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Abstract

This paper proposes a new resource allocation model which is based on data envelopment
analysis (DEA) and concerns systems with several homogeneous units operating under
supervision of a central unit. The previous studies in DEA literature deal with
reallocating/allocating organizational resource to improve performance or maximize the total
amount of outputs produced by individual units. In those researches, it is assumed that all data
are discretionary. Resource allocation problem has a multiple criteria nature; thus to solve it,
many intervening factors should be regarded. This paper not only develops resource allocation
plan for systems with both discretionary and non discretionary data in their inputs, but also
considers environmental factors as well. In addition, the overall distance from the decision
making units (DMUSs) to their most productive scale size (MPSS) points is taken into account
and is minimized in this method. To find the best allocation plan, this paper applies multiple
objective programming (MOLP). Numerical examples are employed to illustrate the
application of this approach on real data.
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1. Introduction

Resource allocation is an important issue
in corporation management. In real life,
the resources are always limited, so how
to allocate them plays a pivotal role in
determining a corporation's growth. As a
result, resource allocation has been an
interesting topic for both corporations and
researchers.

Data envelopment analysis (DEA) is a
methodology for measuring the relative
efficiencies of a set of decision making
units (DMUs) that use multiple inputs to
produce multiple outputs. It was first
introduced by Charnes et al.[1].

DEA is a valid method from both
theoretical and empirical sides and it is
applicable to management process,
performance estimation and behavior
analysis. DEA models bring dramatic
chances when used as a method for
analyzing or solving resource allocation
problems. DEA assumes homogeneity
among DMUs in terms of the nature of
the operations they perform, the measures
of their efficiency and the conditions
under which they operate. When DMUs
are not homogeneous, the efficiency
scores may reflect the underlying
differences in environments rather than
inefficiencies. One strategy to tackle this
issue is to separate DMUs into
homogenous groups [2].

In recent years, DEA has been wildly
used by managerial researchers to study
how to better allocate resource. The
research about resource allocation using
DEA may be classified into two
categories. One category assumes the
efficiency of DMUs to be constant [3, 4,
5, 6] while the other assumes the
efficiency of DMUs to be changeable [4,
7, 8, 9]. In this paper, the latter category
where the efficiency of DMUs are
changeable is studied. Golany and Tamir
[10] have proposed a DEA- based output
oriented resource allocation model which
includes constraints that imposes upper
bounds on the total input consumption of
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the target points. Care must be taken since
constraining the model too much could
result in infeasibility. Since this flexible
model aims at trading off efficiency,
effectiveness and equality in resource
consumption, it is rather complex.
Athanassopoulos [11] has presented a
DEA-based goal programming model
(GODEA) for centralized planning.
Global targets for the total consumption
of each input and the total production of
each output are approximated by solving
a series of independent DEA models for
each input and each output. These goals
are usually not simultaneously attainable
but deviations from them can be
minimized, resulting in an appropriate
resource allocation. Although existing
DMUs are jointly projected, the
individual units are not necessarily
projected onto the efficient frontier.
Athanassopoulos[12] has also proposed
another goal programming model yet this
time not based on the envelopment DEA
formulation but on the multiplier form.
The global targets for each input and
output are computed as in GODEA and
the deviation from them constitute the
highest priority element in the objective
function. The second priority is to
maximize operational efficiency onto the
part of the computed input and output
quantities. In the third place, the objective
function also tries to minimize the
inequality of resource consumption
among units. Beasley [7] presents a non-
linear resource allocation model to jointly
compute inputs and outputs for each
DMU for the next period with the
objective of maximizing the average
efficiency. The approach is based on a
non-linear ratio form formulation, (which
can lead to alternative optima) and
requires explicit upper limits on the total
amount of every input and of every
output.  Nevertheless, there is no
guarantee that the projected points lie on
the efficient frontier.

Lozano and Villa [13] have proposed two
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new models for centralized resource
allocation. The first model seeks radial
reductions of the total consumption of
every input while the second model seeks
separate reduction levels for the total
amount of each input according to a
preference structure. The two key features
of the proposed models are their
simplicity and the fact that both of them
project all DMUs onto the efficient
frontier. The radial model jointly projects
each of the existing DMUs onto the
pareto efficiency frontier. Despite a high
probability that for every input the total
consumption is necessarily lower than the
sum of the input levels of the
independently input-oriented projected
units, this cannot be proved.

Korhonen and Syrjanen [14] have
developed an interactive approach based
on DEA and MOLP, which is capable of
dealing with several assumptions imposed
by DM.

Bi et al. [15] propose a methodology for
resource allocation and target setting
based on DEA for parallel production
systems. It deals with any organization
with several production units which have
parallel production lines.

Crisp input and output data are
fundamentally indispensable in
conventional DEA. However, the

observed values of the input and output
data in real word problems are sometimes
imprecise or vague. Many Researchers
have proposed various method for dealing
with the imprecise and ambiguous data in
DEA [16].

Although in most available resource
allocation models the key point is to
maximize the total amount of outputs
produced by individual units, they are not
concerned about the improvement in the
efficiency score of individual units or
even the efficiency of the whole system.
Nasrabadi et al. [17] present a model to
investigate the resource allocation
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problem based on efficiency
improvement. In their model, the
parameters used are not necessarily
unique in the case of alternative optimal
solution. However, each optimal solution
can be applied in this model to achieve
performance improvement. This is a
shortcoming, of their model, since finding
all alternative optimal solutions and
solving the model for each one seems
unreasonable.

The two factors which often have some
relation with each other and play
important roles in resource allocation
models are economic and environmental
factors. Economic factors usually refer to
the desirable outputs generated in the
production process, such as profit.
Environmental factors usually refer to the
undesirable outputs such as smoke
pollution and waste. Jie and et al. [18]
have proposed some new DEA models
which consider both economic and
environmental factors in the allocation of
a given resource. Research on undesirable
inputs and outputs has also been actively
pursued by means of DEA.
Environmental factors are very important
in resource allocation, few papers have
provided methods in this regard. For the
first time, the current paper not only
considers environmental and economic
factors in resource allocation in the light
of DEA, but also it deals with
discretionary and non discretionary data,
simultaneously.

In the previous literature it was assumed
that all inputs and outputs can be varied at
the discretion of management or other
users. These may be called "discretionary
variables™ . "Non discretionary variables",
which are not subject to management
control, may also need to be considered.
This paper aims to involve this variable as
well.

The assumptions that concern the units'
ability to change their input-output mix
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and efficiency are clearly some of the key
factors affecting the results of resource
allocation. Although many valuable ideas
have been proposed concerning these
assumptions, the DMUs ability to change
their input-output mix and efficiency has
not been discussed thoroughly in the
literature. In addition, the multiple criteria
nature of the resource allocation problem
has drawn only limited attention.
Resource allocation, which is a decision
problem in which the decision maker
(DM) allocates future available resources
to a number of similar units, has a
multiple criteria nature. This paper aims
to decrease the distance from units to
their MPSS points through the application
of DEA and MOLP.

This study assumes that several
homogeneous units operating under the
supervision of a central unit such that
these units consume some desirable and
undesirable inputs to produce very
desirable and undesirable outputs.
Moreover, a few of the inputs can be of
non discretionary type. Thus resource
allocation here includes both desirable
and undesirable inputs and outputs. The
literature in this area may be classified
into two categories: direct approaches and
indirect ones. Direct approaches are based
on the work of Fare et al. [19], which
replaced the strong disposability of
outputs by the assumption that outputs are
weakly disposable, and have then been
largely extended. Indirect approaches
may be further classified into two groups.
The first group deals with the undesirable
outputs as inputs for processing [20, 21];
while the second ones transform data for
undesirable outputs and then use the
traditional efficiency model for their
evaluation [22]. The above mentioned
indirect approaches are used to handle the
undesirable inputs and outputs.

The proposed model intends to address
the arisen problems when resources are
allocated to various DMUs such that the
distance between DMUs and their MPSSs
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is minimized. On the other hand, the
current method improves efficiency and
return to scale of DMUs. In the new
method not only the economic and
environmental factors are considered but
also it is assumed that some data are non
discretionary.

The rest of this paper is organized as
follows:

Some theoretical aspects of MOLP, DEA
and MPSS points are discussed in section
2. In section 3, the proposed approach for
resource allocation is described. Section 4
shows the application of this method in
agriculture and petroleum industry. Next
in section 5, the proofs of the theorems
from section 3 are stated. Finally,
conclusions are presented in section 6.

2. Preliminary Considerations

2.1. Envelopment DEA technology
A system with n DMUs, each consuming
m inputs and producing p outputs is
considered. Assume a production process
in this system where desirable and
undesirable inputs are consumed and
desirable and undesirable outputs are
jointly produced. In addition, some of the
inputs probability are discretionary.

Let xx = [(Xik)ieppr (Xjk)jepur
(X1k)1eNpDl Xmk)menputl

for k=1,...,n, denotes the vector of
inputs of DMUy; (k=1,...,n) which
DDI, DUI, NDDI, NDUI are the index

sets which include indexes of
discretionary desirable inputs,
discretionary undesirable inputs, non

discretionary desirable inputs and non
discretionary undesirable inputs,
respectively. Also, denote the vector of
outputs of DMUy by
Yk = [(Yt)tepo, (Ysk)seuo] Where DO
and UO are the index sets of desirable
outputs and  undesirable  outputs,
respectively. The production technology
can be described as:

P = {(XDDI’XDUI’XNDDI’XNDUI' DO’yUO)l

y
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NDDI
)

(XDDI,XDUI,X

xNPUD) can produce
(Caahaes)

In order to reasonably model a production
technology that consumes both desirable
and undesirable inputs to produce
desirable and undesirable outputs, the
assumptions proposed by Liu et al are
adopted [20]. Under these assumptions,
the extended strong disposability can
formally be stated as:

If (XDDI' xPUL XNDDI’XNDUI'yDO’yUO) €P,
then for every

(WDDI WDUI WNDDI WNDUI ZDO ZUO)
such that
wDDI > ¢DDI  (,DUI < ¢ DUI  {,NDDI
> xNDDI
WNDUI < XNDUI and ZDO < yDO ZUO
>y,
we will have:
(WDDI WDUI WNDDI WNDUI ZDO ZUO) €EP
Hence, the corresponding production

possibility set (PPS) is as follows:
P —

DDI .,DUI (NDDI (,NDUI ,,DO ,,UO
(xPPL xPUL xNDDL  NDUL ¢DO [y, U0

y
DDI n 4 .DDI

x70 = Yl A

xPUL < 31 3% DUl

yPO < XLy Ayp°

Y0 = BLy Ayy°

\ Zjn=1 )\j = 1,7\]' = O;j =1,...,n

2.2. Most Productive Scale Size
(MPSS) points

Definition 1.( Banker's definition [23]):
(X0, ¥o) 1S MPSS if and only if for every
(axe, By,) € P we have a > B.
Jahanshahloo and Khodabakhshi [24]
used the input-output orientation model
for determining MPSS points
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corresponding to DMUs. For this aim,
they solved the following model:

Max ®o — 0,

s.t PoYo < Zjn=1 )\ij

GOXO = Z]n:l A]X]

YA =1 1-0

A=0i=1,..

; ., .

Theorem 1. DMU,, is MPSS if and only if
the two following conditions are satisfied:
(@ The optimal amount of objective
function is zero.

(b) The amounts of slacks in alternative
optimal solutions are zero.

Proof: Refer to Reference[24].

For determining MPSS points using
model (1 —1), the non- Archimedean
form is applied. The non- Archimedean
model is defined as follows:

Max @, — 0, +&(1.S™ + 1.5%)

st XA+S™ —0,%, =0
YA+ ST+ oy, =0
1.A=1
A=>0,S"=0,S*=>0

(1-1D

This model is solved by a pre-emptive
approach such that at first the max
(po —B,) is obtained without any
attention to slacks and then in the second
stage the slacks are maximized by fixing
©s, 05 amounts instead of ,,0,.
Therefore, in this approach it is not
necessary to devote any amount for .
Remark 1. For DMU,, with (x,,y,) input
and output combinations, figurative DMU
with (0" x, - S™*, @* yo+ S*") input and
output combinations is MPSS.

Also Khodabakhshi [25] estimates the
most productive scale size in stochastic
data envelopment analysis (DEA).To
estimate the most productive scale size
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with stochastic data, he develops the
input-output orientation model that was
introduced by Jahanshahloo and
Khodabakhshi [24] in classic DEA in
stochastic data envelopment analysis. The
deterministic equivalent of stochastic
model is obtained which is generally non-
linear, and it can be converted to a
guadratic problem.

In the following, we extend this model for
desirable and undesirable inputs and
outputs.

First, the following model is solved:

Max @10_610_@20"'620

(2-1)
St @10Yro < Xj=1 Ay ;re DO
B10Xi0 = Xjz1 AjXjj ;1€ DDI
P20Yro = 2i=1 AjYij ;re U0
020Xi0 < Xjz1 AjXij ;i€ DUI
Xio = Xj=1 AjXjj ;1 € NDDI
Xio < Xj1 AjXj ;1 € NDUI
le=1 7\j =1
A =0 i=1,...,n
Then the following model is solved:
Max ZXieppr Si+ Ziepur S +

ZI‘EDO tr + 2:rEUO E’ +

Zienppl Si + Zienpui Si
S.t

®10 Yro = Z]n=1 ijr,- —t,; reDO

010 Xio = Xfq Ajxij + si;1 € DDI
LPZO*Yro = Z}lzl )\jyr]‘ + t_r; r e U0

(2-11)

eZO*XiO = Z]?l=1 }\inj — §,;1 € DUI
Xjo = Z]n=1 }\inj + S,;i € NDDI
Xjo = Z]n=1 }\inj — §;;1 € NDUI
Yih=1420j=1,..,n

Similarly, it can be proven for DMU, with

bDbI |,DUI (,NDDI ,NDUI ,DO {,UO
(Xo )XQ )XQ )XQ Iyo lYO )
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combination, figurative DMU with the
following form:

(0;x3P! — 57, 03xDU! 4 §*, x PP —
S X0V 4 5%, 91yR0 + €, piy80 — )

is MPSS.

Here, for determining the distance

between DMU, and its MPSS, the

following formulation is applied:

Po = Zieppr (Xio(1 —610) +57) +
Zieput (Xio(02o — 1) +s{) +
z:rEDO(Yro((P,{o - 1) + E) +
2:reUO(Yro/(\l — @3,) t t;)_:l'
ZienDDI

(3)
s + Zienpur Si-

2.3 Multi-objective programming
Here, some fundamentals of MOP
problems and the weighted sum method
for solving them are reviewed, which will
be used throughout the remainder of this
paper.
The MOP problem can be presented as
follows:
max f(x) = (f;(x), f2(%),..., (X))
s.t.

xex (4)
where yx is a feasible set of an
optimization problem (4) and fi:x » R
for k=1,...,p are criteria or objective
functions. The fundamental importance of
efficiency (Pareto optimality) is based on
the observation that any x which is not
efficient cannot represent a most
preferred alternative for a DM, because
there exists at least one other feasible
solution x’ such that fy (x") > fi.(x) for all
k =1,...,p, where strict inequality holds
at least once, i.e., x' should clearly be
preferred to x.
The multi-objective linear programming
(MOLP) problems are specified by linear
functions which are to be maximized
subject to a set of linear constraints. The
standard form of MOLP can be written as
follows:
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max f(x) = Cx
S.t

()
x€€x ={x€R"|Ax < b,x = 0}

where C is an p X n objective function
matrix, A iS m X n constraint matrix, b is
an m- vector of right hand side, and x is
an n-vector of decision variables.

Definition 2. (Ehrgott [26]) Let x* be a
feasible solution to the problem (5), if
there is no feasible solution x of (5) such
that (Cx")x < (Cx)i forall k =1,2,...,p
and (Cx")x < (Cx)i for at least one i,
then we say x* is a strongly efficient
solution of (5).

There are many methods for solving
MOLP problems. One of the non
scalarizing methods is weighted sum
method. In this method, an MOP problem
(5) can be solved (i.e. its efficient
solutions be found) by solving a single
objective problem of this type:
max {ATCx | x € x} 6)
where A\, e Aand A= {A e RK | A, >0,
KA =10

Theorem 2: X € x is efficient if and only

if there exists a A € A such thatx is a
maximized solution of max{ATcx | x € x}.
Proof: Refer to Reference [27].

3. Development of
allocation model

In this section, a new model for the
resource allocation is proposed. Here
resource allocation means a decision
problem in which the decision maker
wishes to allocate extra resources as new
inputs and additional market demands as
new outputs for a set of homogeneous
units operating in a system to achieve
more small distances to MPSS points of
these units.

resource
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Assume  that  (xPP!+ AxPP! xDUI 4
AXEUI,XEDDI,XEDUI,}/EO _l_Ale()O’le(JO_l_
AyP©) represents the activity vector of
DMUy, after the planning period, in which
AxPP! and AxPY! denote the vector of
discretionary desirable input changes and
discretionary undesirable input changes of
DMUy, for k=1,...,n respectively.
Also, AyR° and Ay[© denote the vector
of desirable output changes and
undesirable output changes of DMUy,, for
k=1,...,n.

Definition 3. The system containing
DMUy,...,DMU,, has a smaller distance
to MPSS points, after the planning period

if (s—k) >1 for k:1,...n where p, and
kr
px, are the distance measure between

DMUy, and its MPSS, before and after the
planning period, respectively.

It should be maximized
&, 2k, Py while  maintaining
P1 Pkr Pnr

the feasibility of all units and imposing
the DM's constraints, to achieve a smaller
distance to MPSS points.

Max {ﬂ ..... P p—“}
P1 Pkr Pnr
st (xPPT 4+ AxPP! xPUT + AxPYT,
NDDI _NDUI . DO DO _UO uo
X Xk Yk tAyg Yk +Ayg ) €P
;k=1,...,n
(AxPP1, AXPP!, .., AxBPT) € APD!
(AxPUL AXDUL  AxDUT) € ADUI

(AyP°, AyR°,..., Ayp®) € AP°

(AyY0, AxYO, ..., AxU9) € AVO,

Model (7) has n objectives and is a
multiple objective problem. To solve this
model, the weighted sum method is used.
Therefore the following model is
obtained:
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P
Max  XRo; wi()
Pkr

(8)

s.t  ConstraintsofModel(7),

where  wgS are positive weights
representing the DM’s preferences such
that ZE:1 wy = 1.

Here, it is important to know, if a
decrease in the distance measure occurs
from all units to their MPSS points, the
system will surely have a smaller
distance, whereas, in general the converse
does not hold true. For considering this
fact in the new model, it was assumed
that the DM is not willing to have
deterioration in distance measure from
any units to its MPSS, which implies
Pre < px for k=1,...,n. Then the
resource allocation model is introduced as
follows:

P
Max Xio; wi(:S)
Pkr

s.t  ConstraintsofModel(7),

(9)

P <pw k=1,...n

where sets APPI APUL ADO AUO " refer to
the restrictions imposed on the vectors of
discretionary desirable and undesirable
input changes and desirable and
undesirable output changes, respectively.
Note that we can choose these sets
according to the DM's preferences. Here
we consider them as foIIows

ADDI {(AXDlDI DZDI DDI)l
i1 2 BXi T, e,

ik < AXlk < Blk k= 1

2 AxPPl=¢ i€ DDI}

ADUI — {(AxlDlUI'AxlDZUI' .., DUI)'

(Xlk SAXlk SBlk ; _1,...,

IR AxPUT = ¢ ,i € DUT}
AP0 = {(Ayrl, yin e Ayp)|
Yk S AyR2 < 8 ;k=1,...,n
 ZR=1By = dp ;1 € Do}

= {(AyrP, Ay, ..., Aypd)]
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Ve’ S Ayl <8’ sk=1,...,n
i Ay =d, ;r € Uo).

Using resource allocation model (9), first
models (2-1) and (2-11) should be solved

to determine MPSS points, for
o=1,...,n. Then, by applying the
obtained optimal solutions to these

models in equation (3) , px ;k=1,...,n
are found. On the other hand, for finding

Pr;=1,...,n the following models

should be solved:

Max MN1o —MN20o — Zlo + ZZO

s.t N1o(Vro + A¥ro) < Zjnzl }\erj ;r € DO
G10(Xio + A%j0) = Xjiq Ajx; ;1€ DDI
N20(Vro + AYr0) 2 Z]_n:1 Ayy ;T €Uo
ZZO(XiO + AXio) < Zjn=1 )\]XU ;1 € DUI
XIO—Z] 1)\X1] ;1 € NDDI
XIO—Z] 17\X1] ;1€ NDUI
Zjn=1 )\j =1
7\]- >0,j=1,...,n

(20-

A(Xik) € ADDI
ieDDI] k:1,...,n
A(Xik) € ADDI
ieDUI k:1,...,n
A(Yrk) € ADO
reDO, k:1,...,n
A(Yrk) € AUO
ieuo, k:1,...,n

And

Max Zieppr L+ Ziepur L +
z"rEDO hr’:l' 2:rEUO hr -|:
Zienopt L+ Zienpur b

s.t
nlo*(Yro + AYro) = Zjn:1 )\jyrj - hri r € DO

Q1o (Xio + Axjo) = Zjn=1 }\inj +1;;i € DDI
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N20" Fro + Ayro) = Z]‘n=1 )ljyrj + h_-r;l‘ e U0

_ (10 —11)
{20 (Xio + AX;p) = Z]p=1 7\in]' — 1;;i € DUI

Xio = Xjt1 AjXjj + 1; i € NDDI
Xjo = Z]n=1 7\in]' - 1: ;1 € NDUI
Zjn=1 }\j =1

A =0j=1,..,n

A(xy) € APP! ;i e DDI, k:1,..,n
A(xy) € APP! :ieDUIL, k:1,..,n
A(y) €APO ;reDO, k:1,..,n
A(y) €AY° ;i€eUO, k:1,....n.

These models are the parametric linear
program and their optimal solutions are a

function  of  AxDP! = (Axio)ieppI,

Axg" = (8Xio)iepur, Ayg® =
(8Yro)reno; @nd Ayg® = (Ayro)revo-

Then p,, can be obtained as follows:

Po = Zieppr [ (Kio + Axi0)(1 — Tio) +

1; ] i ZiEDUI [ (Xio +AXio)(<§o -
D+ ] +

2:rEDO [ (Yro + AYro)(n;o - 1) +5‘] +
2:rEUO [(Xro + A}’ro)(1 :n;o) + h; ] +

Zienppr T + Zienpur I (11)

Theorem 3. Model (2-1) and model(10-1)
are the feasible and bounded problems.
Proof: Refer to Section 5.

Conclusion 1. The dual problems of
models (2-1) and (10-1) have the finite
optimal solutions.

In the following, we introduce the
Theorem 3, which states that the
mathematical relationship between MPSS
points corresponding to DMU,, before
and after resource allocation.

Theorem 4.

If (O‘;)jzl ..... n’ (pio;eio; (p;o; 930) is
an optimal solution to the model (2-1),
then for every j = 1,..., n, there exists Hjo
such that
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((}’\; = ujo}‘;)jzl ..... N1 G0’ MN205 G20) is
an optimal solution to the model(10-I);
which is introduced as follows :

o~k

)\] =|J.]0)\]* ;j=1,...,n

. Zjn=1 X] Yrj
min 4§y — H
reDO ( yro + Ayro
Yt Ay X

~ %
Xio+AXio }

Zjnzl X] Yrj} .

*
Nio =

G0 = max{

ieDDI
N30 = Max
20 ™ 1elo

5o = min
G20 iEDUI{

Yro T A¥ro
T K i

X10+AX10
Proof: Refer to Section 5.

Conclusion 2. Based on Theorem 1, if
(A)j=1,...00 @105 8105 @305 0305 (tr)rep0;
(sDieppt; (& revos Gi Diepur; (8 iennpr;
(5.)ienpur) is an optimal solution to a
non-Archimedean form of the model(2-1)
and model (2-11), then:
(( )j=1,..ns M05 G105 N205 G205 (hr)repo;
(ljk*)ieDDI; (hr )revo; (i Diepun (I Jienppi
(1, Dienpur) is an optimal solution to a

non-Archimedean form of the model (10-
I) and model(10-11), such that:

tr = Zjn=1 )\;Yrj — @10 Yro; T€DO
and t; = @30 Yro — Z]n=1 )‘j*Yrj; re uo

Si* = 9’{0 Xio — Z]-nzl }\;Xij; i € DDI
and 5; = Y1 Ajxij — 034 Xjo; 1 € DUI
§\1* = Xjo — Z]n=1 A;XU, i € NDDIand

h: =
Tk . Zp=1X*Yr'
Yi=1 NV rEDO{ — v 1} Uro +

Ay.,); T € DO

29:1)’\\]*Yrj
h, = max{ ==/
r rEUO{ Yro+tAYro
n 1k .
Yi=1 Ny reuo

}} (Yro + AYro) -



A. Mottaghi, et al /IJIDEA Vol.5, No.2, (2017) 1207-1230

Yt Ay Xi
;" = max{ == A
ieDDI™ Xio+AXjo

YL, Ax; i€DDI

—— 1} Kio + AXj) —

I =

Yy Axg -
Ax;,); i€ DUI

[ =xi—X%; Xx; i€NDDI

and [ =YL, Xxj—Xj; i€ NDUL

Ziuih Ny oy

min
{ Xio+AXig

ieDUI

Xjo’

Based on Theorem 3 and Conclusion 2, ,
there s no need to solve the parametric
models(10-1) and (10-I1) and by using the
optimal solution to the models (2-1) and
(2-11), the resource allocation model (9) is
as follows:

Max
Ziepp1 [Xik(1-010)+s] | +
n Sieput [Xik(O3—1)+s] ]
Zik=1 Wk ( Zieppr | Kik+Axi) (1-35 )+ | +
Zieput [ Kik+Axi) G~ 1+ ]
[ZrEDO [yrc(@ix— D +t5 ] +]
+ Yrevo [yrk(1— @) +t7 ]

[ErEDO [ (Yrk + AYrk)(Tﬁk - 1) + h;] + ]

Zrevo [ ek + Ayrd (1 — i) + hi ]

% “x
Zienppl Si T Zienpul Si

= =
Zienopt I+ Zienpur L

St (Yrk + AYrk) < Z]D=1 )\}(Yrj
;:TéDOk=1,...,n

(xik + Axi) = Ty A
;ieDDLk=1,...,n

(Yrk + AYrk) = Z]n=1 }\]k}II‘]'
;reUO0k=1,...,n

(xik + Axi) < Ty A
;ieDULk=1,...,n

Xik = Xy A

;i€ NDDLk=1

Xik < Xty A
;ieNDULk=1,...,n

2, A =1 k= 1

,...,N
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Zieppr [Xik(1—610) +si | +
Ziepur [Xik(02k — 1) +s{ ]+
ZreDO [Yrk((p;k - 1) + E +
ZrEUO [Yrk(l - (p;k) + tjrv‘l'
Tienppt Si + Zienpur Si

>
Zieppr [k + M%) (1 — ) + 17 ] +

iepur [ ik + Axp) (G — 1) + 17 1+
2:rEDO [ (Yrk + AYrk)(nlk - 1) + h ]+
2:rEUO [ (Yrk + AYrk)(l - T]zk) + h; ]+

+Zienopt T + Zienpur ' k=1,...,n
(AxPP! AXDPL . AxDDI € ADD!

(AXDUI AXDUI, ...,AXEUI) € ADUI

(AyP9, AyDO, ..., AyPO) € AP°

(AyY0,AxY0, ..., AxJ0) € AYO.

Remark 2. Note that the objective
function of the above model is fractional
but based on equation (3)

ZrEDO [ Yrk((p;k - 1) + t; (13)
grEUO [yr(1 — (sz) + _
tt ] Yienopr  Si t+ Xienpur Si = Pk

]+

therefore the numerator of this function is
a constant value; thus, by considering:

Yieppr [(Rik +Axp)(1 =G +1i | +
Ziepur [ (Kik + Axp) (G — D + 1 1+
ZrEDO [(Yrk + AYrk) (nlk - 1) + (14)
] + ZrEUO [ (Yrk + AYrk)(l -

M5 + hi ] + ZlENDDI [+
2ieNDUI lik =p' Kk

we can rewrite this model as follows:
Max ¥x_1 wi p',

S.t (Yrk + AYrk) < Zjnzl }\}(Yrj
;reDOk=1,...,n

(xik + Axy) = XLy Ax;)
;ieDDLk=1,...,n

(Yrk + AYrk) = Z}lzl )‘}(Yrj
;reUO0k=1,...,n
(Yrk + AYrk) = Zjnzl
;TeUO0k=1,...,n
Xik = Xy A
;i€ NDDLk=1,..
Xik < Xy A

Y

N (15)
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;ieNDULk=1,...,n
n k _ 1.

Ak =1,

k=1,...,n

P’k < Pk

AX>0; k=1,..,n

(AxPP!, AxPPT .. AxDPI) € ADPD!

(axPY AXDUI, .., AxBU1) g APUI

(AyPO, AyPO ... AyDO) e APO

(Ayyoﬁ AXEO; sy AX]'L]JO) € AUO.

Remark 3. For using of formulations
(13), (14), we can use Theorem 4 and
replace the amounts of {j,, Gy, Nk Mok

fork = 1,...,n in this model.
However, by considering the sets
APPI ADUL-ADO and AU for  every
i € DDI, r € DO, we have:
— max e Hj"fxij} < —max 2= Hi*fxii} <
ieEDDI~ Xjo+Qio ieEDDI ™ Xjo+AXjo
T WA]Xij
—max{———
ieDDI XIO+BIO
n *
min Z] 1 P-] Yrj < min Zj:l p—j)\erj
red0  yp + Sro "~ reD0 ( Yyo + Ay
Z =1 H Yr'

reDO” Yy + Yro

and for everyi € DUI, i € UO, we have:

i Z] 1 P-] Xl] < min Z] 1 ”-] Xl]
iebut Xio + B';, )~ 1€DUL{ X0 + AXjo
}\ X
< min {21—1 Hj4y 11}

I !
ieDUI { Xjo + «a io

Z-n= AFV L
_m{# <
retuo yr0+yr0

Zjn=1 Hj7\j* Yrj
—maxy———
revo ( yyo + AYro

Yim1 WAV
< - —_—
- {280{ YI"O + 8’1"0 }
Then, for achieving the minimum value's
objective function of model (12), we
replace ( (o) with

i1 AX;
ﬁ}) and (n3,) with

. BiA Yr
(mlnreDo{%}) and (ZZO) with

(—max;eppi{
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Z—’ L) and (—n,) with

Z] 1“] JYr]
e

(minjepyr{

(—maxreyol—— - —

4. Application Examples:

In this section the proposed method in
Section 3 is used for allocating resources
in two real world situations. In one of
these examples, there are data of desirable
and undesirable type and in the other
example in addition to these types, some
of the data are of discretionary and non
discretionary type.

Example 1:

Here, we illustrate the resource allocation
method discussed in this paper through
the analysis data from petroleum
companies. The data set consists of 20 gas
companies located in 18 regions in Iran.
The data for this analysis are derived
from operations during 2005. There are
six variables from the data set as inputs
and outputs in this example. Inputs
include capital (x,), number of staff (x,),
and operational costs (excluding staff
costs) (x3) and outputs include number of
subscribers (y;), length of gas network
(y2) and the sold-out gas income (ys3).
Table 1 contains a listing of the original
data.
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Tablel: Dat a of Inputs and outputs for Iranian gascompanies

DMU X1 X2 X3 V1 V2 V3
1 124313 | 129 198598 | 30242 | 565 | 61836
2 67545 117 131649 | 14139 | 153 | 46233
3 47208 165 228730 | 13505 | 211 | 42094
4 43494 106 165470 8508 | 114 | 44195
5 48308 141 180866 7478 | 248 | 45841
6 55959 146 194470 | 10818 | 230 | 136513
7 40605 145 179650 6422 | 127 | 70380
8 61402 87 94226 18260 | 182 | 36592
9 87950 104 91461 22900 | 170 | 47650
10 33707 114 88640 3326 85 13410
11 100304 | 254 292995 | 14780 | 318 | 79833
12 94286 105 98302 19105 | 273 | 32553
13 67322 224 287042 | 15332 | 241 | 172316
14 102045 | 104 155514 | 18082 | 441 | 30004
15 177430 | 401 528325 | 77564 | 801 | 201529
16 221338 | 1094 | 1186905 | 44136 | 803 | 840446
17 267806 | 1079 | 1323325 | 27690 | 251 | 832616
18 160912 | 444 648685 | 45882 | 816 | 251770
19 177214 | 801 909539 | 72676 | 654 | 34158
20 146325 | 686 545115 | 19839 | 177 | 341585

There is central company (DM) which
supervises the above gas companies. This
company has a notable additional capital
and staff. The amount of additional
capital is 15000 and the number of
additional staff is 300. The central
company wants to allocate them to those
companies so that the number of
subscribers reaches 500684 and the
amounts of sold-out gas income reaches
2936415. The proposed method is

applied in order to determine the
contribution of each of company.

Here one must note that some data are
desirable and others are undesirable. For
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example capital and operational costs are
discretionary desirable input and non
discretionary desirable input,respectively.
Also, the number of staff is undesirable
Input because one of the DM's aims is to
help solve the unemployment issue and
the number of subscribers and sold-out
gas income are desirable outputs but the
length of gas network is undesirable
output.

First the model (2 —1) is solved and the
following results are achieved: (Table2)
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Table2: The results of model (2 — I)

DMU | ¢y 01k Pk 02k
1 0.24151 | 0.48936 | 0.18967 | 1.95175
2 0.34528 | 0.65612 | 0.61221 | 1.4349
3 1.1226 | 1.2147 | 0.86304 | 1.4014
4 19473 | 1.8704 | 1.2782 | 1.9153
5 2.0524 | 1.6632 | 0.56955 | 1.5853
6 0.65558 | 1.0689 | 0.46230 | 1.6891
7 1.1361 | 1.4290 | 0.83687 | 1.5695
8 0.19321 | 0.57140 | 0.50334 | 1.1301
9 0.14970 | 0.39117 | 0.50334 | 1.1301
10 1 1 1 1
11 1.8896 | 1.1112 | 0.71563 | 1.2670
12 1.1962 | 0.94214 | 0.62310 | 1.0741
13 0.82394 | 1.1767 | 0.6085 | 1.5369
14 1.2426 | 0.94265 | 0.38773 | 1.79014
15 | 0.24795 | 0.80135 | 0.21675 | 1.6583
16 | 0.83067 | 1.0842 | 0.41239 | 0.91003
17 1 1 1 1
18 0.75967 | 0.95507 | 0.38304 | 1.6187
19 0.27298 | 0.84967 | 0.27064 | 0.85643
20 1 1 1.475 1
Now, by applying Theorem 4 we obtain 0043 ; j=9
W, and then the A~ are achieved as A= 8'973 )= 189F0r0 =7
follows: o=
. (999 5 j=10 095 ; j=10
A ={0 i j=10 Foro=1; X]*z{o ; j=10 For o=8
A ={0 ; j=10 Foro=2 }T]*:{O ; j=10 Foro=9;
- 1.004 ; j=10 1 j=10
7\1={0 i 1=10 Foro=3; X]*=[0 ; j=10  For o=10
063 ; j=9 099 ; j=9
5\\]*:{337 : ;:13’9 For o = 4 A ={0 ;' j=9 Foro=11;
099 ; j=9
g.zgi ; 1:=20 ;Tf:{o ; j=9  Foro=12
A =40 ; ;;10,9F°r°:5‘ 099 ; j=10
_ X]*z{o ;  j=10 For o=13;
(099 ;5 j=10
7\]=0 ; j=10 Foro=6 . 1 ji=9
X =[o ; j=9 Foro=14
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; j=10
; j=10

For o =

; j=19

;o 1=20

; j=19,20

j=17
j =17
j=20
j=20

For 0 =17;

For o =18

15;

Foro = 16

1.18 ; j=20

7\] =[0 ; j=20 For 0=19;
1 ; j=20

A] =[0 ; j=20 For o = 20

and we have: (Table3)
and according to Conclusion 2 and

Remark 3, we obtain hi, hy, h and I,
15,15. Then we replace these parameters in

the model (15), the following results are
achieved: (Table4)

Table3: Efficien cyscores for DMUs afterre source allocation DMU

DMU | m1x | M2 | Siie | Sox
- 054 1016 |0.27 |0.25
2 061 [0.75|049 |0.25
3 0.064 | 0.51 | 0.72 | 0.23
4 0.165]1.94 | 157 |0.25
5 0.154 1 0.65 | 1.34 | 0.24
6 0.044 1 0.45 | 0.6 0.24
7 0.014 1 1.07 | 091 |0.24
8 0.062 | 0.58 | 0.52 | 0.26
9 0.060 | 0.65 | 0.38 | 0.26
10 100742 1.005 | 0.26
11 10.192 | 0.62 | 0.88 | 0.18
12 10.235|0.73|0.93 |0.24
13 10.039]043]0.5 0.21
14 1024 1043|086 |0.24
15 10.031 /011|019 |0.14
16 1052 |1 1.16 | 0.82
17 1047 |12 |1 0.77
18 1026 023|091 |0.89
199 1023 034|098 |0.83
20 1039 [132]1 0.8
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Table4: Data of additional inputs and additional outputs for DMUs DMU

DMU | Axyy AXox Ay1x Ay,x Aysk

1 402.8 | 54.36722 0 0 26726.38

2 887.15 | 25.16787 | 2985.19 | 7.303861 | 1552.059

3 887.15 | 5.797695 | 144.9329 0 2391.259

4 887.15 | 60.58406 0 15.55526 0

5 887.15 | 2.394052 | 1717.488 0 18906.59

6 887.15 0 0 0 0

7 887.15 | 1.011556 0 109654.4 0

8 887.15 | 0.6775440 | 152.3884 0 4237117

9 887.15 0 0 0 0

10 0 0 0 0 0

11 [ 887.15 0 0 84248.1 0

12 [ 887.15 0 0 486754.3 0

13 0 0 0 0 0

14 | 887.15 0 0 1243889 0

15 | 887.15 150 5000 0 50000

16 | 887.15 0 0 819897.6 0

17 402.8 0 0 0 0

18 | 887.15 0 0 1047185 0

19 | 887.15 0 0 6461624 0

20 | 887.15 0 0 0 0
According to the optimal resource such as land, seeds, animal manure,
allocation plan, company 17 and company carbon monoxide (co), which is a toxic
10 will receive less resources than the gases and etc to produce several types of
other companies because these units are fruits and vegetables. The information of
more efficient than the other DMUSs. these farms, such as the quantities of

consumed resources and produced

Example 2: A manufacturer of products, is introduced in Table 5.

agricultural products manages three
farms. These farms consume resources

Table5: Consumed inputs and produced outputs of the farms farm;

farm; | farm, | farms
land(m?) 100 150 200
Seeds (kg) 12 17 20
rainfall(mm) 30 20 18
Car bonmonoxide(m3) |1 1.5 2
animalmanure(kg) 5 8 12
desirablefruits(kg) 20 28 32
undesirablefruits(kg) | 3 4 5
Desirablevegetables(kg) | 15 20 28
undesirablefruits(kg) | 2 3 2
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This manufacturer has a significant
manure and seeds excess. The DM wants
to allocate them to the farms so that the
production level reaches a special level.
This paper's method is applied to
determine the allocation resources to each
farm.

For this aim, we consider the farms as
DMUs; the land, seeds, animal manure
and carbon monoxide (co) are considered
as inputs and the produced products are
assumed as outputs. Note that some data
are desirable and others are undesirable.
Also two classes for inputs can be
considered:  discretionary and  non
discretionary inputs. The decomposition
of data is as follows: (Table6)

The manufacturer expresses the following
conditions for resource allocation:

APPT = {(Axyy, Axip, Axi3);

—0.4xl-k < Axl-k < O.SXik;
k=123;i=1,2;

21%:1 Axqp = 120 21%:1 Axyy = 10}
APUT = {(Axsy, Axsz, Axs3);

—0.2x5, < Axsy < 0.3x5,; k = 1,2,3;
Yi=1 dxsy = 2}

AP = {((Ayy1, AYr2, Ayrs);

=0.2y,k < AYri < 0.3Yp;

k=1.23; r=1,3;

Yie1 4y =8 Zi:l Aysy = 5}
A0 = {(Ayr1, Ayr2, Ayrs);

=0.1y,x < Ayri < 0.3Y7k;

k=1.23; r=24;

Yie1 Ayok = 2 Yizq Ayar = 2}
After applying the algorithm which is

proposed in this paper, the following
results are achieved. (Table7)

Table6: The decomposed data

DiscretionaryDesirable

Inputs(DDI)

land and
seeds

Nondiscretionary Desirable

Input(NDI)

rainfall

Discretionary Undesirable

Input(DUI)

animal
manure

NondiscretionaryUndesirable

Input(NUI)

Cco

UndesirableOutput(DO)
Undesirable fruits and vegetables

Table7: The result of the propose

farm; | farm, | farm,
APPlland(m?) 120 0 0
APPISeeds (kg) 9 1 0
APY"animalmanure(kg) 0 2 0
APO desirablefruits(kg) 2 6 0
AY%undesirablefruits(kg) 2 0 0
APOdesirablevegetables(kg) 0.5 4.5 0
AY%undesirablevegetables(kg) | 1.5 0.5 0
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5. Appendix

In this section Theorem 3 and Theorem 4
which were introduced in Section 3 are
proved.

Proof of Theorem 3: Suppose that:

— (0 ;j+#o

A = {1 sj=o

77? = (20 = 0

and

{ — { Xio }
1o = 155 Xio + Ax;0)
—_— y‘l"O

1’]20 =ma X{

TEU0 Yro + AV .

This is a feasible solution to the
model(10-1). On the other hand, the
constraints of model(10-1) imply that
there is an upper bound for the amount of
objective function in every feasible
solutions of model (10-1), as follows:
10_610_7720'{'

Zr'l— A'Yrj

—max{;}

ieDDI x;, + Ax;,

j=1 /1}’7«]
—max\——
revo yro + Ay,

Ajx;
+ min —J L Y
ieDUI X, + Axw

Therefore model (10-1) is a bounded
problem. Similarly, it can be shown that
model (2-1) is also feasible and bounded.

Proof of Theorem 4. Suppose that set
J ={1,....,n} is decomposed as follows:

J=L1UJ;
such that:

J1=1{ €J| max {—} < min {—}}

i{ENDUI x iENDDI X

Note that if NDUI =
]2 =].

¢ then j, =] and

1223

and
J2 =y €J| max {—} > min {—}}

iENDUI x iENDDI XU

. X
Set ={€ ]1|maxieNDUI{x;;} +

mmLeNDDI{ }> 1}. 3 #0,

0 € J3, for] =1,...,n, u; can be defined
as follows:
:ujo

Because

X,
ma }+ min {=2
LENDUI Xij iENDDI ~Xij

_ 1 3jes, (max (224 + min (Z2DA;

iENDUI ~Xij iENDDI “Xij
LO ;

i JEJs

JE€J =

Here, we will show that ((4 =
lljoA;)j=1,...,n;nIo;(Io; 77;0; Qko) is a
feasible solution to model(10-1). For this
aim, we are going to investigate the
constraints of model(10-I).

We note that forj € I3

max {£2} + min {Z°
uo = {ENDUI Xij°  i€NDDI Xij
jo — Xio *
i + m A
Ljess (zENDUI{x ,} zENDDI{x b
ma {ﬂ + {ﬂ
LENDUI xu LENDDI
_ 2:JE]3 j
. ﬂ ﬂ
Ljess lENDUI{ LENDDI{ D2
Z1‘513 j

Based on the definition of J; and that
((A;)j=1,...,n; ®10;010; P205 820,) being
an optimal solution to the model (2-1), we
know that:

Yjes, (max 223 + min (Z2hHA;

lENDUI Xij iIENDDI "Xij

>1
z:1613 J

and this implies that for every j € J,
max; {xﬂ min; {xﬂ

IENDUI, . IENDDI,
* S Au_]O S * !
2:1'613)7 Z1'613)“]'

For every i € NDDI, we have:
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n 7* _yn * —
_1 A Xij = Xjoq Hjodjxij =

min (o
iENDDI x” A*

Z}E] A* J U
A* x'o

.
e i
xij Yjess A

T jeTs
- xlo

Yjess HjodjXij < Lje,

1
< i Z
Ljers 4j &

‘xI.O

Similarly, for every i € NDUI, we have:
n n

Z A xy = Z HjodiXij = Z HjohjXij
=1 =1

1'513 )
1256%,{;} .
> ~ A
)3 21513
1 Xio
> Z S0 jexyy 2 i Z Py
Ljess Aj £t Xij Zjelg o=
= Xio-
For every r € DO:
Z] =1 ] yr]
nlo(yro + Ayro) - n:leO{ m}( T0
+4Yr0)
Z?:i j‘; Vrj
S ———— o + 4¥r0)
}:{o + Ayro Tro Tro
/TJ Yrj
j=1
and for every i € DDI:
Z 1 ] l]
ZIO (xlO + Axlo) - mDanI{ x] + Axlo }( io
+ Axw)
A o~k
2—’ L ”( + Ax;,)
xlo +A m lO Lo
= Z] %
j=1
Forr e UO:
X7 1 y
rIZo(yro + AYro) - ma { y]+—2yrj}( ro
Tro Tro
+ Aym)
n Xy,
>22L T T o 4 Ay,)
Xro +Aym ro ro
2; Yrj
j=1

and for every i € DUI:
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n — %
Yj=1 A Xy

Xi, + Ax;,) = mm
{20( 110) lO) { xio +Axio

€DUI
+ Axw)

}(xio

/1
< J =17 U A
—_ xlo +A lo }( io + xlO)
/T X;
=1
and it is clear that

o 2 0;j={12,...,n}

Then /1

is a feaS|bIe solutlon to the model (10 I).
Now, suppose that

() ey iMioiGios m3os $35) is an
optimal solution to the model(10-1), then
we have:

Mo = Mo (IS {1os

M20 < N20: 3620 2 C20-

In the followmg we will show that:

Mo < Mo 10 2 (;o'
M20 2 N20, 20 < (20
which implies that:
Mo = MosS10 = $10:M20 = N20:$20 = $20-

or in other words (4, = wjod}) j=1,..ni Mio;
{1 Maoi (a0) 1S a@n optimal solution to
the model(2-1). For this aim, we first
prove that

Yro .
g {W} vio=1 and
2 —mi =
min{s—.—— . ]y”} 20
2 mi Yo lge — 1 and
(D] Z}l:l Al*xu 1g = - an
— max 105, =

S
1€DUI" YTy AiXyj

because
((A) j=1,.m P10 B10; P205 030) s an
optimal solution to the model(2-1), then
we have:

PioVro < Z A;yrj; re DO
=1
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Gfoxio > Z /‘{]*XU ; i € DDI

=1
n
$20YVr0 2 Z A;yrj ; TeU0
=1
n
9;oxi0 < Z Al*x’-l i € DUI
=1

But by using the complementary theorem,
there exists k;, € DO, k, € DDI, k3 € UO
and k, € DUI such that:

n
* — *
P10Y ko = Z Y.
j=1
n
* —_— *
Hloxkzo = Z ijkzj

because if, for example, there is no
binding constraint of r € DO in the
optimal solution, then their corresponding
dual variables(y,; r € DO) will be zero
and the constraint corresponding ¢;, in
the dual problem to the model(2-1) will be
as follows:

(yryro) =1
rEDO_ B A
or in other words 0 =1 and this is a

contradiction. Similarly, we can show that
there exist k, € DDI, k; € UO and
k4 € DUI. However, based on the above
explanations , it is obvious that:

Yo e = ma o
7 10 = 10 7
j=1 ]yklj rEDOZ} =1 }YT]
X Xio
kpo %
67, = min —9
* 1lo0 — 1o
J 1 /1] kpj LEDDIZ] 1 }x”
k3o % yro %
= min 1)
* 20 20
j=1 4Y Visj revo Y7y AjYrj
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x.
kg0 * 1% *
= max —9
* 20 — 20
To Aix,, 1€DUI YTy AiXj
thus:
yT'O *
2 _ﬂ%{ﬁ o =1 and
2 —min{gg———1950 =
revo ZJ 1 ] r]
2 mi { Yio }e =1 and
— mun —* 10 an
ieDDI Z] 111 ij
2 —max =
lEDUI{ T 1/1]* U} 20
then, We can rewrite:
min{ 27:1/‘1'0/1;‘3’1“1'}
n* reDO Yro+t4Yro
lo — Yro
2 —max
T€EDO Z] 1 ]y”}(plo
max 21_1#10/1]3/r]}
n* _ T€evo Yro+4Yro
20 — YTo
2 —min{g—/— }
20
TEUO Tj—; A}y
mm{ 21—1#10)L xl]}
« ___ IEDUI Xio+4Xio
20 =
2 — max
LEDUI{Z] 1/11"11} 20
max{ 21_1ﬂ]o/1 xu}
&, = ieDDI xm+4xw
lo —
2— min
lEDDI{Z? 145 ,} to
Here, we will show that
* ~ A ~ A .
((4))j=1,..0 P10 910’ 20, 02,) such that:
2] 1}‘1 yTj
72— rEDO{ Yro+4yro
~ 10
P10 = max Yro
Tr€EDO Zj 1 13’1"]
ma {2] 1’11 xl]}
2 — LEDDI XjotAX;o
—~ _ 1o
610 . Xio
MUN (o —
{EDDI X1 Aj%ij
{2] 14 Yrj
72— 1% Yro+4¥ro
— M%0
P20 = .
mln{L
revo Z] 1 ij]
min { 2—1_1;{] all
9 _ ieDul Xio+4%io
0o = {30
20 Xi
max{z—=

[€DUI "L j=q Ajxij
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is a feasible solution to the model (2-1).

Kk

A x;

] 1) ij
maxXiepp{— T
Xio+AXi,

Note that -
$10
because for every
i € DDI, (f;(xio +Axw) = Z;l 1 /1] xij.
ma {2 A] XU
2 _ LeDDI XjotAxio
3io

<1

010X = Xio Xio
min{s—i—
i€DDI T j—q Ajxij
2 Xio Xio
min{s—>—
ieDDI X7 M,xq
1 Z} 1 A xl] A
Mg Xio T jXij
Zj 1}L]xlj
and, similarly:

620%i0 < Z Aixy; i € DUI
P10Vro < Z yr,- ; T€DO
D20Yro = Z /'l,*-yrj ;v € UO.

Clearly, this solution is also satisfied by

the other constraints of model (2-1);

hence, it is a feasible solution to the

model (2-1) thus:

Z_Jébm{ziij
{16

4 xij

mi Xio
{€DDI "X j=q Ajij

and consequently:
ST xi

Xio m,%i Xjo+AX }
i€ io io
910 rEnDlgI{ l* } —= - *k
L ] -1 % Xij 10
Z'=1)L xl
maxFt 2 *io
ieEDDI i i
: T <2 - 67, min f—a—)
€DDI Ax;;i
10 t j=1 4 Aij
Zr'l=1z;**xi'
max{==1 "2
iEDDI ™ XjptAXio *k

= (10

Xj
2 — 07, min 10
1"LEDDI{Z] 1 ,le}
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On the other hand, because ?T]]*; are

.....

- . o~k .
optimal solutions and }‘11—1 L are feasible

solutions of model(8-1) and the quantity
of slack variables in the optimal solution
must be smaller than those in the feasible
solution, then:

Pl

AR

=17 %

max{————
ieDDI

XiO + AXiO
and
* . XiO
2 _61°i2113111311{ n 7
=1 A X
then:

n o~ %
Zj:l Ay Xij
max{————
ieDDI X, + AXj,

)= }

}=1

o~ Kk
> 7L] Xij
mﬁ%‘l{ >]< 1+Ax ]} Xty )’\\*Xij
€
i . io 10lo > max )] }
2 — 0], min {7} iEDDI X0 + AXio
ieDDI EL, &) xjj

e

G10 < Gio

thus:

G10 = Glo

and therefore the proof is completed. m

6. Conclusion

In this paper, resource allocation problem
for systems with a supervising center is
investigated. It is assumed that the units
under supervision are homogeneous
because otherwise, the efficiency scores
may reflect the underlying differences in
environments rather than inefficiencies.
In these systems (i.e. organizations)
homogeneous  units consume  both
desirable and undesirable inputs to
produce outputs some of which might be
undesirable. The proposed method not
only considers environmental factors such
as smoke pollution and waste but also
considers economic ones, both of which
are of fundamental importance to
resource allocation.

As it was discussed, the previous methods
in the literature were not designed to
solve problems with non discretionary
data; while the proposed method , as it
was shown, can do so. Another difference
is that the new method puts emphasis on
efficiency and return to  scale
simultaneously as opposed to the previous
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methods in which resources are allocated
between units to improve efficiency or
maximize the total amount of outputs.

To consider both return to scale and
efficiency simultaneously, our model uses
the notion of MPSS points and allocates
available resources between units in a
way that not only the overall system
distance is minimized, but also the
distance from any unit to it's MPSS points
is minimized as well. In addition to
illustrate the applicability of the proposed
model, two real-life examples were
solved.

The majority of resource allocation
situations are dealt with in the proposed
method. What remains can be of interest
to other scientists and thus subjects for
further researches. Devising a method for
resource allocation in an organization
which deals with fuzzy type data is
proposed as an inspiring further research
guestion. Moreover, the way data is
handled in this paper might be used as a
guideline for further researches in solving
transportation and/or network problems.
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