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Abstract

In this study, a new type of filters based on elliptic differential operators is introduced. First, we
review the elliptic operators and filters, and due to a wide range of elliptic operators, focus on a batch
of elliptic operators with constant coefficients second order and then generalizing them to a higher
order. Finally by discretization of the elliptic operators, we express and prove two theorems and show
that the obtained filters are the high pass.
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1 Introduction

T
here are many ways to analyze code and re-
build signals which needs special operators

on them. One of the most important operators
that can analyze them is filter which are used to
extract needed frequency components from sig-
nals [1, 2]. Signal processing is discussed as one of
the most important fields that still attracts many
researchers. One of the main parts of signal pro-
cessing is filter designing [3, 4, 5, 6]. So, filtering is
extensive topic in signal processing and has many
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applications, for example, the Gabor filters are
amongst the most important filters in the field of
defect detection [7]. Gabor filters is obtained by
scaling and orienting the mother Gabor wavelet
[8].
The Wiener filter is another important approach
which researchers are using this extensively and
in technical applications for noise reduction in
time domain. This filter is always able to re-
duce the noise embedded in a signal. Though, sig-
nal degradation accompanies the noise reduction
quantity [9]. Kalman-Bucy filter in the stochas-
tic differential equation is used for the modeling
of RL circuit [10]. There are two known groups
of old types of filters which are weighted mean
and median filters. Though, fuzzy versions of
these filters like Weighted Fuzzy Mean (WFM)
and also Fuzzy Median Filter (FMF) as fuzzy
forms of these filters have improved significantly
[11, 12, 13]. Adaptive filters make a distinct class
of filters. Many types of adaptive filters can also
be found in the literature [14, 15]. Nowadays one
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of the most important methods of state estima-
tion, is Kalman Filter (KF) which has a variety
application, like target tracking [16, 17, 18], cli-
mate forecast [19, 20] and Neural Network train-
ing [21, 22].
Differential operators as elliptic ones are consid-
ered as simplify the Laplace operator in the the-
ory of partial differential equations. Elliptic oper-
ators are characteristic of potential concept, and
they seem often in electrostatics, in hydrodynam-
ics and the theory of elasticity and continuum
mechanics [23]. In 1936, the Dirichlet realization
P of a additional command elliptic operator was
considered by Carleman in a bounded domain
U ⊆ Rn [24]. Feature researchers, like Agmon
[25, 26], Agranovich [27], Markus [28] and Mat-
seev [29] have achieved serious and important re-
sults in the field of Keldysh. In the broader level
can be noted in the application and new concepts
such as spectral properties and negative spectra
of elliptic operators [30, 31, 32]. In this paper, in
order to prove that elliptic filters are high-pass,
first we express two theorems of Askari Hemaat
[33] and Inspired by them, we show that the par-
tial derivatives result in a high-pass filter.

The organization of this paper is as follows:
Section 2 has devoted to a review of elliptic differ-
ential operators. Section 3 is devoted to reviewing
filters, properties, and theorems on filters. Dis-
crete and high-pass filters resulted from Partial
derivatives operations have introduced in section
4. Finally, in section 5, the main results of this
paper have concluded.

2 Partial differential operators

Let U be an open set in the Euclidean n−space
En, for all n ∈ N the real Euclidean space En is
the finite dimensional Hilbert space

Eˆn:={X,Y ∈ Rn whit i)∥X∥=
(
∑n

j=1|xj |2)1/2 ii)⟨X,Y ⟩ =
∑n

j=1 xjyj}
We consider the linear partial operator
P : C∞(U) −→ C∞(U) defined by

P(X, D)u :=
∑

|α|≤r aα(X)Dαu =

∑
|α|≤r

aα1,...,αn(x1, ..., xn)
∂|α|u

∂xα1
1 ∂xα2

2 ....∂xαn
n

(2.1)

The number r is called the order of the differ-
ential operator (2.1), if there exists some α whit
|α|= r and aα(X) ̸= 0 on U . With complex-
valued coefficients aα ∈ C∞(U), in the compact
closure Uof a bounded region U ∈ En.Where
multi-indices α = (α1, α2, ...., αn) with αj ∈ N =
{0, 1, 2, ...} for j = 1, 2, ..., n and |α|=

∑n
j=1 αj ,

real coordinate vectors X = (x1, x2, ..., xn) in
Euclidean space En, classical and weak partial
derivatives in Enare denoted by

Dαu =
∂|α|u

∂xα1
1 ∂xα2

2 ....∂xαn
n

for all α = (α1, α2, ...., αn) with total order
|α|> 0[34, 35].

Definition 2.1 We assume that the partial
differential expression P (., D) of (2.1) has order
r ≥ 1. That is, the (highest order) principal
polynomial

p(X, ξ) :=
∑

|α|=r i
raα(X)ξα =

ir
∑

|α|=r aα1,α2,...,αn(x1, x2, ..., xn)ξ
α1
1 ξα2

2 ...ξαn
n

ξ ∈ Rn, X ∈ U.
The principal symbol of P is roughly speak-

ing its ”rth order part”. More explicitly it is the
function on U ×Rn.

Definition 2.2 The operator P is called elliptic
at the point X ∈ U , if p(X, ξ) ̸= 0 for all ξ ∈ Rn,
except, of course, for ξ = 0. P is called elliptic
on U , if P is elliptic at all points X ∈ U .
Note that, ellipticity is defined in terms of the
principal symbol of P , The lower-order terms that
appear in (2.1) don’t play role.

Definition 2.3 The operator P is called
strongly elliptic at the point X ∈ U ,if there ex-
ists a complex constant γ with Re(γ.p(X, ξ)) ̸= 0
for all ξ ∈ Rn . P is called strongly elliptic on U ,
if P is strongly elliptic at all points X ∈ U with
the constant γ independent of X.

Theorem 2.1 If P is strongly elliptic at X ∈ U ,
then P is elliptic at X ∈ U [36].

For example, the operator defined by

P (X,D)u =
∂u

∂x
+ i

∂u

∂y
+ (ix− y)

∂u

∂t
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is not elliptic in the (x, y, t)−space, if ξ =
(y,−x, 1) ̸= 0, then p(X, ξ) = i(ξ1 + iξ2 + (ix −
y)ξ3) = 0.Therefore by theorem 2.1 P is not
strongly elliptic.

On the other hand, in the case ordP = r =
2, n ≥ 2, let

P(X, D)u :=
∑n

j,k=1 ajk(X) ∂2u
∂xj∂xk

+∑n
j=1 aj(X) ∂u

∂xj
+ a0(X)u

Then, the principal symbol

p(X, ξ) =
∑n

j,k=1 i
2ajk(X)ξjξk =

−
∑n

j,k=1 ajk(X)ξjξk
is a quadratic form. If the coefficients ajk(X)
are real, then P is strongly elliptic at X, if the
quadratic form p(X, ξ) is positive or negative
definite. In particular the principal symbol of
Laplacian operator ∆,

∆ =
∂2

∂x21
+ ....+

∂2

∂x2n

is ∆(X, ξ) = −(ξ21 + ... + ξ2n), so that ∆ and all
its powers ∆n are strongly elliptic. Therefore by
theorem 2.1 they are elliptic [36, 37].

3 Filters

special operators on signals are necessary to eval-
uate, code, rebuild signals and a few more. One
of the most important operators that can analyze
them is filter which are used to extract needed
frequency components from signals. Such as high
frequency mechanisms of a signal usually have not
only the noise but also the actuations, that often
have to be detached from the signal. To decay
signals by their frequency bands, low and high
pass filters should be used. A low pass filter re-
duces high frequency components of a signal while
a high pass filter behaves oppositely (figure 1). In
this section, linear filters are described, which are
convolution operators on l2[1].

Definition 3.1 An operator S on l2 is called a
shift operator (also called a time-delay operator)
if

(Sx)[n] = x[n− 1] , x ∈ l2

an operator H on l2 is called time-invariant if
SH = HS and an operator Hon l2 is called a

Figure 1: A RLC circuit with fuzzy current and
fuzzy source.

linear operator if for any x ∈ l2,

Hx = H(
∑
k∈Z

x[k]δk) =
∑
k∈Z

x[k]Hδk.

A linear and time-invariant operator is called a
filter. If H is a filter, then Hx is called the re-
sponse of x.

Definition 3.2 The (discrete) convolution of
two sequences h and x is a sequence h ∗ x given
by

(h ∗ x)[n] =
∑
k

h[k]x[n− k] , n ∈ Z

(3.2)
Provided the series in (3.2) is convergent for each
n ∈ Z

The following theorem identifies the filter with a
sequence.

Theorem 3.1 (In discrete mode) H is a filter if
and only if there is a sequence h such that Hx =
h ∗ x.

Theorem 3.2 (In continuous mode) Let L be a
linear, time-invariant transformation on the space
of signals that are piecewise continuous functions.
Then there exists an integrable function, h, such
that L(f) = f ∗ h for all signals f .

Since h(t) can be obtained the impact of L on
an impulse input signal so h(t) is called the im-
pulse response function. ĥ(λ) Fourier transform
of the impulse response is called the frequency
response (L(λ) = ĥ(λ)) [1, 38].
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3.1 Design Filters

Designing a time-invariant filter is equivalent to
constructing the impulse function, h, since any
such filter can be written as L(f) = f ∗h ( In con-
tinuous mode) or Hx = h ∗ x (In discrete mode)
by Theorem 3.1 and Theorem 3.2 The construc-
tion of h depends on what the filter is designed
to do. In this paper, we consider filters that re-
duce low frequencies, but leave the high frequen-
cies virtually unchanged. Such filters are called
high -pass filters [1, 33, 38].

3.2 Low Pass and High Pass Filters
theorems and properties

As noted above, filters are really significant
type of linear time-invariant systems. the term
frequency-selective filter proposes a system which
passes certain frequency components and com-
pletely discards all others, but in other words fil-
ter is a system which adjusts sure frequencies rel-
ative to others [2].
According to Theorem 3.1, in the discrete case,
H is a filter if and only if there is a sequence h
such that Hx = h ∗x. Where x = x[n] is discrete
signal and

(h ∗ x)[n] =
∑
k

h[k]x[n− k] , n ∈ Z

(3.3)
is the (discrete) convolution of two sequences h
and x.
Note that, filter coefficients, h = {h[k]}k∈Z , can
complex and its called impulse response .If claim
that

x[n] = einω , −π ≤ ω ≤ π

Then by (3.2)

Hx[n] =
∑

k h[k]e
i(n−k)ω = (

∑
k h[k]e

−ikω)einω =
H(ω)x[n]

Where
∑

k h[k]e
−ikωis called frequency re-

sponse function [33].

Theorem 3.3 let
∑

k h[k]e
−ikω be a frequency

response function, which satisfies the following
conditions

1.
∑

k(−1)kh[k] = 1

2.
∑

k h[k] = 0

Then it is a high pass filter, i.e. the output signal
at π as the input signal, and at zero is zero [33].

Remark 3.1 According to the definition of
high-pass filter, it is clear that the condi-
tion 1 in Therorem (3.3) with the condition∑

k(−1)kh[k] ̸= 0 can be replaced.

Theorem 3.4 suppose that
∑

k h[k]e
−ikω is a

frequency response function, which satisfies in
conditions

1.
∑

k(−1)kh[k] = 0

2.
∑

k h[k] = 1

Then is a low pass filter, i.e. the output signal at
zero as the input signal, and at π is zero [33].

Remark 3.2 According to the definition of low-
pass filter, it is clear that the condition 2 in
Therorem (3.3) with the condition

∑
k h[k] ̸= 0

can be replaced.

4 Discretization and high-pass
filters resulted from partial
derivatives operations

In this section, according to Theorem 3.3 show
that the partial derivatives operators result in the
high-pass filter. For this purpose the conditions
of Theorem 3.3 for the high-pass mode to exam-
ine the derivative operators. Note, in the process
provided below, initially intended to be a one-
dimensional model, and then will be extended to
two-dimensional and above.

Lemma 4.1 The partial derivatives operators
(in R and R2) result in the high-pass filter.

Proof. We know if u ∈ C∞(U), U ⊆ R then
in the case of one-dimensional and based on the
central difference derivative

du

dx
=

u(x+ h)− u(x− h)

2h

Without lose of the generality, by choosing h = 1
we have

du

dx
=

1

2
[u(x+ 1)− u(x− 1)]
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By following this process in generally for order
n− th derivative u with respect to x we have

dnu

dxn
=

1

2n

n∑
k=0

(−1)k
(
n

k

)
u(x+ n− 2k)

Now if we put h[k] = (−1)k

2n

(
n
k

)
, it is clear that

1.
∑

k(−1)kh[k] = 1

2.
∑

k h[k] = 0

Therefore, by Theorem 3.3 the corresponding fil-
ter is high-pass filter.

Hence, the above process is extended for u ∈
C∞(U), U ⊆ Rn. Actually the discretization of
the partial derivatives order |α|−th u that |α|=
α1 +α2 + ...+αn and αi ∈ {0, 1, 2, ....} as follows

∂|α|u

∂x1α1∂x2α2 ...∂xnαn
=

1

2α1

α1∑
i1=0

(−1)i1
(
α1

i1

)
1

2α2

α2∑
i2=0

(−1)i2
(
α2

i2

)
· · ·

1

2αn

αn∑
in=0

(−1)in
(
αn

in

)
u(x1 + α1 − 2i1,

x2 + α2 − 2i2, ..., xn + αn − 2in)

Equivalently

∂|α|u

∂x1α1∂x2α2 ...∂xnαn
=

1

2|α|∑
i1,i2,···,in

(−1)i1+i2+···+in

(
α1

i1

)(
α2

i2

)
· · ·

(
αn

in

)
u(x1 + α1 − 2i1, x2 + α2 − 2i2, ..., xn + αn − 2in)

As before, if we put

h[i1, i2, · · · , in] =
(−1)i1+i2+···+in

2α1+α2+...+αn(
α1

i1

)(
α2

i2

)
· · ·

(
αn

in

)
, it is clear that

1.
∑

i1,···,in(−1)i1+···+inh[i1, · · · , in] = 1

2.
∑

i1,i2,···,in h[i1, i2, · · · , in] = 0

Therefore, by Theorem 3.4 and Remark 3.2 the
corresponding filter is high-pass filter.

5 Conclusion

According to what was said in Lemma 4.1, partial
derivatives operators alone are high-pass filters.
At first, we express the paper’s main claim for
filters resulted from elliptic differential operators
with rank r = 2, n = 2 with constant coefficients
according to equation:

P (X,D)u = A
∂2u

∂x2
+B

∂2u

∂x∂y
+ C

∂2u

∂y2
+D

∂u

∂x

+E
∂u

∂y
+ Fu

And prove that and then extend it to the arbi-
trary n, r.

Theorem 5.1 For any elliptic differential oper-
ator of the form

P (X,D)u = A
∂2u

∂x2
+B

∂2u

∂x∂y
+ C

∂2u

∂y2
,

the obtained filter is high pass.

Proof. Let H(ω) be frequency response
and h[i1, i2] be its equivalent impulse response.
Since derivatives are alone high-pass, condi-
tions (1) and (2) of Theorem 3.3 for them are
established. Consequently

H(ω) =
∑
i1,i2

(−1)i1,i2h[i1, i2] =

A× 1 +B × 1 + C × 1,

since P is elliptic operator then A+B+C ̸= 0 ( if
A+B+C = 0 , then the corresponding principal
symbol i.e.

p(X, ξ) = −(Aξ21 +Bξ1ξ2 + Cξ22),

becomes zero at ξ = (1, 1, 1) ̸= 0, and this contra-
dicts the ellipticity of the P ) and this shows that
the condition (1) of Theorem 3.3 is established.
On the other hand

H(0) =
∑
i1,i2

h[i1, i2] = A× 0 +B × 0 + C × 0

This shows that the condition (2) of Theorem 3.3
is established. So the obtained filter is high-pass.
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Theorem 5.2 For any elliptic differential oper-
ator of the form

P (X,D)u =
∑
|α|=r

aα(X)Dαu =

∑
|α|=r

aα1,α2,···αn(x1, x2, · · · , xn)

∂|α|u

∂xα1
1 ∂xα2

2 · · · ∂xαn
n

′

the obtained filter is high-pass.

Proof. Let H(ω) be frequency response and
h[i1, i2, · · · , in] be its equivalent impulse response.
Since derivatives are alone high-pass, conditions
(1) and (2) of Theorem 3.3 for them is established.
Consequently

H(ω) =
∑

i1,i2,···,in

(−1)i1,i2,···,inh[i1, i2, · · · , in]

=
∑
|α|=r

aα1,α2,···,αn(x1, x2, · · · , xn)× 1,

since P is elliptic operator then∑
|α|=r aα1,α2,···,αn(x1, x2, · · · , xn) ̸= 0 ( if it

is equal to zero, then the corresponding principal
symbol i.e.

p(X, ξ) = (i)|α|∑
|α|=r

aα1,α2,···,αn(x1, x2, · · · , xn)ξ
α1
1 ξα2

2 · · · ξαn
n ,

becomes zero at ξ = (1, 1, · · · , 1) ̸= 0, and this
contradicts the ellipticity of the P )and this shows
that the condition (1) of Theorem 3.3 is estab-
lished. On the other hand

H(0) =
∑

i1,i2,···,in

h[i1, i2, · · · , in] =

∑
|α|=r

aα1,α2(x1, x2, · · · , xn)× 0 = 0

This shows that the condition (2) of Theorem 3.3
is established. So the obtained filter is high-pass.
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