, the objective is to determine the
sequence of jobs and robots moves, assignment of
jobs to batches and selection of optimal due dates.
Each solution consists of the sequence of jobs and
robots moves and batching. Also, to assign op-
timal due dates, each solution considers them in
calculating the objective function. According to
the above descriptions, representation of solution
is as follows:

Each solution is defined as a cell which has n ar-
rays (n is equal to the number of job). Each array
consists of two-dimension matrices which have 4
rows and s columns (s is equal to the number of
stage). The first row indicates number of oper-
ations which is performed by robots, the second
row indicates number of jobs, the third row indi-
cates number of stages and the last row indicates
number of batches.

For instance, consider four jobs, four stages and
two batches; the solution is defined as a cell with
4 arrays that each array is as Table 1.

To assign due dates for each job, the lemma
which is presented by Shabtay [20] is used. For
jth job, tardiness penalty weight (βj), due date
penalty weight (γj), delivery time (DT j) and ac-
ceptable lead time (Aj) are considered. The op-
timal due date assignment policy is as follows:

For jth job if DT j ≤ Aj then set dd∗j = DT j

otherwise if Ctj ≥ Cgj set dd
∗
j = Aj , and if Ctj <

Cgj set dd∗j = DT j .

4.1.1.2 Affinity function
The affinity function is equivalent to fitness

function of genetic algorithm. This function cal-
culates the affinity value of each antibody, defined
as:

Affinity(z) =
1

Total Cost(z)

Where z is a given antibody. The antibody
that has the lowest total cost will have the highest
affinity value. Since the cloning of an antibody is
proportional to its affinity, the antibody with the

lowest total cost is cloned more than the antibody
with the highest total cost.

4.1.1.3 Cloning
After calculating affinity value of each antibody

and sorting them according to affinity measure,
Nc antibodies are selected for cloning. Cloning
the selected antibodies is done according to affin-
ity measure. It means that the highest affinity
measure antibody is cloned more than the lowest
affinity antibody. Hence each antibody of Nc an-
tibodies is cloned among Nc − k + 1, where k is
the number of selected antibodies to clone after
sorting.

4.1.1.4 Mutation
For each antibody two mutation procedures are

applied: swap and reversion which are described
as below:

4.1.1.4.1 Swap: for an antibody, let i and j
be two randomly selected arrays of an antibody’s
cell. Replace i with j.

4.1.1.4.2 Reversion: for an antibody, let i
and j be two randomly selected arrays of an an-
tibody’s cell. Reverse arrays between i and j.

4.2 Tabu search algorithm

Tabu search is a meta-heuristic neighborhood
search methodology which is introduced by
Glover (1986). This method acts as a local search
procedure. The main idea of this technique is to
apply a move to the best solution in the neighbor-
hood. This algorithm attempts to avoid cycling
and escape from local optimality by forbidding
reverse moves, hence it maintains a list of pro-
hibited moves called a tabu list. This algorithm
is able to maintain a short-term memory function
which determines for how long a tabu restriction
is enforced. It means that the forbidden move-
ments can be overridden their prohibition when
a certain criterion (aspiration criteria) is satisfied.
The aspiration criteria revoke tabu restriction if
at any iteration of search process, there is a tabu
move which can generate a solution that is better
than the best solution found so far. The basic
concepts of TS are described as follows:
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At first, this algorithm starts searching process
from an initial solution. Then, a set of solu-
tions which is called neighborhood is generated
by applying subset of moves to a current solu-
tion. At each step, to find appropriate neighbor,
the neighborhood of current solution is searched.
The move which leads the solution to the appro-
priate neighbor is determined as forbidden move
and attributes of this move are recorded on tabu
list for a chosen span of time which is called tabu
tenure. Nevertheless, a forbidden move can be
performed if aspiration function evaluates it as
sufficiently profitable [17]. Also, another effec-
tive method of TS is long term memory function
which attempts to achieve intensification and di-
versification. The proposed algorithm is summa-
rized below:
Step 1: generate a feasible solution (x), evaluate
it (f(x)).
Step 2: x∗ = x , f∗ = f(x) where x∗ is the best
solution found so far.
Step 3: it = 0 (iteration counter), TL = ∅ (set of
tabu movements).
Step 4: apply allowable moves to current solu-
tion and generate a set of neighborhood solutions,
N(x).
Step 5: if N(x)− TL = ∅ go to step 2 otherwise
it = it+ 1.
Step 6: select nbest ∈ N(x) − TL which nbest

is best solution of n ∈ N(x) − TL, denoted as:
(nbest(x) = opt(n(x) : n ∈ N(x) − TL): opt()
chose a solution which is generated from best
movement).
Step 7: x ← nbest(x), If f(x) < f∗(x) then
x∗ ← x.
Step 8: check the stop criteria, if the stop criteria
are not satisfied, update TL and return step 2.

The encoding of solution was explained in sec-
tion 4.1.1.1 Also, the procedures which were ex-
plained in section 4.1.1.4 are used for generating
neighborhood solutions.

5 Computational results

To illustrate the effectiveness of the proposed al-
gorithms, some test problems of Elmi’s paper [6]
are considered which their defined parameters are
reported in Table 2. The effectiveness of algo-
rithms is evaluated in comparison with the re-

sults obtained from SA algorithm for makespan
objective. Also, to access the performance of the
proposed algorithms, the computational experi-
ments have been carried out on a set of randomly
generated instances which their defined parame-
ters are reported in Table 3. The performances of
the proposed algorithms are evaluated via com-
paring the results obtained by them.

In order to obtain the results of computational
experiments and test problems, at first, parame-
ter calibration should be done. More details are
discussed as follows:

The parameters designing has significant im-
pact on the efficiency of the proposed algorithms,
hence, to design parameters of proposed algo-
rithms, Taguchi method is used in this research.
In order to calibrate parameters, three levels of
parameters have considered for different problem
sizes which are categorized by a length of solution
in three intervals, denoted as solutionlength =
j(s − 1) as shown in Table 4. These intervals
categorize problems according to three groups
where the proposed algorithms parameters and
their considered level are shown in Tables 5 and
6.

Since by increasing number of parameters, a
large number of experiments have to be carried
out, Taguchi method is applied to deal with this
problem. In order to solve this problem, this
method uses a special design of orthogonal arrays
to study the entire parameters space with only a
small number of experiments. As recommended
in Taguchi method, the experimental results are
determined in a signal-to-noise(S/N) ratio to find
appropriate levels of parameters. The signal-to-
noise(S/N) ratio measures the quality character-
istics deviation from the desired value.

In order to employ the orthogonal arrays of
Taguchi and the signal-to-noise ratio, it is neces-
sary to know the number of parameters and the
number of levels; hence, the L9 orthogonal array
is selected to study the entire parameters space.
Therefore to find appropriate level of parameters,
nine experiments are considered. To reduce the
effect of stochastic nature of proposed algorithms,
they are implemented five times for each problem
and the average objective values of five runs are
transformed to S/N ratio. The appropriate levels
of parameters have been specified according to
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the S/N ratios and are reported in Tables 7 and 8.

5.1 Comparison between proposed al-
gorithms and SA

After determining appropriate levels of param-
eters, to illustrate the effectiveness of the pro-
posed algorithms, 15 test problems of Elmi’s pa-
per [6] are considered and have been solved 5
times. The average makespan values over five
runs are reported in Table 9. Also, the results
obtained by SA algorithm of Elmi’s paper [6] are
reported in this table.

These algorithms were coded in MATLAB
and run on Intel(R) Core(TM) i5-M460 2.53GHz
4.00GB-RAM.

To indicate the effectiveness of the proposed
algorithms, percentage of reduction in average
makespan for AIS and TS compared to SA has
been denoted as GAP in below and shown in Ta-
ble 10.

GAP =(SAmakespan − Proposed algorithmmakespan

SAmakespan

)
× 100

Table 9 indicates that both proposed algo-
rithms have reduced the objective by GAPAIS =
19.96% and GAP TS = 18.34%. Consequently,
the production rate is increased by PRAIS =
15.97% and PRTS = 14.97% as below:

PR =

[
GAP × 10−2

1−GAP × 10−2

]
× 100

With regard to the obtained results, the effec-
tiveness of proposed algorithms is proved.

5.2 Comparison between AIS and TS

As mentioned previously, to investigate the
performance of the proposed algorithms, the com-
putational experiments have been carried out on
a set of randomly generated instances. The ob-
tained result from AIS algorithm is compared
with the ones from TS algorithm. In order to
compare the algorithms, we used the procedure
which is used in Ramazani’s paper [18]. This pro-
cedure is as follows:

At first the proposed algorithms are run for
each problem which is generated randomly by pa-
rameters in Table 3, reported in Table 11. The
main idea of this procedure states that both al-
gorithms are run for the problem at the same
time. Since the obtained results indicate that the
run time of TS is greater than the run time of
AIS, if TS is run at the same duration as AIS
run time, it will cause damage to convergence of
TS. Hence in this research, we used the average
relative percentage deviation (ARPD) as the per-
formance metric to evaluate the algorithms and
their CPU times to compare them in terms of
performance. In order to quantify the employed
ARPD, the average objective value of five run is
calculated for each generated problem which is
denoted as Algsol. The best obtained solution
of each generated problem among the two pro-
posed algorithms is calculated which is denoted
as Bestsol. Subsequently the RPD and ARPD
are calculated as follow:

RPD =
Algsol −Bestsol

Bestsol
× 100

ARPD =

∑Number of Run
i=1 RPDi

Number of Run

The obtained results are reported in Table 12
and Figs. 2 and 3.

According to Table 12 and Fig. 1, AIS algo-
rithm achieved 72.22% better solutions in terms
of quality in quite shorter computing times for
these problems. Therefor the results show that
AIS performs well for this problem. In order
to determine the reaction of proposed algorithms
against changing the number of robots, stages
and jobs, we considered the effects of different
number of robots, stages and jobs on the objec-
tive value which are shown in Table 13. Accord-
ing to the results of Table 13, the reduction in
objective value for each problem as the number
of robots increases, is indicated in Fig. 4 and 5
and the rise in objective value for each problem
as the number of stages increases, is indicated in
Fig. 6 and 7.

6 Conclusion

This paper scrutinizes the blocking hybrid flow
shop robotic cell scheduling (BHFS-RCS) prob-
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lem considering unrelated parallel machines, mul-
tiple part types and machine eligibility con-
straints. Objective function was considered to
find sequence of jobs and robots moves and se-
lect optimal due dates which minimizes earli-
ness, tardiness, due date assignments and de-
livery costs which is completely a new idea in
BHFS-RCS realm. In order to solve this problem
in small sizes, a mixed-integer linear program-
ming (MILP) model is proposed. With regard
to the existing literature in the context of robotic
cell scheduling, AIS and TS algorithms have not
been proposed to deal with the addressed prob-
lem. Hence for solving the model in real size prob-
lems two meta-heuristic algorithms, namely arti-
ficial immune system and tabu search algorithms
are proposed. In addition, to evaluate the effec-
tiveness of the proposed algorithms, 15 test prob-
lems of Elmi’s paper [6] are considered to compare
proposed algorithms with SA algorithm of Elmi’s
paper and to evaluate the performance of pro-
posed algorithms, 18 test problems are generated
randomly to compare AIS with TS. As a future
study regarding real world cases of BHFS-RCS,
in order to increase the applicability of the pro-
posed approach, considering constraints such as
machine breakdowns, sequence dependent set up
times and preemptions is recommended. Further-
more, the proposed problem can be investigated
in other scheduling systems such as job shops or
open shops.
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