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Abstract

In this paper, we prove that any BL-general fuzzy automaton (BL-GFA) and its quotient have the same
behavior. In addition, we obtain the minimal quotient BL-GFA and minimal quotient transformation
of the BL-GFA, considering the notion of maximal admissible partition. Furthermore, we show that
the number of input symbols and time complexity of the minimal quotient transformation of a BL-GFA
are less than the minimal quotient BL-GFA.
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1 Introduction

Zadeh in 1965 [19] introduced the notion of
Z fuzzy set as a method for representing un-
certainty. Fuzzy set theory has become more and
more mature in many fields such as fuzzy relation,
fuzzy logic, fuzzy decision-making, fuzzy classifi-
cation, fuzzy pattern recognition, fuzzy control,
fuzzy optimization and fuzzy automata. The the-
ory of fuzzy automata was introduced by Wee
[17] in 1967 and Santos in 1968 [13]. E.T. Lee
and L.A. Zadeh in 1969 [8] gave the concept
of fuzzy finite state automata. Fuzzy finite au-
tomata have many important applications in the
learning system, pattern recognition, neural net-
works, database theory and fuzzy discrete event
systems [3, 5, 6, 9, 10, 11, 12, 18, 14]. M. Doost-
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fatemeh and S.C. Kremer in 2005 [4] extended
the notion of fuzzy automata and gave the notion
of general fuzzy automata. Basic logic (BL) has
been introduced by Hajek [7] in order to provide
a general framework for formalizing statements
of fuzzy nature. In 2012, Kh. Abolpour and M.
M. Zahedi [2] extended the notion of general fuzzy
automata and gave the notion of BL-general fuzzy
automata.

In this paper, we define the concepts of homo-
morphism and strong homomorphism for a BL-
general fuzzy automaton. A connection between
strong homomorphism and admissible partition is
presented. We present a quotient of the BL-GFA
using the notion of strong homomorphism. Also,
we show that this quotient BL-GFA and quotient
BL-GFA defined in Definition 3.8 [15] have the
same behavior. Then, we obtain the minimal quo-
tient BL-general fuzzy automaton and minimal
quotient transformation of BL-general fuzzy au-
tomaton considering the notions of maximal ad-
missible partition. In addition, the authors show
that the number of input symbols of the minimal
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quotient transformation of BL-GFA is not more
than the minimal quotient BL-GFA. Therefore,
the number of transitions and calculation of the
minimal quotient transformation of a BL-GFA is
not more than the minimal quotient BL-GFA.

2 Preliminaries

In this section, we give some definitions that is
used in the rest of the paper.

Definition 2.1 [7] A BL-algebra is an alge-
bra (L,N,V,*%,—,0,1) with four binary opera-
tions N\, V, *,— and two constants 0,1 such that:
(1) (L,A,V,0,1) is a bounded lattice, (ii) (L,*,1)
is a commutative monoid, (iti) * and — form
an adjoint pair, i.e., x < y — z if and only if
xxy < z forallx,y,z € L, (iv) xAy = zx(x — y),
(v) =y Vy—>a)=1

Definition 2.2 [16] Let L = (L,V,A,0,1) be a
bounded complete lattice. A BL-general fuzzy au-
tomaton (BL-GFA) as a ten-tuple machine is de-

noted by F = (Q, X,R = ({qo}, 1" ({a0})), Z,
wi, 01, f1, 01, 1, Fa), where

(i) Q = P(Q), where @ is a finite set and Q is
the power set of @),

(ii) X is a finite set of input symbols,
(iif) R is the set of fuzzy start states,

(iv) Z is a finite set of output symbols, where Z
is the power set of Z,

(v) w; : Q — Z is the output function defined
by: wi(Qi) = {w(9)lg € Qi},

(vi) 8 :Qx X x@Q — L is the transition function

defined by 5l({p},a,{Q}) = 6(p7a,Q) and
01(Qira,Qj) = VgeQiq;eQ;(ai, a, qj), for all
Qi,Qj € P(Q) and a € X,

(vii) fi:QxX — Q is the next state map defined
by: fl(Qia CL) = UQZEQz{q]’(S(QZv G,Qj) S A}a

(viii) 0 Q@ x L) x X x Q@ — L
is  the augmented transition  func-
tion defined &((Qi p'(Qi)),a,Q;) =

F (:U’t(Qi)7 51(@% a, Qj))?

(ix) F1: L x L — L is called membership assign-
ment function,

(x) Fy: L* — L is called multi-membership res-
olution function.

Suppose that the set of all transitions of F be
A and Qqet(ti) be the set of all active states at
time t;, for all ¢+ > 0. We have Quq(to) = R
and Qact(ti) = {(¢, 1" (0))|3¢" € Qact(ti-1),3a €
X,0(¢,a,q) € A}, for all i > 1. Since Qqet(t;)
is a fuzzy set, we write ¢ € Domain(Qqae(ti)) to
show that a state ¢ belongs to Que(t;) and T is
a subset of Quet(t;). Hereafter, we denote these
notations by

qc Qact(ti) and T g Qact(ti)-

In the rest of this paper, L is a bounded complete
lattice.

Definition 2.3 [2] Let ﬁ’l~ = (Q,X,R =
({q0}7 Mto({qo}))v Z,wi, 5[7 fl: 5[7 Fy, Fg) be a BL-
GFA. The run map of the BL-GFA Fj is the map
p: X* — Q defined by the following induction:

p(A) = {9} and p(aias...an) =
Qi,,plaraz...anany1) = fi(Qi,,an+1), where
(Qins °T™(Qi,)) € Qact(araz...an) for every
a1y ..., € X.

Definition 2.4 [15] Let F =

(Qa Xa ({QO}aNtO({QO}))v Zawla 6la~fl) gla Fla FQ)
be a BL-GFA. The behavior of F} is the map

5:&110,02/3(1*:}) — Z, where

L(F) = {z € X*[5{ (({a0},
1 ({q})), z, P) > 0,for some P € Q}.

Definition 2.5 [15] Let E =
(@ X, ({QO}vﬂt()({qO}))?Z7w17617f17617F17F2>

be a BL-GFA and ~ be an equivalence relation
on Q. Then ~ is an admissible relation on Q if
and only if the followings hold:

() If Q,Q" € Quat(ti),x € X*,P' € Q,Q ~
Q" and & ((Q,u"(Q)),x,P) > 0
then there exists P’ € @ such

that 67 ((Q", u(Q")),x, P") >

or((Q', 1t (Q")), x, P') and P' ~ P".
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(i) If Q' ~ = w(Q").

Definition 2.6 [15] Let Fl =
(Q7 X, ({QO}v Nto({QO}))7 Z,wy, 0, fi, 01, P, F2)

be a BL-GFA and H = {Q1,...,Qr} be a par-
tition of Q. Then H is called an admissible
partition of Q if and only if the followings hold:

Q" then w;(Q")

(i) If x € X*, then for every [; there ex-
ists Iy, where 1 < ll,lg~ < k. For
every P, P, € @ if él*((Pl,/Lti(Pl)),
x,R1) > 0 for some R; € @, then there is
Ry € Q such that §;((Ps, p'i(P2)), z, Rg) >

5;((P1, pu'i(P1)),x, R1) and Ry, Ry € Q.

(i) If @', Q" € @, where 1 < | < k, then
wi(Q') = wi(Q").

Definition 2.7 [15] Let Fj be a BL-GFA and
7 = {H|l € I} be an admissible partition of Q.
Let w1 be a nontrivial partition. If for every ad-
missible partition mo of Q where m < m < {Q},
we have either my = m or my = {Q}, then m is
mazximal.

Definition 2.8 [15] Let F} be a BL-GFA. Then
F* is called minimal, if |Q|> 1 and 1 and {Q}
are the only admissible partitions of Q.

Theorem 2.1 [15] Let F} be a BL-GFA and 7 =
{H,|l € I'} be an admissible partition of Q. Then

w is maximal if and only if “L s minimal.
w

Theorem 2.2 [15] Let F} be a BL-GFA and m =
{H|l € I} be an admissible partition of Q. Then

3 Quotient structures for BL-
general fuzzy automata

This section attempts to introduce the concepts
of homomorphism and strong homomorphism be-
tween BL-general fuzzy automata. Also, we
present a quotient BL-general fuzzy automaton
using the notion strong homomorphism. Finally,
we obtain a minimal quotient BL-GFA.

Definition 3.1 Let B Fy; ) =
(Qliv Xi7 ({QO’L}J Mto({qm}))? Z7 Wiy 5li7 fli7 5li7

Fy, Fy),i = 1,2 be two BL-GFAs. A pair (§,¢) of
mappings £ : Q1 — Qo and ¢ : X1 — Xy is called

a homomorphism, written as (&, ) : Fiy — Ep,
if
(@ p4(Q),a,Q") <
2((4(Q"), ' (€(@Q")), (), £(Q)),

and 0 (Q') € W(§(Q")) for every Q', Q" € Qn
and a € X7 UA.

The pair (£,¢) is called a strong homomor-
phism if
d2((£(Q"), ' (€(@")), (), £(Q))

= V{on (@, 1'(Q"), a, R)IE(R) = £(Q")},

and @1 (Q') = Wp(&(Q")) for every Q,Q" € Qn
and a € X7 U {A}.

A homomorphism (strong homomorphism)
& p) - Fjy — FEjy is called an isomorphism

(strong isomorphism), if £ and ¢ are both one-
one and onto.

Theorem 3.1 Let _Fh' ) =
(Qlia X’i7 ({QO’L}7 Mto({QOi}))a Zu Wiy 5li7 fli7 5[2'7

P, Fp),i = 1,2 be two BL-GFAs. Let
(&,) : Fin — Fiz be a strong homomorphism. If
a2((£(Q"), n'(£(Q")), ¢(a), £(R)) > 0, then there
exists R' € Q1 such that 511((Q’,,u,t(Q’)),q, R') >
0 and £&(R') = &(R) for every Q',R € Qp and

a € X1 U{A}. Also, if £(Q) = &£(Q") and
a2((§(Q), 1 (6(Q")), p(a),&(R)) > 0, then
5l1((Q/7ﬂt(Q,))7_a>R/) > 551((Q'I,Mt(Q”))aa7R);

for some R € Q1.
Proof. By Definition 3.1, we have

512((§(Q/)aﬂt(f(Q/)))7W(a)vf(R))
=\/{on (@, 1"(@)),a, R
E(R) = &(R)} > 0.
Therefore, there exists R’ € (@ such that
n(Q,1"(Q)),a, k) > 0 and {(R) = &(R).

Now, let o((£(Q"), 1" (€(Q"))), a,&(R)) 0.
Then there exists R’ € @1 such that £&(R) =

¢(R') and

oy BRVARAN

Hence, the claim holds.
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Definition 3.2 Let F = (Q,X,R -
({0}, n'*({q0})); Z,  wi, o1, f1,01, F1, F2)  be  a
BL-GFA and ~ be an admissible relation on Q.
We define [Q'] = {P|P ~ Q'} for every Q' € Q.

Now, consider the following notations:

2 |

]|Q" € Q} is a finite set of states,

=1l

(ii) X is a finite set of input symbols,

(iii)

= [{qo}] is the set of fuzzy start states,

| =

(iv) Z is a finite set of output symbols, where Z
is the power set of Z,

(v) w Q — Z is the output function defined
wi
by: —([Qi]) = wi(Qi),
(vi) q : Q x X x Q — L is the transition

function defined by: ﬁ([@']ﬂa Q") =

V{6(Q',a,R|R ~ Q"} for every
Q.Q" R €Q,acX,

(vii) f; Q x X — P(Q) is the next
state map defined by:  fi([Qi],a) =
UR/NQZ,{R|5(R/,CL,R) € A},

(viii)ﬁ (QXL)XXXQ%LiS
the augmented transition function

)
defined  —(([Q], (@), [Q)) =
V(@' 1'(@"),a. R)|R ~ Q"

(ix) F1 : L x L — L is the membership assign-
ment function,

(x) Fy : L* — L is the multi-membership reso-
lution function.

5
Now, we show that s well-defined. Let
Q'] = [Pl,a = b and [Q"] = [P"], where
P.Q,Q", P"eQ and a,b € X. Then P’ ~ Q'

and P ~ Q. So. (@), n(Q).0.1Q")) =

V(@'

2P,

51

Mt(Q/))7 a, R)|R ~ Q//} and

pH([P'), b, [P"])
(([P’]

- \/{51
Let R ~ Q" such that &((Q', 1 (Q")),a,R) >
0. Then there is R’ € ( such that
gl((P,nut(Pl))vav R/) > Sl((Q/aHt(Q/))va’ R) and
R~ R'. Also, if 6;((P', u*(P")),a, R') > 0, where
P 'R € Q,a € X and R ~ P”, then there
exists R € Q such that &((Q, 1 (Q")),a, R) >

([P’])), a,[P"])

P')),a,R)|R ~ P"}.

Si((P', it (P"),a, R) and R ~ R'. Therefore,
5
Q) (1Q)s 0, [Q")
d,
= = (([P'), 1 ([P))), @, [P"))
Hence, :l is well-defined.
Clearly, % is  well-defined. Then
F ) o R
Ao ExE - e ial) =
. _w 0 fi 0 .
wof{eh), 2, — — =, -, F1,F2) is a BL-
GFA. _
Now, define ¢ : Q — % by £(Q") = [Q'] for

every Q' € Q. It is clear that £ is onto. Let
¢ : X — X be the identity map, @', Q" € Q and
a € X. Then

2 (@) i (€(@))) (). £Q")
= Q@) 0, Q)
:v{S(( <>> ,P")|[P" ~ Q"
> 5((Q,1'(Q)),a,Q").

Also, we have %(S(Q’))

is a homomorphism.

= w(Q'). Hence, (&, )

Example 3.1 Let (L,A,V,0,1)
complete lattice in Figure 1.

be the given

Let  general fuzzy automaton F =
(QaXaduszac‘J)FhFZ) as: Q - {q07Q1}
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0

Figure 1: The complete lattice L of Example 3.1

R = {(q, 1)}, X = {o1,01},Z = {2},
w(q1) = =z and

w(qo) =

6(qo,01,q1) = b,
5(5117017611) -
5((117027%) -

(g0, 01,90) = a
5((117017510) — dv
5(‘]17027(]0) - d7

Then considering Definition 3.2, we have BL-
general fuzzy automaton Fj as follow:

= (Q7X7 ({qO}vutO({QO}))ﬂ Z?‘*)la 5l7 fla Slth F2)7

where Q@ = {0, {0}, {a1}, {a0, a1 }}, Z = {0, {z}},
wi({q}) = wi{a1}) = wi({qo, ¢1}) = {2} and
&({qo},01,{q0}) = a,
a{qo} o1, {q1}) =0,
a{qot o1, {90, q1}) =,
d{a}, o1, {q}) =d,
d{a}, o1 {a}) =e,
i{ar}01,{q0, ¢1}) = e,
({90, a1}, 01,{q0}) = d,
S({q0, a1} o1, {1 }) = e,
({90, a1}, 01,{q0, q1}) = e,
d({ar} o2, {a0}) =d
d{ar}, o2, {q1}) = e,
a{at o2, {90, m1}) =e
61({90, a1}, 02,{q0}) = d,
o({q0, a1}, 02,{q1}) = e,
({90, a1}, 02, {90, q1}) = e.

=2

o~ o~ o~ o~~~ o~ o~~~ o~ o~~~

)

181
Consider admissible relation ~ as:
(@} ~ {aoak Then we have
Ao ExE - e ial) =
po({ao)), 2, <, 8 1L 2 % g, where
?; {[fao}] o)), “aol] = ifa)] = {2}

% (Hao}, o1, o)) =

% ({ao¥l, v, an 1) = s

% (o, o)) =

% (au}son, HanH) =

% (Hau Y, HaoH) =

% (a2, i }) =
Now let €+ @ = 2 where €((w)) =
{ao},EH{a}) = €H{q,a1}) = Har}] and ¢ :

X — X be the identity map. It is clear that
(&, ) is an onto strong homomorphism.

Definition 3.3 Let Fh . =
(Quis Xis ({qoi}s 1 ({q0i})), Z, wis, iy fris 01

Fi,F),i = 1,2 be two BL-GFAs. Let
¢ : Fy — Fj be a strong homomorphism.
Then the kernel of £, denoted by Ker€, is defined

to be the set Ker§ = {(@.QMEQ") = £(Q")},
where Q',Q" € Q.

Theorem 3.2 Kerf is an admissible relation.

Proof. It is
equivalence

Qllact(ti>;Pl
o (@', pf
and
Oa((€(Q"), 1 (£(Q"))), @, E(P))
2((6(Q), 1" (£(Q"))), a, E(P))
(@, 1(Q"), a, P') > 0.
According  Theorem 3.1,

~P// € (@ such that Sll((Q”a
5[1((Q,7Nt

clear that
relatign. Let
c Qllv (Q/a Q”)
i((Q"),a,P") > 0. Then £(Q’)

Keré is an

Q.Q" €
€ Kerf and
=¢(Q")

o
o

Y

there  exists
1(Q"),a, P") >
1(Q")),a, P'), where {(P") = £(P'),a €
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X U{A}. Now, let (Q,Q") € Kerf. Then
Q) = &(Q"). Since ¢ is a strong homomor-
phism, wii(Q) = wp((Q)) = we(l(@") =

wi1(Q"). Hence, ¢ is an admissible relation.

Theorem 3.3 Let Fy; . =
(Qu, u({Qm},Mto({QOi})),th,(Slmfz7;,5lz‘,
Fl,Fg) = 1,2 be two BL-GFAs and

g Fll — Flg be an onto strong homomor-
phism. Then there exists a strong isomorphism

 Fn -
vy W — Fja,
such that & =~ o¢.
Qll 2 Yy —
Proof. Define v : Keré — Q2 by v([Q]) =
€(Q"), for some Q' € Q1. First, we show that v
is well defined. Let [Q'],[Q"] € erl & and [Q'] =

Q"] Then (Q',Q") € Ker€'. Thus, £(Q') =
€(Q"). Hence, the claim holds. Now, let Q', Q" €
Qll; a € X and

8i2((v([@), 1 (V([Q)) @
= 0e((€'(Q), n'(€'(Q ))af(Q )
= \V{0u (@', 1'(@Q"),a, RIEQ") = €' (R}

- ?(([Q/Lut([@]%

Q")

a, [R]).

wit
Also, we have Kerd ([Q]) = win(Q'), where Q' €

Q1. So, v is a strong homomorphism. Clearly,
~ is one-one and onto. Therefore, v is a strong
isomorphism.

Theorem 3.4 Let Fy;,i = 1,2 be two BL-GFAs
and &' : Fj; — Fjo be an onto strong homomor-
phism. Then 517“,1 = 517“12'

Proof. First, we show that £(F};) = L(F}3). Let
T € L(F1). Then, there exists Q' € Q, such that
(5!1(({QO1}7 Mt({QOI}))7x Q/) > 0. Since €/ : F}l -
Fj5 is a strong homomorphism, then x € L(F}3).
It is obvious that E(Flg) C E(Fll). Now, let p1
and py be the run relations of Fll and Flg, re-
spectively. Then we have Sz = wn(pi(z)) =
wi(§'(p1(2))) € wia(pa(z)) = PBp,. Similarly,
Br, = wi(p(z) = we((Q)) = wn(Q) C
wi (p1(x)) = Bp, - Hence, B = B, .
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Example 3.2 Let Fj, ~! be the BL-GFAs as in

. F
Ezample 3.1. We showed that & : F; — s an

onto strong homomorphism. Then by Theorem

3.4, B, =B -
Corollary 3.1 Let

Fyi = (Qui» X, {qoi}> 1 ({g0:})),

Zawliv 6li7 fli; 6li7

Fy, Fy),i = 1,2 be two BL-GFAs and &' : Fll —

. F

Fjo be an onto strong homomorphism. Let 1
Keré'

be as defined in Definition 5.2. Then B 5, =

Kere!
Bﬁlz'

Proof. Considering Theorems 3.3 and 3.4, the
proof is clear.

Corollary 3.2 Let Fy; . =
(Quis Xis ({qoi}s 1 ({q0i})), Z, wis, i fris 01

F17F2)~,z' = 1,2 be two BL-GFAs and
& - Fi1 — Fpg be a strong homomorphism.

Then the set of all classes of Ker{ is an
admissible partition of Q1.

Theorem 3.5 Let Fll 3 =
(Quis Xi, ({qoi}s 1 ({q0i})), Z, wis, s fris 01

Fi, Fy),i =1,2 be two BL-GFAs, m = {H;|l € I}
be a mazimal admissible partition of Q and
¢ Fl1~—> Flg be an onto strong homomorphism.

F
Let D be as defined in Theorem 3.3, and
Ker&’
— be as defined in Definition 3.8 [15]. Then
T
Bi, =8 &, -
™ Kerg!

Proof. The proof is clear considering the proof
of Theorem 3.4, Corollary 3.1, and Theorem 3.14.
[15].

Theorem 3.6 Let Fy; . =
(Qui, X ({QOi}7NtO<{QOi}))aZawlia(sliafliyfslia
Fi,F),i = 1,2 be two BL-GFAs and

& : Qn — Qp be a strong homomorphism.
Then Kerf’ is a mazimal admissible partition if

18 minimal.

and only zf €
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Proof. The proof is obvious considering Theo-
rem 3.12 of [15] and Theorem 3.2.

- F
Example 3.3 Let I}, “! be the BL-GFAs as in

. F
Ezample 5.1. We showed that & : F} — “Lis an

onto strong homomorphism.

F —
Keré

There exists a strong isomorphism -~ :

F
—l, using Definition 3.3, and Theorem 3.3. Obvi-

ously, Keré is a maximal admissible partition.

F
Therefore, by Theorem 3.6, L is minimal.
~ Ker¢
Hence, — is minimal.
4 Transformation for BL-

general fuzzy automata

In this section, we define an equivalence rela-
tion on X*. Using this equivalence relation, we
present a transformation of BL-GFA. Also, we
obtain a minimal quotient transformation of BL-
GFA. Finally, we arrive in Corollary 4.2, that is
one of the main results of this paper.

D_eﬁnition 4.1 Let _Fl . =
<Q7X7 ({CIO}aMtO({QO}))7 val7517fl7517F17F2)
be a BL-GFA and = be a relation on X*.
Let v,y € X*. Then x = y if and only if
o ((Q', 1 (Q')),z, Q") = 67 ((Q', n"(Q"),y,Q")
for every Q', Q" € Q.

Theorem 4.1 Let F; be a BL-GFA. Then = is
a congruence relation on X*.

Proof. It is clear that = is an equivalence rela-
tion on X*. Let z € X* and z = y. Then

So, xz = yz. Similarly, zx = zy. Hence, = is a
congruence relation on X*. Let x € X*. Then

we denote [z] = {y € X*|z = y} and E(F)) =
{[z]|z € X*}.
Definition 4.2 Let F} be a BL-GFA. Define a

binary operation * on E(E) by [z]*[y] = [zy] for
every [z, [y] € E(F).

Theorem 4.2 Let F; be a BL-GFA. Then

(E(E),*) is a finite monoid.

Proof. First, we show that * is well-defined and

associative. Let [$]~: [u] and [y] = [v], where
], [y], [ul, [v] € E(F}). Then [zy] = [2] « [y] =
[u] * [v] = [uv]. Also, [z] x ([y]  [2]) = [2] =

lz] = [zyz] = [wy] = [z] = ([2] * [y]) * [2] for
every (], [y, [2] € E(F). Therefore, (E(F), )
is well-defined and associative. Now, we have
[z] * [A] = [zA] = [2] = [Az] = [A] * [2] for ev-

ery [z] € E(F}). Since Im(¢;) is finite, Im(6]) is
finite. Hence, (E(F)), *) is a finite monoid.

Definition 4.3 Let Fh be a BL-GFA and
uw,v € X. Then F; is called faithful if
o ((Q (@), u, Q") = 6 ((Q', 1 (Q")), v, Q")

for every Q', Q" € Q, implies that u = v.

Example 4.1 Let F} be the BL-general fuzzy au-
tomaton as in Example 3.1. Considering Defini-
tion 4.3, F} is a faithful BL-GFA.

Theorem 4.3 Let F; be a

BL-GFA. Then Figiy =

(~Q7 E(E)J ({QO}7 Mto({QO}))7 Za Wi, 5ZE7 flE7
g, Fi, Fy) 18 a faithful BL-GFA,

where ofp((Q, (@), [2], Q") =
o (@, (@), 2,Q"), where @', Q" € Q,x € X.
Proof. } Clearly, Sip  is  well-defined.
Let op((Q', 1(Q)), [2], Q") =
op((Q', 1" (@), W], Q"). , Then o7 (@
pH@)), 2, Q") = S (Q H Q). y, Q")
Therefore, x = y and so, [z] = [y ] Hence FlE(F)

is a faithful BL-GFA.

Let F; be a BL-GFA. Then Fpp) =

(Qa E(E)J ({QO}7 ,u’to({QO}))a Za Wi, 5ZE7 flE7 SZEJ
Fy, F) is called the transformation of BL-GFA.

(L,A,V,0,1) be the
in Figure 1. Con-

Example 4.2 Let
given complete lattice

sider  BL-general fuzzy automaton_ F =
(Qa Xv ({QO}7 }uto({qO}))’ Z7 Wi, 517 fl7 5la F1> FQ);
where



184 A. Saeidi Rashkolia et al., /IJIM Vol. 11, No. 3 (2019) 177-187

Q = {@7{QO}7{Q1}7{Qan1}}> Z = {®>{Z}}a
wi({q0}) = wi{@1}) = wil{qo, :1}) = {2} and

0y
0y

{20}, 01,{q0}) = a,
{ao}, o1, {q1}) = b,
{20}, 01, {90, 01}) = b,
{ai}, o1, {q0}) = d,
{an} o1, {a}) =,
{an} o1, {a0, 1 }) = e,
{90, a1}, 01,{a0}) = d,
{0, a1} 01, {1}) = e,
{90, a1}, 01, {q0, a1}) = e,
{0}, 02, {q0}) = a,
{a0}, 02, {1 }) =0,
{a0},02,{q0,q1}) = b,
{1}, 02, {q0}) = d,
{a} o2, {a1}) =e,
{a1},02,{q0, q1}) = ¢,
{0, q1}, 02, {a0}) = d,
{q0, a1}, 02, {q1}) = e,
{90, a1}, 02, {q0, q1}) = e.

0y
0y

Then we have } the :cransforma—
tion of BL-GFA F; as: FZE(

(Q, E(F}), {ao}, ' ({ao})), Z, wi, due,
fie,0ip, F1, F2), where E(F;) = {[o1]},[o1] =
{0'1,02} and

Ry =

a({qo}, [o1], {a0}) = a,

a({qo}, [o1], {ar}) = b,

1({qo}, [o1], {q0, 1 }) = b,
i{ar}s [o1],{a0}) = ¢,
e} o] {a}) =e,
( ) {
(
(
(

S S S0 O

i({ar}, [o1], {0, a1 }) = e,
1({q90, a1}, [01], {q0}) = d,

a({qo, a1}, [o1]. {an}) = e

({90, a1}, [o1), {q0. 1 }) = e.

=9

Theorem 4.4 Let F; be a BL-GFA and ~
be an equivalence relation on Q. Then ~
is an admissible relation for Fy if and only
if ~ is an admissible relation for FZE(FZ) =

(Qv E(E)a ({QO}a Mto({QO}))> Za Wi, 5lE7 flEa

g, F1, F).

Proof. Let ~ be an admissible re-
lation on F; and Q,Q" € Q,[z] €
E(F), P € QQ ~ Q" and §/5(Q', n"(Q")),
], P) = Q. 1(Q)),=P) > O
Then there exists P” € @ such that
o ((Q", u(Q")), 2, P") > 6/ ((Q', n"(Q")), w, P')
and P' ~ P". So, 0/5((Q", u"(Q")), [z], P") >
op((Qp"(Q)), [z], P).  Hence, ~ is an

admissible relation for F, BE(R)

Theorem 4.5 Let F) be a BL-GFA and FlE(Fl)
be a transformation of the BL-GFA. Then 6Fll =

ﬁﬁ lE(Fl)'
Proof. Considering Definition 2.4, and Theorem
4.3, the proof is obvious.

Theorem 4.6 Let Fy be a faithful BL-GFA.
Then FlE(Fl) s isomorphism to Fj.

Proof. Let f : Q — @ be an identity map. De-
fine g : X — E(F)) by g(z) = [z] for every Q' € Q
and z € X. Let z,y € X and g(x) = g(y). Then
2] = [l Thus, 3p((Q.u™(@)). [e]. Q") =
510 ((Q' 1 (@), 19, Q") for  every
Ql’ Q// c Q SO, 5;((Q/,Mti(Q/)),l',Q”) ?
o (@, p"(Q"),y, Q") for every Q,Q" € Q.
Since Fj is faithful, then z = y. Therefore, g is
injective. Clearly, g is surjective. Also, we have

S((F(@), 1 (f(@), g(z), F([Q"))
= op((Q, 1 (@), [2],Q")
=0/ ((Q, 1 (Q"),=,Q").

Hence, (f,g) : F} — Fj is a strong isomorphism.

Theorem 4.7 Let Flz . =
(Quis Xi, ({qoi}s 1 ({q0i})), Z, wis, iy fris 01
Fi,F),i = 1,2 be two BL-GFAs. Let
(o, B) : Fj1 — Ejy be a strong homomorphism
with « one-one and onto. Then there exists a
strong homomorphism (fa, 9s) : Fig — Fog.

Proof. Define fo : Qu — Q2 by fo(Q)) =
a(Qq) for every Q7 € Qun and gg : E(Fpn) —
E(Fi2) by gs([z]) = [8* ()] for every [x] € E(Fj1).
Let [z],[y] € E(fu1) and [z] = [y]. Then

S ((Q 1 (@), 2, Q") = &, (Q, 1t (@), 4, Q")
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for every Q', Q" € Q1. So,

0i (@), 1 (a(@Q"))), B (), (Q"))

= (@1 (@), 2, Q")

= oh Qs 1" (@), 9, Q")

= op (@), p(a ( M, B (), (@),
for every @',Q" € Q1. Since « is onto, then
[6*(x)] = [8*(y)]. Therefore, gg is well-defined.
Also,
02 (fa(@): 1 (fa(@))), g5([2]), fa(@"))

= 0p((a(@), p (@), B (), Q"))

=%«Qwﬁ<v>xQ@

onE

e((Q,1(Q"), [2],Q").

Hence, (fa,9p) is a strong homomorphism.

Corollary 4.1 Let Fy; 3 =
(Qui» Xis ({qoi}, 1 ({q0i})), Z, wii, i fui Ouis

Fi,Fy),i = 1,2 be two BL-GFAs and (o, f)
be a strong homomorphism with « one-to-one
and onto. Then Ker a is a maximal admissible

18 a minimal

- F
partition of Q1 if and only if LE1
Kera
BL-GFA.

Proof. The proof is clear considering Theorems
3.6 and 4.7.

Corollary 4.2 Let Fj;,i = 1,2 be two BL-GFAs

and (a, B) be a strong homomorphism with o one-

to-one and onto. If Ker o is a mazimal admis-
F,

g e
Kera

mzmmal BL-GFA. But the number of input sym-

bols of K

sible partition of Q1, then are

Fyy
Kera’

is mot more than

Example 4.3 Consider BL-general fuzzy au-
tomaton Fy in Example 4.2. By Theorem 4.5, it
is obuvious that ﬁﬁu Br . Consider the ad-

LE(Fy)
missible relation ~ as {q1} ~ {qo,q1}. Clearly, ~
is an admissible relation for Fy. By Theorem 4.4,

~ is an admissible relation for F LE(F)" Also, we
have
Fgy —,Q = R
0 — (2 B(R), = = ({ao}] o ({ao})) =
w aE fi 9 )

, F1, Fy), where Q =

~ ~

{{aoo}, Ha Y} E(F) = [o],
L)) = {2} and

g} =

% (ol . o) =
08 (oo e H) =
"2 ([}, o [{ao)) =
Q?M%Hﬂﬂmmz

Define ¢ : @+ % by ¢({a}) = [{ao}). &({ar}) =

§{ao, 1)) = Hau}] and ¢ = X — E(F) by
¢(01) = [o1] the identity map. Obviously, (&, ¢)
is an onto strong homomorphism. By Definition
3.3, and Theorem 3.3, there exists a strong iso-

F

Foo-
morphism -y : K(F) — L)

. Clearly, Keré is

~

a maximal admissible partition. Therefore, con-

FlE(ﬁz)

idering Th 3.6
sidering Theorem 3.6, ——" ¢

is minimal. Hence,

FIE(Fl)

is the minimal quotient transformation

of ?he BL-general fuzzy automaton.
B Q . R
have —= = (7, X, 7 = (Ha}], 1"

5 wl 51 fl 51

Also, we

({go}]) =
Q

F]_,FQ) where = =

[{qo}] [{QI}] = {2} and
% (H{qo}ls s, HaoH) =

% (H{qo}lsors, HanH) =

% (a})son, HaoH) =

% (a}yon, HanH) =

% (H{qo}), 2, Hao}) =

% ({ao}l, 2, an 1) = s

% (Hau}, o, Hao ) = d

2 ({ar},oms Hanh) = e

po({a})), 2
{90}, HQI}]}

Now, let &
{0}l &'{ar})

Q — , where £({q}) =
= ({0, a1}) = [{ar}] and ¢ :

|
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X — X be the identity map. Similarly, ﬁ is
minimal quotient BL-general fuzzy automatgn.
This example showed that the number of in-
put symbols of the minimal quotient transforma-
tion of a BL-general fuzzy automaton is less than
the minimal quotient BL-general fuzzy automa-
ton. Hence, the number of transitions and cal-
culation of the minimal quotient transformation
of a BL-general fuzzy automaton is less than the
minimal quotient BL-general fuzzy automaton.

5 Conclusion

In this paper, a connection between strong homo-
morphism and admissible partition is presented.
Also, we showed that any quotient of a given
BL-GFA and the BL-GFA itself have the same
behavior. The researchers obtained the minimal
quotient BL-GFA and minimal quotient transfor-
mation of BL-GFA using the notions of maximal
admissible partition. It is shown that the number
of input symbols of the minimal quotient trans-
formation of a BL-general fuzzy automaton is not
more than the minimal quotient BL-general fuzzy
automaton. Hence, the number of transitions and
the number of computations of the minimal quo-
tient transformation of a BL-GFA are not more
than the minimal quotient BL-GFA.
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