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Abstract 

This paper proposes a new resource allocation model which is based on data envelopment 

analysis (DEA) and concerns systems with several homogeneous units operating under 

supervision of a central unit. The previous studies in DEA literature deal with 

reallocating/allocating organizational resource to improve performance or maximize the total 

amount of outputs produced by individual units. In those researches, it is assumed that all data 

are discretionary. Resource allocation problem has a multiple criteria nature; thus to solve it, 

many intervening factors should be regarded. This paper not only develops resource allocation 

plan for systems with both discretionary and non discretionary data in their inputs, but also 

considers environmental factors as well. In addition, the overall distance from the decision 

making units (DMUs) to their most productive scale size (MPSS) points is taken into account 

and is minimized in this method. To find the best allocation plan, this paper applies multiple 

objective programming (MOLP). Numerical examples are employed to illustrate the 

application of this approach on real data. 

Keywords: Resource allocation, DEA, MOLP, MPSS point, Undesirable outputs, 

Discretionary inputs.  
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1. Introduction 
Resource allocation is an important issue 

in corporation management. In real life, 

the resources are always limited, so how 

to allocate them plays a pivotal role in 

determining a corporation's growth. As a 

result, resource allocation has been an 

interesting topic for both corporations and 

researchers. 

Data envelopment analysis (DEA) is a 

methodology for measuring the relative 

efficiencies of a set of decision making 

units (DMUs) that use multiple inputs to 

produce multiple outputs. It was first 

introduced by Charnes et al.[1]. 

DEA is a valid method from both 

theoretical and empirical sides and it is 

applicable to management process, 

performance estimation and behavior 

analysis. DEA models bring dramatic 

chances when used as a method for 

analyzing or solving resource allocation 

problems. DEA assumes homogeneity 

among DMUs in terms of the nature of 

the operations they perform, the measures 

of their efficiency and the conditions 

under which they operate. When DMUs 

are not homogeneous, the efficiency 

scores may reflect the underlying 

differences in environments rather than 

inefficiencies. One strategy to tackle this 

issue is to separate DMUs into 

homogenous groups [2]. 

In recent years, DEA has been wildly 

used by managerial researchers to study 

how to better allocate resource. The 

research about resource allocation using 

DEA may be classified into two 

categories. One category assumes the 

efficiency of DMUs to be constant [3, 4, 

5, 6] while the other assumes the 

efficiency of DMUs to be changeable [4, 

7, 8, 9]. In this paper, the latter category 

where the efficiency of DMUs are 

changeable is studied. Golany and Tamir 

[10] have proposed a DEA- based output 

oriented resource allocation model which 

includes constraints that imposes upper 

bounds on the total input consumption of 

the target points. Care must be taken since 

constraining the model too much could 

result in infeasibility. Since this flexible 

model aims at trading off efficiency, 

effectiveness and equality in resource 

consumption, it is rather complex. 

Athanassopoulos [11] has presented a 

DEA-based goal programming model 

(GODEA) for centralized planning. 

Global targets for the total consumption 

of each input and the total production of 

each output are approximated by solving 

a series of independent DEA models for 

each input and each output. These goals 

are usually not simultaneously attainable 

but deviations from them can be 

minimized, resulting in an appropriate 

resource allocation. Although existing 

DMUs are jointly projected, the 

individual units are not necessarily 

projected onto the efficient frontier. 

Athanassopoulos[12] has also proposed 

another goal programming model yet this 

time not based on the envelopment DEA 

formulation but on the multiplier form. 

The global targets for each input and 

output are computed as in GODEA and 

the deviation from them constitute the 

highest priority element in the objective 

function. The second priority is to 

maximize operational efficiency onto the 

part of the computed input and output 

quantities. In the third place, the objective 

function also tries to minimize the 

inequality of resource consumption 

among units. Beasley [7] presents a non-

linear resource allocation model to jointly 

compute inputs and outputs for each 

DMU for the next period with the 

objective of maximizing the average 

efficiency. The approach is based on a 

non-linear ratio form formulation, (which 

can lead to alternative optima) and 

requires explicit upper limits on the total 

amount of every input and of every 

output. Nevertheless, there is no 

guarantee that the projected points lie on 

the efficient frontier. 

Lozano and Villa [13] have proposed two 
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new models for centralized resource 

allocation. The first model seeks radial 

reductions of the total consumption of 

every input while the second model seeks 

separate reduction levels for the total 

amount of each input according to a 

preference structure. The two key features 

of the proposed models are their 

simplicity and the fact that both of them 

project all DMUs onto the efficient 

frontier. The radial model jointly projects 

each of the existing DMUs onto the 

pareto efficiency frontier. Despite a high 

probability that for every input the total 

consumption is necessarily lower than the 

sum of the input levels of the 

independently input-oriented projected 

units, this cannot be proved.  

Korhonen and Syrjanen [14] have 

developed an interactive approach based 

on DEA and MOLP, which is capable of 

dealing with several assumptions imposed 

by DM.  

Bi et al. [15] propose a methodology for 

resource allocation and target setting 

based on DEA for parallel production 

systems. It deals with any organization 

with several production units which have 

parallel production lines.  

Crisp input and output data are 

fundamentally indispensable in 

conventional DEA. However, the 

observed values of the input and output 

data in real word problems are sometimes 

imprecise or vague. Many Researchers 

have proposed various method for dealing 

with the imprecise and ambiguous data in 

DEA [16]. 

Although in most available resource 

allocation models the key point is to 

maximize the total amount of outputs 

produced by individual units, they are not 

concerned about the improvement in the 

efficiency score of individual units or 

even the efficiency of the whole system. 

Nasrabadi et al. [17] present a model to 

investigate the resource allocation 

problem based on efficiency 

improvement. In their model, the 

parameters used are not necessarily 

unique in the case of alternative optimal 

solution. However, each optimal solution 

can be applied in this model to achieve 

performance improvement. This is a 

shortcoming, of their model, since finding 

all alternative optimal solutions and 

solving the model for each one seems 

unreasonable.  

The two factors which often have some 

relation with each other and play 

important roles in resource allocation 

models are economic and environmental 

factors. Economic factors usually refer to 

the desirable outputs generated in the 

production process, such as profit. 

Environmental factors usually refer to the 

undesirable outputs such as smoke 

pollution and waste. Jie and et al. [18] 

have proposed some new DEA models 

which consider both economic and 

environmental factors in the allocation of 

a given resource. Research on undesirable 

inputs and outputs has also been actively 

pursued by means of DEA. 

Environmental factors are very important 

in resource allocation, few papers have 

provided methods in this regard. For the 

first time, the current paper not only 

considers environmental and economic 

factors in resource allocation in the light 

of DEA, but also it deals with 

discretionary and non discretionary data, 

simultaneously. 

In the previous literature it was assumed 

that all inputs and outputs can be varied at 

the discretion of management or other 

users. These may be called "discretionary 

variables" . "Non discretionary variables", 

which are not subject to management 

control, may also need to be considered. 

This paper aims to involve this variable as 

well. 

The assumptions that concern the units' 

ability to change their input-output mix 
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and efficiency are clearly some of the key 

factors affecting the results of resource 

allocation. Although many valuable ideas 

have been proposed concerning these 

assumptions, the DMUs ability to change 

their input-output mix and efficiency has 

not been discussed thoroughly in the 

literature. In addition, the multiple criteria 

nature of the resource allocation problem 

has drawn only limited attention. 

Resource allocation, which is a decision 

problem in which the decision maker 

(DM) allocates future available resources 

to a number of similar units, has a 

multiple criteria nature. This paper aims 

to decrease the distance from units to 

their MPSS points through the application 

of DEA and MOLP. 

This study assumes that several 

homogeneous units operating under the 

supervision of a central unit such that 

these units consume some desirable and 

undesirable inputs to produce very 

desirable and undesirable outputs. 

Moreover, a few of the inputs can be of 

non discretionary type. Thus resource 

allocation here includes both desirable 

and undesirable inputs and outputs. The 

literature in this area may be classified 

into two categories: direct approaches and 

indirect ones. Direct approaches are based 

on the work of Fare et al. [19], which 

replaced the strong disposability of 

outputs by the assumption that outputs are 

weakly disposable, and have then been 

largely extended. Indirect approaches 

may be further classified into two groups. 

The first group deals with the undesirable 

outputs as inputs for processing [20, 21]; 

while the second ones transform data for 

undesirable outputs and then use the 

traditional efficiency model for their 

evaluation [22]. The above mentioned 

indirect approaches are used to handle the 

undesirable inputs and outputs. 

The proposed model intends to address 

the arisen problems when resources are 

allocated to various DMUs such that the 

distance between DMUs and their MPSSs 

is minimized. On the other hand, the 

current method improves efficiency and 

return to scale of DMUs. In the new 

method not only the economic and 

environmental factors are considered but 

also it is assumed that some data are non 

discretionary.  

The rest of this paper is organized as 

follows: 

Some theoretical aspects of MOLP, DEA 

and MPSS points are discussed in section 

2. In section 3, the proposed approach for 

resource allocation is described. Section 4 

shows the application of this method in 

agriculture and petroleum industry. Next 

in section 5, the proofs of the theorems 

from section 3 are stated. Finally, 

conclusions are presented in section 6. 

 

2. Preliminary Considerations 

2.1. Envelopment DEA technology 
A system with n DMUs, each consuming 

m inputs and producing p outputs is 

considered. Assume a production process 

in this system where desirable and 

undesirable inputs are consumed and 

desirable and undesirable outputs are 

jointly produced. In addition, some of the 

inputs probability are discretionary. 

Let xk = [(xik)i∈DDI, (xjk)j∈DUI, 

(xlk)l∈NDDI, (xmk)m∈NDUI] 
 

for k = 1, . . . , n, denotes the vector of 

inputs of DMUk; (k = 1, . . . , n) which 

DDI, DUI, NDDI, NDUI are the index 

sets which include indexes of 

discretionary desirable inputs, 

discretionary undesirable inputs, non 

discretionary desirable inputs and non 

discretionary undesirable inputs, 

respectively. Also, denote the vector of 

outputs of DMUk by 

yk = [(ytk)t∈DO, (ysk)s∈UO] where DO 

and UO are the index sets of desirable 

outputs and undesirable outputs, 

respectively. The production technology 

can be described as: 
 

P = {(xDDI, xDUI, xNDDI, xNDUI, yDO, yUO)| 
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(xDDI, xDUI, xNDDI, xNDUI) can  produce 
(yDO, yUO)} 

 

In order to reasonably model a production 

technology that consumes both desirable 

and undesirable inputs to produce 

desirable and undesirable outputs, the 

assumptions proposed by Liu et al are 

adopted [20]. Under these assumptions, 

the extended strong disposability can 

formally be stated as:  

If (xDDI, xDUI, xNDDI, xNDUI, yDO, yUO) ∈ P, 

then for every 
(wDDI, wDUI, wNDDI, wNDUI, zDO, zUO)  
such that 

wDDI ≥ xDDI,    wDUI ≤ xDUI,    wNDDI

≥ xNDDI, 
wNDUI ≤ xNDUI  and  zDO ≤ yDO  zUO

≥ yUO, 
  

we will have: 

(wDDI, wDUI, wNDDI, wNDUI, zDO, zUO) ∈ P.  
Hence, the corresponding production 

possibility set (PPS) is as follows: 

P =

{
 
 
 
 
 
 

 
 
 
 
 
 (xDDI, xDUI, xNDDI, xNDUI, yDO, yUO)

|

|

|

|
xDDI ≥ ∑  n

j=1 λjxj
DDI

xDUI ≤ ∑  n
j=1 λjxj

DUI

yDO ≤ ∑  n
j=1 λjyj

DO

yUO ≥ ∑  n
j=1 λjyj

UO

∑  n
j=1 λj = 1, λj ≥ 0; j = 1, . . . , n. }

 
 
 
 
 
 

 
 
 
 
 
 

   

 

2.2. Most Productive Scale Size 

(MPSS) points  
Definition 1.( Banker's definition [23]): 

(xo, yo) is MPSS if and only if for every 

(αxo, βyo) ∈ P  we have α ≥ β. 

Jahanshahloo and Khodabakhshi [24] 

used the input-output orientation model 

for determining MPSS points 

corresponding to DMUs. For this aim, 

they solved the following model: 

Max φo − θo

s. t φoyo ≤ ∑  n
j=1 λjyj

θoxo ≥ ∑  n
j=1 λjxj

        ∑  n
j=1 λj = 1        (1 − I)

λj ≥ 0; j = 1, . . . , n.

  

 

Theorem 1. DMUo is MPSS if and only if 

the two following conditions are satisfied: 

(a) The optimal amount of objective 

function is zero. 

(b) The amounts of slacks in alternative 

optimal solutions are zero. 

Proof: Refer to Reference[24]. 

For determining MPSS points using 

model (1 − I), the non- Archimedean 

form is applied. The non- Archimedean 

model is defined as follows: 

Max φo − θo + ε(1. S
− + 1. S+)

 s. t  Xλ + S− − θoxo = 0 (1 − II)

−Yλ + S+ + φoyo = 0

1. λ = 1
λ ≥ 0, S− ≥ 0, S+ ≥ 0

   

 
This model is solved by a pre-emptive 

approach such that at first the max 

(φo − θo) is obtained without any 

attention to slacks and then in the second 

stage the slacks are maximized by fixing 

φo
∗ , θo

∗  amounts instead of φo, θo. 

Therefore, in this approach it is not 

necessary to devote any amount for ε. 
Remark 1. For DMUo with (xo, yo) input 

and output combinations, figurative DMU 

with (θ∗ xo - S−∗ , φ∗ yo+ S+
∗
) input and 

output combinations is MPSS.  

Also Khodabakhshi [25] estimates the 

most productive scale size in stochastic 

data envelopment analysis (DEA).To 

estimate the most productive scale size 
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with stochastic data, he develops the 

input-output orientation model that was 

introduced by Jahanshahloo and 

Khodabakhshi [24] in classic DEA in 

stochastic data envelopment analysis. The 

deterministic equivalent of stochastic 

model is obtained which is generally non-

linear, and it can be converted to a 

quadratic problem.  

In the following, we extend this model for 

desirable and undesirable inputs and 

outputs.  

First, the following model is solved: 
Max φ1o − θ1o −φ2o + θ2o

s. t φ1oyro ≤ ∑  n
j=1 λjyrj ; r ∈ DO

θ1oxio ≥ ∑  n
j=1 λjxij ; i ∈ DDI

φ2oyro ≥ ∑  n
j=1 λjyrj ; r ∈ UO

θ2oxio ≤ ∑  n
j=1 λjxij ; i ∈ DUI

xio ≥ ∑  n
j=1 λjxij ; i ∈ NDDI

xio ≤ ∑  n
j=1 λjxij ; i ∈ NDUI

∑  n
j=1 λj = 1

λj ≥ 0 j = 1, . . . , n.

 

 

Then the following model is solved: 

Max     Σi∈DDI    𝑠𝑖 +  Σi∈DUI    si̅   +
            Σr∈DO 𝑡𝑟 +  Σr∈UO 𝑡�̅� +
            Σi∈NDDI  sî +  Σi∈NDUI sĩ    
  s. t             
  φ1o

∗yro = ∑  n
j=1 λjyrj − tr;   r ∈ DO  

  θ1o
∗xio = ∑  n

j=1 λjxij + si; i ∈ DDI 

 φ2o
∗yro = ∑  n

j=1 λjyrj + 𝑡�̅�;   r ∈ UO  

(2-II) 

θ2o
∗xio = ∑  n

j=1 λjxij −  si̅; i ∈ DUI   

xio = ∑  n
j=1 λjxij +  sî; i ∈ NDDI  

xio = ∑  n
j=1 λjxij − sĩ; i ∈ NDUI 

∑  n
j=1 λj = 1, λj ≥ 0; j = 1, . . . , n.  

 
Similarly, it can be proven for DMUo with 

(xo
DDI, xo

DUI, xo
NDDI, xo

NDUI, yo
DO, yo

UO) 

combination, figurative DMU with the 

following form:  

(θ1
∗xo
DDI − S∗, θ2

∗xo
DUI + S∗, xo

NDDI −

S∗̂, xo
NDUI + S∗̃, φ1

∗yo
DO + t∗, φ2

∗yo
UO − t∗)  

 

is MPSS. 

Here, for determining the distance 

between DMUo and its MPSS, the 

following formulation is applied: 

ρo = Σi∈DDI  (xio(1 − θ1o
∗ ) + si

∗)   +

  Σi∈DUI  (xio(θ2o
∗ − 1) + si

∗)   +
  Σr∈DO(yro(φ1o

∗ − 1) + tr
∗)   +

  Σr∈UO(yro(1 − φ2o
∗ ) + tr

∗) +

  Σi∈NDDI    si
∗̂   +   Σi∈NDUI  si

∗̃. 
 

2.3 Multi-objective programming 
Here, some fundamentals of MOP 

problems and the weighted sum method 

for solving them are reviewed, which will 

be used throughout the remainder of this 

paper. 

The MOP problem can be presented as 

follows: 

max f(x) = (f1(x), f2(x), . . . , fp(x))

s. t.
x ∈ χ

 

where χ is a feasible set of an 

optimization problem (4) and fk: χ → ℝ 

for k = 1, . . . , p are criteria or objective 

functions. The fundamental importance of 

efficiency (Pareto optimality) is based on 

the observation that any x which is not 

efficient cannot represent a most 

preferred alternative for a DM, because 

there exists at least one other feasible 

solution x′ such that fk(x′) ≥ fk(x) for all 

k = 1, . . . , p, where strict inequality holds 

at least once, i.e., x′ should clearly be 

preferred to x.  

The multi-objective linear programming 

(MOLP) problems are specified by linear 

functions which are to be maximized 

subject to a set of linear constraints. The 

standard form of MOLP can be written as 

follows: 

(2–I) 

(3) 

(4) 
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max f(x) = Cx

s. t
x ∈ χ = {x ∈ ℝn|Ax ≤ b, x ≥ 0}

 

where C is an p × n objective function 

matrix, A is m× n constraint matrix, b is 

an m- vector of right hand side, and x is 

an n-vector of decision variables. 

 

Definition 2. (Ehrgott [26]) Let x∗ be a 

feasible solution to the problem (5), if 

there is no feasible solution x of (5) such 

that (Cx∗)k ≤ (Cx)k for all k = 1,2, . . . , p 

and (Cx∗)k < (Cx)k for at least one i, 

then we say x∗ is a strongly efficient 

solution of (5). 

There are many methods for solving 

MOLP problems. One of the non 

scalarizing methods is weighted sum 

method. In this method, an MOP problem 

(5) can be solved (i.e. its efficient 

solutions be found) by solving a single 

objective problem of this type: 
max  {λTCx  |  x ∈ χ}

              (6) 

where λk ∈ Λ and Λ = {λ ∈ ℝk  |  λi ≥ 0,

Σi=1
k λi = 1}.  

 

Theorem 2: x ∈ χ is efficient if and only 

if there exists a λ ∈ Λ such thatx is a 

maximized solution of max{λTCx  |  x ∈ χ}. 

Proof: Refer to Reference [27].  

 

3. Development of resource 

allocation model  
In this section, a new model for the 

resource allocation is proposed. Here 

resource allocation means a decision 

problem in which the decision maker 

wishes to allocate extra resources as new 

inputs and additional market demands as 

new outputs for a set of homogeneous 

units operating in a system to achieve 

more small distances to MPSS points of 

these units. 

Assume that (xk
DDI + Δxk

DDI, xk
DUI +

Δxk
DUI, xk

NDDI, xk
NDUI, yk

DO + Δyk
DO, yk

UO +

Δyk
UO) represents the activity vector of 

DMUk after the planning period, in which 

Δxk
DDI and Δxk

DUI denote the vector of 

discretionary desirable input changes and 

discretionary undesirable input changes of 

DMUk, for k = 1, . . . , n respectively. 

Also, Δyk
DO and Δyk

UO denote the vector 

of desirable output changes and 

undesirable output changes of DMUk, for 

k = 1, . . . , n. 

 

Definition 3. The system containing 

DMU1, . . . , DMUn has a smaller distance 

to MPSS points, after the planning period 

if (
ρk

ρk′
) > 1 for k: 1, . . . n where ρk and 

ρk′ are the distance measure between 

DMUk and its MPSS, before and after the 

planning period, respectively.  

It should be maximized 

{
ρ1

ρ1
, . . . ,

ρk

ρk′
, . . . ,

ρn

ρn′
}, while maintaining 

the feasibility of all units and imposing 

the DM's constraints, to achieve a smaller 

distance to MPSS points. 

Max {
ρ1

ρ1
, . . . ,

ρk

ρk′
, . . . ,

ρn

ρn′
}

s. t (xk
DDI + Δxk

DDI, xk
DUI + Δxk

DUI,

xk
NDDI, xk

NDUI, yk
DO + Δyk

DO, yk
UO + Δyk

UO) ∈ P

; k = 1, . . . , n

(Δx1
DDI, Δx2

DDI, . . . , Δxn
DDI) ∈ ΔDDI

(Δx1
DUI, Δx2

DUI, . . . , Δxn
DUI) ∈ ΔDUI

(Δy1
DO, Δy2

DO, . . . , Δyn
DO) ∈ ΔDo

(Δy1
UO, Δx2

UO, . . . , Δxn
UO) ∈ ΔUO.

 

Model (7) has n objectives and is a 

multiple objective problem. To solve this 

model, the weighted sum method is used. 

Therefore the following model is 

obtained: 

(5) 

(7) 
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Max ∑  n
k=1 wk(

ρk

ρk′
)

s. t ConstraintsofModel(7),
     (8) 

where wks are positive weights 

representing the DM’s preferences such 

that ∑  n
k=1 wk = 1. 

Here, it is important to know, if a 

decrease in the distance measure occurs 

from all units to their MPSS points, the 

system will surely have a smaller 

distance, whereas, in general the converse 

does not hold true. For considering this 

fact in the new model, it was assumed 

that the DM is not willing to have 

deterioration in distance measure from 

any units to its MPSS, which implies 

ρk′ ≤ ρk for k = 1, . . . , n. Then the 

resource allocation model is introduced as 

follows: 

Max ∑  n
k=1 wk(

ρk

ρk′
)

s. t ConstraintsofModel(7),

ρk′ ≤ ρk;     k = 1, . . . , n

         (9) 

where sets ΔDDI, ΔDUI, ΔDO, ΔUO, refer to 

the restrictions imposed on the vectors of 

discretionary desirable and undesirable 

input changes and desirable and 

undesirable output changes, respectively. 

Note that we can choose these sets 

according to the DM's preferences. Here 

we consider them as follows: 

ΔDDI = {(Δxi1
DDI, Δxi2

DDI, … , Δxin
DDI)|   

αik ≤ Δxik
DDI ≤ βik  ; k = 1,… , n

 Σk=1
n Δxik

DDI = ci  ; i ∈ DDI}

 

 

ΔDUI = {(Δxi1
DUI, Δxi2

DUI, . . . , Δxin
DUI)| 

αik′ ≤ Δxik
DUI ≤ βik′  ; k = 1, . . . , n 

 

, Σk=1
n Δxik

DUI = cí  ; i ∈ DUI} 

ΔDO = {(Δyr1
DO, Δyr2

DO, . . . , Δyrn
DO)| 

γrk ≤ Δyrk
DO ≤ δrk  ; k = 1, . . . , n 

, Σk=1
n Δyrk

DO = dr  ; r ∈ Do} 
 

ΔUO = {(Δyr1
UO, Δyr2

UO, . . . , Δyrn
UO)| 

γrk′ ≤ Δyrk
UO ≤ δrk′  ; k = 1, . . . , n 

Σk=1
n Δyrk

UO = dŕ   ; r ∈ Uo}. 
 

Using resource allocation model (9), first 

models (2-I) and (2-II) should be solved 

to determine MPSS points, for  

o = 1, . . . , n. Then, by applying the 

obtained optimal solutions to these 

models in equation (3) , ρk  ; k = 1, . . . , n 

are found. On the other hand, for finding 

𝜌�́�;= 1, . . . , n the following models 

should be solved: 
Max η1o − η2o − ζ1o + ζ2o

s. t η1o(yro + Δyro) ≤ ∑  n
j=1 λjyrj ; r ∈ DO

ζ1o(xio + Δxio) ≥ ∑  n
j=1 λjxij ; i ∈ DDI

η2o(yro + Δyro) ≥ ∑  n
j=1 λjyrj ; r ∈ UO    

ζ2o(xio + Δxio) ≤ ∑  n
j=1 λjxij ; i ∈ DUI

xio ≥ ∑  n
j=1 λjxij ; i ∈ NDDI

xio ≤ ∑  n
j=1 λjxij ; i ∈ NDUI

∑  n
j=1 λj = 1

λj ≥ 0, j = 1, . . . , n

Δ(xik) ∈ Δ
DDI

i ∈ DDI, k: 1, . . . , n

Δ(xik) ∈ Δ
DDI

i ∈ DUI, k: 1, . . . , n

Δ(yrk) ∈ Δ
DO

r ∈ DO, k: 1, . . . , n

Δ(yrk) ∈ Δ
UO

i ∈ UO, k: 1, . . . , n

 

And 
 

Max     Σi∈DDI    𝑙𝑖 +  Σi∈DUI    li̅   +
            Σr∈DO ℎ𝑟 +  Σr∈UO ℎ𝑟̅̅ ̅ +

            Σi∈NDDI  lî +  Σi∈NDUI lĩ    
  s. t             
η1o

∗(yro + Δyro) = ∑  n
j=1 λjyrj − hr ;  r ∈ DO  

 

ζ1o
∗(xio + Δxio) = ∑  n

j=1 λjxij + li; i ∈ DDI  
 

(10–I) 
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η2o
∗(yro + Δyro) = ∑  n

j=1 λjyrj + ℎ𝑟̅̅ ̅; r ∈ UO        

 

 (10 − II) 

ζ2o
∗(xio + Δxio) = ∑  n

j=1 λjxij −  li̅; i ∈ DUI  

 

xio = ∑  n
j=1 λjxij +  lî;    i ∈ NDDI 

xio = ∑  n
j=1 λjxij − lĩ ; i ∈ NDUI  

∑  n
j=1 λj = 1  

λj ≥ 0; j = 1,… , n 

Δ(xik) ∈ Δ
DDI  ;  i ∈ DDI,    k: 1,… , n          

Δ(xik) ∈ Δ
DDI  ; i ∈ DUI,     k: 1, … , n    

Δ(yrk) ∈ Δ
DO   ; r ∈ DO,       k: 1, … , n 

Δ(yrk) ∈ Δ
UO  ; i ∈ UO,       k: 1, . . . , n.  

 

These models are the parametric linear 

program and their optimal solutions are a 

function of Δxo
DDI = (Δxio)i∈DDI, 

Δxo
DUI = (Δxio)i∈DUI, Δyo

DO =
(Δyro)r∈DO, and Δyo

UO = (Δyro)r∈UO.  

Then ρo′ can be obtained as follows:  

𝜌�́� = Σi∈DDI  [  (xio + Δxio)(1 − ζ1o
∗ ) +

li
∗  ]   +   Σi∈DUI  [  (xio + Δxio)(ζ2o

∗ −

1) + li
∗  ]   +  

 Σr∈DO  [  (yro + Δyro)(η1o
∗ − 1) + hr

∗] +

  Σr∈UO  [(yro + Δyro)(1 − η2o
∗ ) + hr

∗  ] +  

Σi∈NDDI    li
∗̂   +   Σi∈NDUI  li

∗̃.               (11)  
 

Theorem 3. Model (2-I) and model(10-I) 

are the feasible and bounded problems. 

Proof: Refer to Section 5. 

 

Conclusion 1. The dual problems of  

models (2-I) and (10-I) have the finite 

optimal solutions.  

In the following, we introduce the 

Theorem 3, which states that the 

mathematical relationship between MPSS 

points corresponding to DMUo, before 

and after resource allocation. 

 

Theorem 4.  

If   ((λj
∗)j=1,...,n; φ1o

∗ ; θ1o
∗ ;   φ2o

∗ ;   θ2o
∗ ) is 

an optimal solution to the model (2-I), 

then for every j = 1, . . . , n, there exists μjo 

such that  

((λĵ
∗
= μjoλj

∗)j=1,...,n; η1o
∗ ; ζ1o

∗ ;  η2o
∗ ;  ζ2o

∗ ) is 

an optimal solution to the model(10-I); 

which is introduced as follows : 

λĵ
∗
= μjoλj

∗    ; j = 1, . . . , n  

η1o
∗ = min

r∈DO
{  
∑  n
j=1 λĵ

∗
yrj

yro + Δyro
}   ;      

 ζ1o
∗ = max

i∈DDI
{  
∑  n
j=1 λĵ

∗
xij

xio+Δxio
}  

η2o
∗ = max

r∈UO
{  
∑  n
j=1 λĵ

∗
yrj

yro + Δyro
}     ;   

  ζ2o
∗ = min

i∈DUI
{  
∑  n
j=1λĵ

∗
xij

xio+Δxio
}.  

 

Proof: Refer to Section 5. 

 

Conclusion 2. Based on Theorem 1, if 

((λj
∗)j=1,…,n; φ1o

∗ ; θ1o
∗ ; φ2o

∗ ; θ2o
∗ ; (tr

∗)r∈DO; 

(si
∗)i∈DDI; (tr

∗
)r∈UO; (si

∗
)i∈DUI; (sî

∗)i∈NDDI; 
(sĩ

∗)i∈NDUI) is an optimal solution to a 

non-Archimedean form of the model(2-I) 

and model (2-II), then: 

((λĵ
∗
)j=1,...,n; η1o

∗ ; ζ1o
∗ ; η2o

∗ ; ζ2o
∗ ; (hr

∗)r∈DO; 

(li
∗)i∈DDI; (hr

∗
)r∈UO; (li

∗
)i∈DUI; (lî

∗
)i∈NDDI;  

(lĩ
∗
)i∈NDUI) is an optimal solution to a 

non-Archimedean form of the model (10-

I) and model(10-II), such that: 

 

tr
∗ = ∑  n

j=1   λj
∗yrj − φ1o

∗   yro;   r ∈ DO     

and  tr
∗
= φ2o

∗  yro − ∑  n
j=1  λj

∗yrj;  r ∈ UO   
 

si
∗ = θ1o

∗   xio − ∑  n
j=1   λj

∗xij; i ∈ DDI   

and  si
∗
= ∑  n

j=1 λj
∗xij − θ2o

∗   xio;   i ∈ DUI  

sî
∗ = xio − ∑  n

j=1   λj
∗xij;     i ∈ NDDIand 

 

hr
∗ =

∑  n
j=1 λj

∗̂yrj − min
r∈DO

{ 
∑  n
j=1λĵ

∗
yrj

yro+Δyro
}} (yro +

Δyro);   r ∈ DO  

hr
∗
= max

r∈UO
{  
∑  n
j=1λĵ

∗
yrj

yro+Δyro
}}  (yro + Δyro) −

∑  n
j=1   λj

∗̂yrj;   r ∈ UO  
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li
∗ = max

i∈DDI
{  
∑  n
j=1λĵ

∗
xij

xio+Δxio
}}  (xio + Δxio) −

∑  n
j=1   λj

∗̂xij;   i ∈ DDI  

 

li
∗
=

∑  n
j=1   λj

∗̂xij − min
i∈DUI

{  
∑  n
j=1 λĵ

∗
xij

xio+Δxio
}}  (xio +

Δxio);   i ∈ DUI  

lî
∗
= xio −∑  n

j=1   λj
∗̂xij;  i ∈ NDDI         

 and   lĩ
∗
= ∑  n

j=1   λj
∗̂xij − xio;   i ∈ NDUI.   

 

Based on Theorem 3 and Conclusion 2, , 

there s no need to solve the parametric 

models(10-I) and (10-II) and by using the 

optimal solution to the models (2-I) and 

(2-II), the resource allocation model (9) is 

as follows: 
Max 

∑  n
k=1 wk  (

[
Σi∈DDI  [xik(1−θ1o

∗ )+si
∗  ]  + 

 Σi∈DUI  [xik(θ2k
∗ −1)+si

∗    ]  
]

[
Σi∈DDI  [  (xik+Δxik)(1−ζ1k

∗ )+li
∗  ] + 

 Σi∈DUI  [  (xik+Δxik)(ζ2k
∗ −1)+li

∗  ]
]

  

 

+

[
Σr∈DO  [yrk(φ1k

∗ − 1) + tr
∗    ]   +

  Σr∈UO  [yrk(1 − φ2k
∗ ) + tr

∗    ]  
]

[
Σr∈DO    [  (yrk + Δyrk)(η1k

∗ − 1) + hr
∗] + 

 Σr∈UO  [  (yrk + Δyrk)(1 − η2k
∗ ) + hr

∗  ]
]

 

 

+
  Σi∈NDDI  si

∗̂   +   Σi∈NDUI  si
∗̃    

Σi∈NDDI  li
∗̂   +   Σi∈NDUI  li

∗̃  
) 

 

S.t. (yrk + Δyrk) ≤ ∑  n
j=1 λj

kyrj          

 ; r ∈ DO, k = 1, . . . , n 

(xik + Δxik) ≥ ∑  n
j=1 λj

kxij         

 ; i ∈ DDI, k = 1, . . . , n  

(yrk + Δyrk) ≥ ∑  n
j=1 λj

kyrj       

 ; r ∈ UO, k = 1, . . . , n  

(xik + Δxik) ≤ ∑  n
j=1 λj

kxij        

 ; i ∈ DUI, k = 1, . . . , n  

xik ≥ ∑  n
j=1 λj

kxij          

; i ∈ NDDI, k = 1, . . . , n  

xik ≤ ∑  n
j=1 λj

kxij          

; i ∈ NDUI, k = 1, . . . , n  

∑  n
j=1 λj

k = 1  ; k = 1, . . . , n  

Σi∈DDI  [xik(1 − θ1o
∗ ) + si

∗  ]  + 

 Σi∈DUI  [xik(θ2k
∗ − 1) + si

∗ ]+ 

Σr∈DO  [yrk(φ1k
∗ − 1) + tr

∗ + 

Σr∈UO  [yrk(1 − φ2k
∗ ) + tr

∗ + 

Σi∈NDDI  si
∗̂   +   Σi∈NDUI  si

∗̃ 

≥ 

Σi∈DDI  [(xik + Δxik)(1 − ζ1k
∗ ) + li

∗  ]  + 

 Σi∈DUI  [  (xik + Δxik)(ζ2k
∗ − 1) + li

∗  ]+ 

Σr∈DO   [  (yrk + Δyrk)(η1k
∗ − 1) + hr

∗]+ 

Σr∈UO  [  (yrk + Δyrk)(1 − η2k
∗ ) + hr

∗  ]+ 

+Σi∈NDDI  li
∗̂   +   Σi∈NDUI  li

∗̃; k = 1, . . . , n 
(Δx1

DDI, Δx2
DDI, . . . , Δxn

DDI) ∈ ΔDDI 
(Δx1

DUI, Δx2
DUI, … , Δxn

DUI) ∈ ΔDUI 
(Δy1

DO, Δy2
DO, . . . , Δyn

DO) ∈ ΔDo 

(Δy1
UO, Δx2

UO, . . . , Δxn
UO) ∈ ΔUO. 

 

Remark 2. Note that the objective 

function of the above model is fractional 

but based on equation (3)  

∑  r∈DO [  yrk(φ1k
∗ − 1) + tr

∗    ]  +
∑  r∈UO   [yrk(1 − φ2k

∗ ) +

tr
∗    ]   ∑  i∈NDDI     si

∗̂   + ∑  i∈NDUI   si
∗̃ = ρk

∗   

 

therefore the numerator of this function is 

a constant value; thus, by considering:  

∑  i∈DDI   [(xik + Δxik)(1 − ζ1k
∗ ) + li

∗  ]   +

Σi∈DUI  [  (xik + Δxik)(ζ2k
∗ − 1) + li

∗  ] +
  ∑  r∈DO     [(yrk + Δyrk)(η1k

∗ − 1) +
hr
∗] +  ∑  r∈UO   [  (yrk + Δyrk)(1 −

η2k
∗ ) + hr

∗  ] + ∑  i∈NDDI   li
∗̂ +

  ∑  i∈NDUI   li
∗̃   = ρ′k , 

 

we can rewrite this model as follows: 

Max ∑  n
k=1 wk  ρ

′
k 

S.t. (yrk + Δyrk) ≤ ∑  n
j=1 λj

kyrj       

 ; r ∈ DO, k = 1, . . . , n 

(xik + Δxik) ≥ ∑  n
j=1 λj

kxij          

; i ∈ DDI, k = 1, . . . , n  

(yrk + Δyrk) ≥ ∑  n
j=1 λj

kyrj        

; r ∈ UO, k = 1, . . . , n  

(yrk + Δyrk) ≥ ∑  n
j=1 λj

kyrj       

 ; r ∈ UO, k = 1, . . . , n  

xik ≥ ∑  n
j=1 λj

kxij         

 ; i ∈ NDDI, k = 1, . . . , n                   (15) 

xik ≤ ∑  n
j=1 λj

kxij           

(14) 

(13) 
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 ; i ∈ NDUI, k = 1, . . . , n  

∑  n
j=1 λj

k = 1;    
k = 1, . . . , n  

ρ′
k
≤ ρk

∗́  

λj
k ≥ 0;     k = 1,… , n 

(Δx1
DDI, Δx2

DDI, . . . , Δxn
DDI) ∈ ΔDDI 

(Δx1
DUI, Δx2

DUI, … , Δxn
DUI) ∈ ΔDUI 

(Δy1
DO, Δy2

DO, . . . , Δyn
DO) ∈ ΔDo 

(Δy1
UO, Δx2

UO, . . . , Δxn
UO) ∈ ΔUO. 

 

Remark 3. For using of formulations 

(13), (14), we can use Theorem 4 and 

replace the amounts of ζ1k
∗ , ζ2k

∗ , η1k
∗ , η2k

∗  

for k = 1, . . . , n in this model.  

However, by considering the sets 

ΔDDI, ΔDUI, ΔDO  and  ΔUO for every 

i ∈ DDI, r ∈ DO,   we have: 

−max
i∈DDI

{
∑  n
j=1μjλj

∗xij

xio+αio
} ≤ −max

i∈DDI
{
∑  n
j=1μjλj

∗xij

xio+Δxio
} ≤

−max
i∈DDI

{
∑  n
j=1μjλj

∗xij

xio+βio
}  

min
r∈DO

{
∑  n
j=1 μjλj

∗yrj

yro + δro
} ≤ min

r∈DO
{
∑  n
j=1 μjλj

∗yrj

yro + Δyro
} 

≤ min
r∈DO

{
∑  n
j=1 μjλj

∗yrj

yro + γro
} 

 

and for every i ∈ DUI, i ∈ UO,   we have: 

min
i∈DUI

{
∑  n
j=1 μjλj

∗xij

xio + β
′
io

} ≤ min
i∈DUI

{
∑  n
j=1 μjλj

∗xij

xio + Δxio
}  

≤ min
i∈DUI

{
∑  n
j=1 μjλj

∗xij

xio + α
′
io

} 

−max
r∈UO

{
∑  n
j=1 μjλj

∗yrj

yro + γ
′
ro

} ≤ 

−max
r∈UO

{
∑  n
j=1 μjλj

∗yrj

yro + Δyro
} 

≤ −max
r∈UO

{
∑  n
j=1 μjλj

∗yrj

yro + δ′ro
}. 

 

Then, for achieving the minimum value's 

objective function of model (12), we 

replace (−ζ1o
∗ ) with 

(−maxi∈DDI{
∑  n
j=1μjλj

∗xij

xio+αio
}) and (η1o

∗ ) with 

(minr∈DO{
∑  n
j=1μjλj

∗yrj

yro+δro
}) and (ζ2o

∗ ) with 

(mini∈DUI{
∑  n
j=1μjλj

∗xij

xio+β′io
}) and (−η2o

∗ ) with 

(−maxr∈UO{
∑  n
j=1μjλj

∗yrj

yro+γ′ro
}).  

 

4. Application Examples:  
In this section the proposed method in 

Section 3 is used for allocating resources 

in two real world situations. In one of 

these examples, there are data of desirable 

and undesirable type and in the other 

example in addition to these types, some 

of the data are of discretionary and non 

discretionary type. 

 

Example 1: 
Here, we illustrate the resource allocation 

method discussed in this paper through 

the analysis data from petroleum 

companies. The data set consists of 20 gas 

companies located in 18 regions in Iran. 

The data for this analysis are derived 

from operations during 2005. There are 

six variables from the data set as inputs 

and outputs in this example. Inputs 

include capital (x1), number of staff (x2), 

and operational costs (excluding staff 

costs) (x3) and outputs include number of 

subscribers (y1), length of gas network 

(y2) and the sold-out gas income (y3). 

Table 1 contains a listing of the original 

data.  
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Table1:Dat a of Inputs and outputs for  Iranian gascompanies  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There is central company (DM) which 

supervises the above gas companies. This 

company has a notable additional capital 

and staff. The amount of additional 

capital is 15000 and the number of 

additional staff is 300. The central 

company wants to allocate them to those 

companies so that the number of 

subscribers reaches 500684 and the 

amounts of sold-out gas income reaches 

2936415. The proposed method is  

 applied in order to determine the 

contribution of each of company. 

Here one must note that some data are 

desirable and others are undesirable. For 

example capital and operational costs are 

discretionary desirable input and non 

discretionary desirable input,respectively. 

Also, the number of staff is undesirable 

Input because one of the DM's aims is to 

help solve the unemployment issue and 

the number of subscribers and sold-out 

gas income are desirable outputs but the 

length of gas network is undesirable 

output. 

First the model (2 − I) is solved and the 

following results are achieved: (Table2)  
 

  

DMU 𝑥1 𝑥2 𝑥3 𝑦1 𝑦2 𝑦3 
1 124313 129 198598 30242 565 61836 

2 67545 117 131649 14139 153 46233 

3 47208 165 228730 13505 211 42094 

4 43494 106 165470 8508 114 44195 

5 48308 141 180866 7478 248 45841 

6 55959 146 194470 10818 230 136513 

7 40605 145 179650 6422 127 70380 

8 61402 87 94226 18260 182 36592 

9 87950 104 91461 22900 170 47650 

10 33707 114 88640 3326 85 13410 

11 100304 254 292995 14780 318 79833 

12 94286 105 98302 19105 273 32553 

13 67322 224 287042 15332 241 172316 

14 102045 104 155514 18082 441 30004 

15 177430 401 528325 77564 801 201529 

16 221338 1094 1186905 44136 803 840446 

17 267806 1079 1323325 27690 251 832616 

18 160912 444 648685 45882 816 251770 

19 177214 801 909539 72676 654 34158 

20 146325 686 545115 19839 177 341585 
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Table2: The results of model (2 − I) 
   

 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Now, by applying Theorem 4 we obtain 

μjo
∗  and then the λĵ

∗
 are achieved as 

follows: 

λĵ
∗
= {

0.99 ; j = 10
0 ; j = 10        For  o = 1; 

λĵ
∗
= {

0.97 ; j = 10
0 ; j = 10        For  o = 2 

λĵ
∗
= {

1.004 ; j = 10
0 ; j = 10     For  o = 3; 

λĵ
∗
= {

0.63 ; j = 9
0.37 ; j = 10
0 ; j = 10,9

   For  o = 4 

λĵ
∗
= {

0.562 ; j = 9
0.454 ; j = 10
0 ; j = 10,9

For o = 5; 

λĵ
∗
= {

0.99 ; j = 10
0 ; j = 10         For  o = 6 

λĵ
∗
= {

0.043 ; j = 9
0.973 ; j = 10
0 ; j = 10,9

For o = 7; 

λĵ
∗
= {

0.95 ; j = 10
0 ; j = 10         For  o = 8 

λĵ
∗
= {

0.98 ; j = 10
0 ; j = 10        For  o = 9; 

 λĵ
∗
= {

1 ; j = 10
0 ; j = 10         For  o = 10 

λĵ
∗
= {

0.99 ; j = 9
0 ; j = 9      For o = 11; 

λĵ
∗
= {

0.99 ; j = 9
0 ; j = 9         For  o = 12 

λĵ
∗
= {

0.99 ; j = 10
0 ; j = 10     For  o = 13; 

λĵ
∗
= {

1 ; j = 9
0 ; j = 9         For  o = 14 

DMU 𝜑1𝑘 𝜃1𝑘 𝜑2𝑘 𝜃2𝑘 
1 0.24151 0.48936 0.18967 1.95175 
2 0.34528 0.65612 0.61221 1.4349 
3 1.1226 1.2147 0.86304 1.4014 
4 1.9473 1.8704 1.2782 1.9153 
5 2.0524 1.6632 0.56955 1.5853 

6 0.65558 1.0689 0.46230 1.6891 
7 1.1361 1.4290 0.83687 1.5695 

8 0.19321 0.57140 0.50334 1.1301 
9 0.14970 0.39117 0.50334 1.1301 

10 1 1 1 1 
11 1.8896 1.1112 0.71563 1.2670 
12 1.1962 0.94214 0.62310 1.0741 

13 0.82394 1.1767 0.6085 1.5369 
14 1.2426 0.94265 0.38773 1.79014 
15 0.24795 0.80135 0.21675 1.6583 
16 0.83067 1.0842 0.41239 0.91003 
17 1 1 1 1 
18 0.75967 0.95507 0.38304 1.6187 
19 0.27298 0.84967 0.27064 0.85643 

20 1 1 1.475 1 
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λĵ
∗
= {

1 ; j = 10
0 ; j = 10         For  o = 15; 

λĵ
∗
= {

1.02 ; j = 19
0.511 ; j = 20
0 ; j = 19,20

Foro = 16 

λĵ
∗
= {

1 ; j = 17
0 ; j = 17     For  o = 17; 

λĵ
∗
= {

1 ; j = 20
0 ; j = 20         For  o = 18 

λĵ
∗
= {

1.18 ; j = 20
0 ; j = 20    For  o = 19; 

λĵ
∗
= {

1 ; j = 20
0 ; j = 20         For  o = 20 

and we have: (Table3) 
and according to Conclusion 2 and 

Remark 3, we obtain h1
∗ , h2

∗
, h3

∗  and l1
∗ , 

l2
∗ ,l̂3
∗ . Then we replace these parameters in 

the model (15), the following results are 

achieved: (Table4) 
 

 

 
 

Table3: Efficien cyscores for DMUs afterre source allocation DMU  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

DMU 𝜂1𝑘 𝜂2𝑘 𝜁1𝑘 𝜁2𝑘 
1 0.54 0.16 0.27 0.25 
2 0.61 0.75 0.49 0.25 
3 0.064 0.51 0.72 0.23 
4 0.165 1.94 1.57 0.25 
5 0.154 0.65 1.34 0.24 
6 0.044 0.45 0.6 0.24 
7 0.014 1.07 0.91 0.24 
8 0.062 0.58 0.52 0.26 
9 0.060 0.65 0.38 0.26 

10 0.074 2 1.005 0.26 
11 0.192 0.62 0.88 0.18 
12 0.235 0.73 0.93 0.24 
13 0.039 0.43 0.5 0.21 
14 0.24 0.43 0.86 0.24 
15 0.031 0.11 0.19 0.14 
16 0.52 1 1.16 0.82 
17 0.47 1.2 1 0.77 
18 0.26 0.23 0.91 0.89 
19 0.23 0.34 0.98 0.83 
20 0.39 1.32 1 0.8 
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Table4:Data of additional inputs and additional outputs for DMUs DMU 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to the optimal resource 

allocation plan, company 17 and company 

10 will receive less resources than the 

other companies because these units are 

more efficient than the other DMUs. 

 

Example 2: A manufacturer of 

agricultural products manages three 

farms. These farms consume resources 

such as land, seeds, animal manure, 

carbon monoxide (co), which is a toxic 

gases and etc to produce several types of 

fruits and vegetables. The information of 

these farms, such as the quantities of 

consumed resources and produced 

products, is introduced in Table 5.  

 

 

 
Table5: Consumed inputs and produced outputs of the farms farm1 

 

 

 

 

 

 

 

 

 

 

 

 
 

DMU Δx1k Δx2k Δy1k Δy2k Δy3k 
1 402.8 54.36722 0 0 26726.38 

2 887.15 25.16787 2985.19 7.303861 1552.059 

3 887.15 5.797695 144.9329 0 2391.259 

4 887.15 60.58406 0 15.55526 0 

5 887.15 2.394052 1717.488 0 18906.59 

6 887.15 0 0 0 0 

7 887.15 1.011556 0 109654.4 0 

8 887.15 0.6775440 152.3884 0 423.7117 

9 887.15 0 0 0 0 

10 0 0 0 0 0 

11 887.15 0 0 84248.1 0 

12 887.15 0 0 486754.3 0 

13 0 0 0 0 0 

14 887.15 0 0 1243889 0 

15 887.15 150 5000 0 50000 

16 887.15 0 0 819897.6 0 

17 402.8 0 0 0 0 

18 887.15 0 0 1047185 0 

19 887.15 0 0 6461624 0 

20 887.15 0 0 0 0 

 farm1 farm2 farm3 

land(m2) 100 150 200 

Seeds (kg) 12 17 20 

rainfall(mm) 30 20 18 

Car bonmonoxide(m3) 1 1.5 2 

animalmanure(kg) 5 8 12 

desirablefruits(kg) 20 28 32 

undesirablefruits(kg) 3 4 5 

Desirablevegetables(kg) 15 20 28 

undesirablefruits(kg) 2 3 2 
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This manufacturer has a significant 

manure and seeds excess. The DM wants 

to allocate them to the farms so that the 

production level reaches a special level. 

This paper's method is applied to 

determine the allocation resources to each 

farm. 

For this aim, we consider the farms as 

DMUs; the land, seeds, animal manure 

and carbon monoxide (co) are considered 

as inputs and the produced products are 

assumed as outputs. Note that some data 

are desirable and others are undesirable. 

Also two classes for inputs can be 

considered: discretionary and non 

discretionary inputs. The decomposition 

of data is as follows: (Table6) 
The manufacturer expresses the following 

conditions for resource allocation:  

𝛥𝐷𝐷𝐼 = {(𝛥𝑥𝑖1, 𝛥𝑥𝑖2, 𝛥𝑥𝑖3); 

−0.4𝑥𝑖𝑘 ≤ 𝛥𝑥𝑖𝑘 ≤ 0.5𝑥𝑖𝑘; 
𝑘 = 1,2,3; 𝑖 = 1,2; 
∑  3
𝑘=1 𝛥𝑥1𝑘 = 120    ∑  3

𝑘=1 𝛥𝑥2𝑘 = 10}  
𝛥𝐷𝑈𝐼 = {(𝛥𝑥51, 𝛥𝑥52, 𝛥𝑥53); 
−0.2𝑥5𝑘 ≤ 𝛥𝑥5𝑘 ≤ 0.3𝑥5𝑘; 𝑘 = 1,2,3; 
∑  3
𝑘=1 𝛥𝑥5𝑘 = 2}  

𝛥𝐷𝑂 = {(𝛥𝑦𝑟1, 𝛥𝑦𝑟2, 𝛥𝑦𝑟3); 
−0.2𝑦𝑟𝑘 ≤ 𝛥𝑦𝑟𝑘 ≤ 0.3𝑦𝑟𝑘; 
𝑘 = 1,2,3;   𝑟 = 1,3; 
∑  3
𝑘=1 𝛥𝑦1𝑘 = 8    ∑  3

𝑘=1 𝛥𝑦3𝑘 = 5}  
𝛥𝑈𝑂 = {(𝛥𝑦𝑟1, 𝛥𝑦𝑟2, 𝛥𝑦𝑟3);  
−0.1𝑦𝑟𝑘 ≤ 𝛥𝑦𝑟𝑘 ≤ 0.3y𝑟𝑘; 
𝑘 = 1,2,3;   𝑟 = 2,4; 
∑  3
𝑘=1 𝛥𝑦2𝑘 = 2    ∑  3

𝑘=1 𝛥𝑦4𝑘 = 2}.  
 

After applying the algorithm which is 

proposed in this paper, the following 

results are achieved. (Table7)  

 

Table6: The decomposed data 
𝐃𝐢𝐬𝐜𝐫𝐞𝐭𝐢𝐨𝐧𝐚𝐫𝐲𝐃𝐞𝐬𝐢𝐫𝐚𝐛𝐥𝐞           land and 

𝐈𝐧𝐩𝐮𝐭𝐬(𝐃𝐃𝐈)                                     seeds 

 

  

𝐍𝐨𝐧𝐝𝐢𝐬𝐜𝐫𝐞𝐭𝐢𝐨𝐧𝐚𝐫𝐲 𝐃𝐞𝐬𝐢𝐫𝐚𝐛𝐥𝐞 

𝐈𝐧𝐩𝐮𝐭(𝐍𝐃𝐈)                                    rainfall 

 

  

𝐃𝐢𝐬𝐜𝐫𝐞𝐭𝐢𝐨𝐧𝐚𝐫𝐲 𝐔𝐧𝐝𝐞𝐬𝐢𝐫𝐚𝐛𝐥𝐞 

𝐈𝐧𝐩𝐮𝐭(𝐃𝐔𝐈)                                        𝐚𝐧𝐢𝐦𝐚𝐥                                                          
manure 

 

  

𝐍𝐨𝐧𝐝𝐢𝐬𝐜𝐫𝐞𝐭𝐢𝐨𝐧𝐚𝐫𝐲𝐔𝐧𝐝𝐞𝐬𝐢𝐫𝐚𝐛𝐥𝐞 

𝐈𝐧𝐩𝐮𝐭(𝐍𝐔𝐈)                                            co 

 

  

𝐔𝐧𝐝𝐞𝐬𝐢𝐫𝐚𝐛𝐥𝐞𝐎𝐮𝐭𝐩𝐮𝐭(𝐃𝐎) 
𝐔𝐧𝐝𝐞𝐬𝐢𝐫𝐚𝐛𝐥𝐞  𝐟𝐫𝐮𝐢𝐭𝐬  𝐚𝐧𝐝 𝐯𝐞𝐠𝐞𝐭𝐚𝐛𝐥𝐞𝐬 

 

  

 

Table7: The result of the propose 
 

 

 

 

 

 

 

 

 

 

 farm1 farm2 farm3 

ΔDDIland(m2) 120 0 0 

ΔDDISeeds (kg) 9 1 0 

ΔDUIanimalmanure(kg) 0 2 0 

ΔDO desirablefruits(kg) 2 6 0 

ΔUOundesirablefruits(kg) 2 0 0 

ΔDOdesirablevegetables(kg) 0.5 4.5 0 

ΔUOundesirablevegetables(kg) 1.5 0.5 0 
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5. Appendix 

In this section Theorem 3 and Theorem 4 

which were introduced in Section 3 are 

proved. 

 

Proof of Theorem 3: Suppose that: 

𝜆𝑗 = {
0   ; 𝑗 ≠ 𝑜
1   ; 𝑗 = 𝑜

 

𝜂1𝑜 = 𝜁2𝑜 = 0 

and  

𝜁1𝑜 = 𝑚𝑎𝑥
𝑖∈𝐷𝐷𝐼

{
𝑥𝑖𝑜

𝑥𝑖𝑜 + 𝛥𝑥𝑖𝑜
}   ,   

𝜂2𝑜 = 𝑚𝑎𝑥
𝑟∈𝑈𝑂

{
𝑦𝑟𝑜

𝑦𝑟𝑜 + 𝛥𝑦𝑟𝑜
}. 

 

 

This is a feasible solution to the 

model(10-I). On the other hand, the 

constraints of model(10-I) imply that 

there is an upper bound for the amount of 

objective function in every feasible 

solutions of model (10-I), as follows: 

𝜂1𝑜 − 𝜁1𝑜 − 𝜂2𝑜 + 

𝜁2𝑜 ≤ 𝑚𝑖𝑛
𝑟∈𝐷𝑂

{
∑  𝑛
𝑗=1 𝜆𝑗𝑦𝑟𝑗

𝑦𝑟𝑜 + 𝛥𝑦𝑟𝑜
} 

−𝑚𝑎𝑥
𝑖∈𝐷𝐷𝐼

{
∑  𝑛
𝑗=1 𝜆𝑗𝑥𝑖𝑗

𝑥𝑖𝑜 + 𝛥𝑥𝑖𝑜
} 

−𝑚𝑎𝑥
𝑟∈𝑈𝑂

{
∑  𝑛
𝑗=1 𝜆𝑗𝑦𝑟𝑗

𝑦𝑟𝑜 + 𝛥𝑦𝑟𝑜
} 

+𝑚𝑖𝑛
𝑖∈𝐷𝑈𝐼

{
∑  𝑛
𝑗=1 𝜆𝑗𝑥𝑖𝑗

𝑥𝑖𝑜 + 𝛥𝑥𝑖𝑜
}. 

 

Therefore model (10-I) is a bounded 

problem. Similarly, it can be shown that 

model (2-I) is also feasible and bounded.  

 

Proof of Theorem 4. Suppose that set 

𝐽 = {1, . . . . , 𝑛} is decomposed as follows: 
𝐽 = 𝐽1⋃  𝐽2  
such that: 

𝐽1 = {𝑗 ∈ 𝐽| 𝑚𝑎𝑥
𝑖∈𝑁𝐷𝑈𝐼

{
𝑥𝑖𝑜
𝑥𝑖𝑗
} ≤ 𝑚𝑖𝑛

𝑖∈𝑁𝐷𝐷𝐼
{
𝑥𝑖𝑜
𝑥𝑖𝑗
}}. 

 

Note that if 𝑁𝐷𝑈𝐼 = ∅ then 𝐽1 = 𝐽 and 

𝐽2 = 𝐽. 
 

 

and 

𝐽2 = {𝑗 ∈ 𝐽| 𝑚𝑎𝑥
𝑖∈𝑁𝐷𝑈𝐼

{
𝑥𝑖𝑜
𝑥𝑖𝑗
} > 𝑚𝑖𝑛

𝑖∈𝑁𝐷𝐷𝐼
{
𝑥𝑖𝑜
𝑥𝑖𝑗
}}. 

 

Set 𝐽3 = {𝑗 ∈ 𝐽1|𝑚𝑎𝑥𝑖∈𝑁𝐷𝑈𝐼{
𝑥𝑖𝑜

𝑥𝑖𝑗
} +

𝑚𝑖𝑛𝑖∈𝑁𝐷𝐷𝐼{
𝑥𝑖𝑜

𝑥𝑖𝑗
} > 1}. 𝐽3 ≠ ∅, Because 

𝑜 ∈ 𝐽3, for 𝑗 = 1, . . . , 𝑛, 𝜇𝑗 can be defined 

as follows: 
𝜇𝑗𝑜

=

{
 
 

 
 

𝑚𝑎𝑥
𝑖∈𝑁𝐷𝑈𝐼

{
𝑥𝑖𝑜

𝑥𝑖𝑗
} + 𝑚𝑖𝑛

𝑖∈𝑁𝐷𝐷𝐼
{
𝑥𝑖𝑜

𝑥𝑖𝑗
}

∑  𝑗∈𝐽3 ( 𝑚𝑎𝑥𝑖∈𝑁𝐷𝑈𝐼
{
𝑥𝑖𝑜

𝑥𝑖𝑗
} + 𝑚𝑖𝑛

𝑖∈𝑁𝐷𝐷𝐼
{
𝑥𝑖𝑜

𝑥𝑖𝑗
})𝜆𝑗

∗
; 𝑗 ∈ 𝐽3

0; 𝑗 ∈ 𝐽 − 𝐽3

 

 

Here, we will show that ((𝜆�̂�
∗
=

𝜇𝑗𝑜𝜆𝑗
∗)𝑗=1,...,𝑛; 𝜂1𝑜

∗ ; 𝜁1𝑜
∗ ;   𝜂2𝑜

∗ ;   𝜁2𝑜
∗ ) is a 

feasible solution to model(10-I). For this 

aim, we are going to investigate the 

constraints of model(10-I). 

 

We note that for 𝑗 ∈ 𝐽3,  

𝜇𝑗𝑜 =
𝑚𝑎𝑥
𝑖∈𝑁𝐷𝑈𝐼

{
𝑥𝑖𝑜

𝑥𝑖𝑗
} + 𝑚𝑖𝑛

𝑖∈𝑁𝐷𝐷𝐼
{
𝑥𝑖𝑜

𝑥𝑖𝑗
}

∑  𝑗∈𝐽3 ( 𝑚𝑎𝑥𝑖∈𝑁𝐷𝑈𝐼
{
𝑥𝑖𝑜

𝑥𝑖𝑗
} + 𝑚𝑖𝑛

𝑖∈𝑁𝐷𝐷𝐼
{
𝑥𝑖𝑜

𝑥𝑖𝑗
})𝜆𝑗

∗
 

=

𝑚𝑎𝑥
𝑖∈𝑁𝐷𝑈𝐼

{
𝑥𝑖𝑜
𝑥𝑖𝑗

}+ 𝑚𝑖𝑛
𝑖∈𝑁𝐷𝐷𝐼

{
𝑥𝑖𝑜
𝑥𝑖𝑗

}

∑  𝑗∈𝐽3 𝜆𝑗
∗

∑  𝑗∈𝐽3 ( 𝑚𝑎𝑥𝑖∈𝑁𝐷𝑈𝐼
{
𝑥𝑖𝑜
𝑥𝑖𝑗

}+ 𝑚𝑖𝑛
𝑖∈𝑁𝐷𝐷𝐼

{
𝑥𝑖𝑜
𝑥𝑖𝑗

})𝜆𝑗
∗

∑  𝑗∈𝐽3 𝜆𝑗
∗

. 

 

Based on the definition of 𝐽3 and that 

((𝜆𝑗
∗)𝑗=1,...,𝑛; 𝜑1𝑜

∗ ; 𝜃1𝑜
∗ ;   𝜑2𝑜

∗ ;   𝜃2𝑜
∗ ) being 

an optimal solution to the model (2-I), we 

know that:  

∑  𝑗∈𝐽3
( 𝑚𝑎𝑥
𝑖∈𝑁𝐷𝑈𝐼

{
𝑥𝑖𝑜

𝑥𝑖𝑗
} + 𝑚𝑖𝑛

𝑖∈𝑁𝐷𝐷𝐼
{
𝑥𝑖𝑜

𝑥𝑖𝑗
})𝜆𝑗

∗

∑  𝑗∈𝐽3 𝜆𝑗
∗ > 1 

 

and this implies that for every 𝑗 ∈ 𝐽3, 

𝑚𝑎𝑥𝑖∈𝑁𝐷𝑈𝐼{
𝑥𝑖𝑜
𝑥𝑖𝑗
}

∑  𝑗∈𝐽3 𝜆𝑗
∗ ≤ 𝜇𝑗𝑜 ≤

𝑚𝑖𝑛𝑖∈𝑁𝐷𝐷𝐼{
𝑥𝑖𝑜
𝑥𝑖𝑗
}

∑  𝑗∈𝐽3 𝜆𝑗
∗ . 

For every 𝑖 ∈ 𝑁𝐷𝐷𝐼, we have: 
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∑  𝑛
𝑗=1 𝜆�̂�

∗
𝑥𝑖𝑗 = ∑  𝑛

𝑗=1 𝜇𝑗𝑜𝜆𝑗
∗𝑥𝑖𝑗 =

∑  𝑗∈𝐽3 𝜇𝑗𝑜𝜆𝑗
∗𝑥𝑖𝑗 ≤ ∑  𝑗∈𝐽3

𝑚𝑖𝑛
𝑖∈𝑁𝐷𝐷𝐼

{
𝑥𝑖𝑜
𝑥𝑖𝑗
}

∑  𝑗∈𝐽3 𝜆𝑗
∗ 𝜆𝑗

∗𝑥𝑖𝑗  

≤
1

∑  𝑗∈𝐽3 𝜆𝑗
∗∑  

𝑗∈𝐽3

𝑥𝑖𝑜
𝑥𝑖𝑗

𝜆𝑗
∗𝑥𝑖𝑗 ≤

𝑥𝑖𝑜
∑  𝑗∈𝐽3 𝜆𝑗

∗∑  

𝑗∈𝐽3

𝜆𝑗
∗

= 𝑥𝑖𝑜 . 
 

Similarly, for every 𝑖 ∈ 𝑁𝐷𝑈𝐼, we have: 

∑ 

𝑛

𝑗=1

𝜆�̂�
∗
𝑥𝑖𝑗 =∑ 

𝑛

𝑗=1

𝜇𝑗𝑜𝜆𝑗
∗𝑥𝑖𝑗 = ∑  

𝑗∈𝐽3

𝜇𝑗𝑜𝜆𝑗
∗𝑥𝑖𝑗

≥ ∑  

𝑗∈𝐽3

𝑚𝑎𝑥
𝑖∈𝑁𝐷𝑈𝐼

{
𝑥𝑖𝑜

𝑥𝑖𝑗
}

∑  𝑗∈𝐽3 𝜆𝑗
∗ 𝜆𝑗

∗𝑥𝑖𝑗 

≥
1

∑  𝑗∈𝐽3 𝜆𝑗
∗∑  

𝑗∈𝐽3

𝑥𝑖𝑜
𝑥𝑖𝑗

𝜆𝑗
∗𝑥𝑖𝑗 ≥

𝑥𝑖𝑜
∑  𝑗∈𝐽3 𝜆𝑗

∗∑  

𝑗∈𝐽3

𝜆𝑗
∗

= 𝑥𝑖𝑜 . 
 

For every 𝑟 ∈ 𝐷𝑂:  

𝜂1𝑜
∗ (𝑦𝑟𝑜 + 𝛥𝑦𝑟𝑜) = 𝑚𝑖𝑛

𝑟∈𝐷𝑂
{  
∑  𝑛
𝑗=1 𝜆�̂�

∗
𝑦𝑟𝑗

𝑦𝑟𝑜 + 𝛥𝑦𝑟𝑜
}(𝑦𝑟𝑜

+ 𝛥𝑦𝑟𝑜)

≤
∑  𝑛
𝑗=1 𝜆�̂�

∗
𝑦𝑟𝑗

𝑦𝑟𝑜 + Δ𝑦𝑟𝑜
(𝑦𝑟𝑜 + 𝛥𝑦𝑟𝑜)

=∑  

𝑛

𝑗=1

𝜆�̂�
∗
𝑦𝑟𝑗 

and for every 𝑖 ∈ 𝐷𝐷𝐼:  

𝜁1𝑜
∗ (𝑥𝑖𝑜 + 𝛥𝑥𝑖𝑜) = 𝑚𝑎𝑥

𝑖∈𝐷𝐷𝐼
{  
∑  𝑛
𝑗=1 𝜆�̂�

∗
𝑥𝑖𝑗

𝑥𝑖𝑜 + 𝛥𝑥𝑖𝑜
}(𝑥𝑖𝑜

+ 𝛥𝑥𝑖𝑜)

≥
∑  𝑛
𝑗=1 𝜆�̂�

∗
𝑥𝑖𝑗

𝑥𝑖𝑜 + 𝛥𝑥𝑖𝑜
(𝑥𝑖𝑜 + 𝛥𝑥𝑖𝑜)

=∑  

𝑛

𝑗=1

𝜆�̂�
∗
𝑥𝑖𝑗 . 

For 𝑟 ∈ 𝑈𝑂:  

𝜂2𝑜
∗ (𝑦𝑟𝑜 + 𝛥𝑦𝑟𝑜) = 𝑚𝑎𝑥

𝑟∈𝑈𝑂
{  
∑  𝑛
𝑗=1 𝜆�̂�

∗
𝑦𝑟𝑗

𝑦𝑟𝑜 + 𝛥𝑦𝑟𝑜
}(𝑦𝑟𝑜

+ 𝛥𝑦𝑟𝑜)

≥
∑  𝑛
𝑗=1 𝜆�̂�

∗
𝑦𝑟𝑗

𝑦𝑟𝑜 + 𝛥𝑦𝑟𝑜
(𝑦𝑟𝑜 + 𝛥𝑦𝑟𝑜)

=∑  

𝑛

𝑗=1

𝜆�̂�
∗
𝑦𝑟𝑗 

and for every 𝑖 ∈ 𝐷𝑈𝐼:  

𝜁2𝑜
∗ (𝑥𝑖𝑜 + 𝛥𝑥𝑖𝑜) = 𝑚𝑖𝑛

𝑖∈𝐷𝑈𝐼
{  
∑  𝑛
𝑗=1 𝜆�̂�

∗
𝑥𝑖𝑗

𝑥𝑖𝑜 + 𝛥𝑥𝑖𝑜
}(𝑥𝑖𝑜

+ 𝛥𝑥𝑖𝑜)

≤
∑  𝑛
𝑗=1 𝜆�̂�

∗
𝑥𝑖𝑗

𝑥𝑖𝑜 + 𝛥𝑥𝑖𝑜
}(𝑥𝑖𝑜 + 𝛥𝑥𝑖𝑜)

≤ ∑ 

𝑛

𝑗=1

𝜆�̂�
∗
𝑥𝑖𝑗 

and it is clear that: 

𝜇𝑗𝑜 ≥ 0; 𝑗 = {1,2, . . . , 𝑛}      𝑎𝑛𝑑    ∑  

𝑛

𝑗=1

𝜆𝑗
∗̂

= ∑  

𝑗∈𝐽3

𝜆𝑗
∗̂ = 1. 

 

Then 𝜆�̂�
∗
= 𝜇𝑗𝑜𝜆𝑗

∗)𝑗=1,...,𝑛; 𝜂1𝑜
∗ ; 𝜁1𝑜

∗ ;   𝜂2𝑜
∗ ;   𝜁2𝑜

∗ ) 

is a feasible solution to the model (10-I). 

Now, suppose that 

((𝜆�̂�𝑗=1,...,𝑛
∗∗

; 𝜂1𝑜
∗∗ ; 𝜁1𝑜

∗∗;   𝜂2𝑜
∗∗ ;   𝜁2𝑜

∗∗) is an 

optimal solution to the model(10-I), then 

we have: 

𝜂1𝑜
∗∗ ≥ 𝜂1𝑜

∗ ,    𝜁1o
∗∗ ≤ 𝜁1𝑜

∗ ,    
 𝜂2𝑜
∗∗ ≤ 𝜂2𝑜

∗ ,    ; 𝜁2𝑜
∗∗ ≥ 𝜁2𝑜

∗ . 
In the following, we will show that:  

𝜂1𝑜
∗∗ ≤ 𝜂1𝑜

∗ , 𝜁1𝑜
∗∗ ≥ 𝜁1𝑜

∗ ,  
   𝜂2𝑜

∗∗ ≥ 𝜂2𝑜
∗ ,    ;   𝜁2𝑜

∗∗ ≤ 𝜁2𝑜
∗  

which implies that:  
𝜂1𝑜
∗∗ = 𝜂1𝑜

∗ , 𝜁1𝑜
∗∗ = 𝜁1𝑜

∗ , 𝜂2𝑜
∗∗ = 𝜂2𝑜

∗ , 𝜁2𝑜
∗∗ = 𝜁2𝑜

∗ . 

or in other words ((𝜆�̂�
∗
= 𝜇𝑗𝑜𝜆𝑗

∗)𝑗=1,…,𝑛; 𝜂1𝑜
∗ ; 

𝜁1𝑜
∗ ;   𝜂2𝑜

∗ ;   𝜁2𝑜
∗ ) is an optimal solution to 

the model(2-I). For this aim, we first 

prove that  

2 −𝑚𝑎𝑥
𝑟∈𝐷𝑂

{
𝑦𝑟𝑜

∑  𝑛
𝑗=1 𝜆𝑗

∗𝑦𝑟𝑗
}𝜑1𝑜

∗ = 1    𝑎𝑛𝑑 

2 − 𝑚𝑖𝑛
𝑟∈𝑈𝑂

{
𝑦𝑟𝑜

∑  𝑛
𝑗=1 𝜆𝑗

∗𝑦𝑟𝑗
}𝜑2𝑜

∗ = 1 

2 − 𝑚𝑖𝑛
𝑖∈𝐷𝐷𝐼

{
𝑥𝑖𝑜

∑  𝑛
𝑗=1 𝜆𝑗

∗𝑥𝑖𝑗
} 𝜃1𝑜

∗ = 1  𝑎𝑛𝑑 

2 − 𝑚𝑎𝑥
𝑖∈𝐷𝑈𝐼

{
𝑥𝑖𝑜

∑  𝑛
𝑗=1 𝜆𝑗

∗𝑥𝑖𝑗
}𝜃2𝑜

∗ = 1 

 

because 

((𝜆𝑗
∗)𝑗=1,...,𝑛; 𝜑1𝑜

∗ ; 𝜃1𝑜
∗ ;   𝜑2𝑜

∗ ;   𝜃2𝑜
∗ ) is an 

optimal solution to the model(2-I), then 

we have: 

𝜑1𝑜
∗ 𝑦𝑟𝑜 ≤∑ 

𝑛

𝑗=1

𝜆𝑗
∗𝑦𝑟𝑗 ;   𝑟 ∈ 𝐷𝑂 
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𝜃1𝑜
∗ 𝑥𝑖𝑜 ≥∑ 

𝑛

𝑗=1

𝜆𝑗
∗𝑥𝑖𝑗   ;   𝑖 ∈ 𝐷𝐷𝐼 

𝜑2𝑜
∗ 𝑦𝑟𝑜 ≥∑ 

𝑛

𝑗=1

𝜆𝑗
∗𝑦𝑟𝑗   ;   𝑟 ∈ 𝑈𝑂 

𝜃2𝑜
∗ 𝑥𝑖𝑜 ≤∑ 

𝑛

𝑗=1

𝜆𝑗
∗𝑥𝑖𝑗     𝑖 ∈ 𝐷𝑈𝐼 

 

But by using the complementary theorem, 

there exists 𝑘1 ∈ 𝐷𝑂, 𝑘2 ∈ 𝐷𝐷𝐼, 𝑘3 ∈ 𝑈𝑂 

and 𝑘4 ∈ 𝐷𝑈𝐼 such that: 

𝜑1𝑜
∗ 𝑦 𝑘1𝑜 =∑ 

𝑛

𝑗=1

𝜆𝑗
∗𝑦 𝑘1𝑗

 

𝜃1𝑜
∗ 𝑥 𝑘2𝑜 =∑ 

𝑛

𝑗=1

𝜆𝑗
∗𝑥 𝑘2𝑗

 

𝜑2𝑜
∗ 𝑦 𝑘3𝑜 =∑ 

𝑛

𝑗=1

𝜆𝑗
∗𝑦 𝑘3𝑗

 

𝜃2𝑜
∗ 𝑥 𝑘4𝑜 =∑ 

𝑛

𝑗=1

𝜆𝑗
∗𝑥 𝑘4𝑗

 

 

because if, for example, there is no 

binding constraint of 𝑟 ∈ 𝐷𝑂 in the 

optimal solution, then their corresponding 

dual variables(𝛾𝑟; 𝑟 ∈ 𝐷𝑂) will be zero 

and the constraint corresponding 𝜑1𝑜 in 

the dual problem to the model(2-I) will be 

as follows: 

 

∑  

𝑟∈𝐷𝑂

(𝛾𝑟𝑦𝑟𝑜) = 1 

or in other words 0 = 1 and this is a 

contradiction. Similarly, we can show that 

there exist 𝑘2 ∈ 𝐷𝐷𝐼, 𝑘3 ∈ 𝑈𝑂 and 

𝑘4 ∈ 𝐷𝑈𝐼. However, based on the above 

explanations , it is obvious that: 
𝑦 𝑘1𝑜

∑  𝑛
𝑗=1 𝜆𝑗

∗𝑦 𝑘1𝑗
𝜑1𝑜
∗ = 𝑚𝑎𝑥

𝑟∈𝐷𝑂

𝑦𝑟𝑜
∑  n
𝑗=1 𝜆𝑗

∗𝑦𝑟𝑗
𝜑1𝑜
∗   , 

 
𝑥 𝑘2𝑜

∑  𝑛
𝑗=1 𝜆𝑗

∗𝑥 𝑘2𝑗
𝜃1𝑜
∗ = 𝑚𝑖𝑛

𝑖∈𝐷𝐷𝐼

𝑥𝑖𝑜
∑  𝑛
𝑗=1 𝜆𝑗

∗𝑥𝑖𝑗
𝜃1𝑜
∗  

𝑦 𝑘3𝑜
∑  𝑛
𝑗=1 𝜆𝑗

∗𝑦 𝑘3𝑗
𝜑2𝑜
∗ = 𝑚𝑖𝑛

𝑟∈𝑈𝑂

𝑦𝑟𝑜
∑  𝑛
𝑗=1 𝜆𝑗

∗𝑦𝑟𝑗
𝜑2𝑜
∗   , 

𝑥 𝑘4𝑜
∑  𝑛
𝑗=1 𝜆𝑗

∗𝑥 𝑘4𝑗
𝜃2𝑜
∗ = 𝑚𝑎𝑥

𝑖∈𝐷𝑈𝐼

𝑥𝑖𝑜
∑  𝑛
𝑗=1 𝜆𝑗

∗x𝑖𝑗
𝜃2𝑜
∗  

thus: 

2 −𝑚𝑎𝑥
𝑟∈𝐷𝑂

{
𝑦𝑟𝑜

∑  𝑛
𝑗=1 𝜆𝑗

∗𝑦𝑟𝑗
}𝜑1𝑜

∗ = 1    𝑎𝑛𝑑 

2 − 𝑚𝑖𝑛
𝑟∈𝑈𝑂

{
𝑦𝑟𝑜

∑  𝑛
𝑗=1 𝜆𝑗

∗𝑦𝑟𝑗
}𝜑2𝑜

∗ = 1 

2 − 𝑚𝑖𝑛
𝑖∈𝐷𝐷𝐼

{
𝑥𝑖𝑜

∑  𝑛
𝑗=1 𝜆𝑗

∗𝑥𝑖𝑗
} 𝜃1𝑜

∗ = 1  𝑎𝑛𝑑 

2 − 𝑚𝑎𝑥
𝑖∈𝐷𝑈𝐼

{
𝑥𝑖𝑜

∑  𝑛
𝑗=1 𝜆𝑗

∗𝑥𝑖𝑗
}𝜃2𝑜

∗ = 1 

then, we can rewrite: 

𝜂1𝑜
∗ =

𝑚𝑖𝑛
𝑟∈𝐷O

{  
∑  𝑛
𝑗=1𝜇𝑗𝑜𝜆𝑗

∗𝑦𝑟𝑗

𝑦𝑟𝑜+𝛥𝑦𝑟𝑜
}

2 − 𝑚𝑎𝑥
𝑟∈𝐷𝑂

{
𝑦𝑟𝑜

∑  𝑛
𝑗=1 𝜆𝑗

∗𝑦𝑟𝑗
}𝜑1𝑜

∗
 

𝜂2𝑜
∗ =

𝑚𝑎𝑥
𝑟∈𝑈𝑂

{  
∑  𝑛
𝑗=1𝜇𝑗𝑜𝜆𝑗

∗𝑦𝑟𝑗

𝑦𝑟𝑜+𝛥𝑦𝑟𝑜
}

2 − 𝑚𝑖𝑛
𝑟∈𝑈𝑂

{
𝑦𝑟𝑜

∑  𝑛
𝑗=1 𝜆𝑗

∗𝑦𝑟𝑗
}𝜑2𝑜

∗
 

𝜁2𝑜
∗ =

𝑚𝑖𝑛
𝑖∈𝐷𝑈𝐼

{  
∑  𝑛
𝑗=1𝜇𝑗𝑜𝜆𝑗

∗𝑥𝑖𝑗

𝑥𝑖𝑜+𝛥𝑥𝑖𝑜
}

2 − 𝑚𝑎𝑥
𝑖∈𝐷𝑈𝐼

{
𝑥𝑖𝑜

∑  𝑛
𝑗=1 𝜆𝑗

∗𝑥𝑖𝑗
}𝜃2𝑜

∗
 

𝜁1𝑜
∗ =

𝑚𝑎𝑥
𝑖∈𝐷𝐷𝐼

{  
∑  𝑛
𝑗=1𝜇𝑗𝑜𝜆𝑗

∗𝑥𝑖𝑗

𝑥𝑖𝑜+𝛥𝑥𝑖𝑜
}

2 − 𝑚𝑖𝑛
𝑖∈𝐷𝐷𝐼

{
𝑥𝑖𝑜

∑  𝑛
𝑗=1 𝜆𝑗

∗𝑥𝑖𝑗
}𝜃1𝑜

∗
. 

 

Here, we will show that 

((𝜆𝑗
∗)𝑗=1,...,𝑛, 𝜑1�̃�, 𝜃1�̃�, 𝜑2�̃�, 𝜃2�̃�) such that: 

𝜑1�̃� =
2 −

𝑚𝑖𝑛
𝑟∈𝐷𝑂

{  
∑  𝑛
𝑗=1𝜆�̂�

∗∗
y𝑟𝑗

𝑦𝑟𝑜+𝛥𝑦𝑟𝑜
}

𝜂10
∗∗

𝑚𝑎𝑥
𝑟∈𝐷𝑂

{
𝑦𝑟𝑜

∑  𝑛
𝑗=1 𝜆𝑗

∗𝑦𝑟𝑗
}

 

 

𝜃1�̃� =
2 −

𝑚𝑎𝑥
𝑖∈𝐷𝐷𝐼

{
∑  𝑛
𝑗=1𝜆�̂�

∗∗
𝑥𝑖𝑗

𝑥𝑖𝑜+𝛥𝑥𝑖𝑜
}

𝜁1𝑜
∗∗

𝑚𝑖𝑛
𝑖∈𝐷𝐷𝐼

{
𝑥𝑖𝑜

∑  𝑛
𝑗=1𝜆𝑗

∗𝑥𝑖𝑗
}

 

𝜑2�̃� =
2 −

𝑚𝑎𝑥
𝑟∈𝑈𝑂

{  
∑  𝑛
𝑗=1𝜆�̂�

∗∗
𝑦𝑟𝑗

𝑦𝑟𝑜+𝛥𝑦𝑟𝑜
}

𝜂20
∗∗

𝑚𝑖𝑛
𝑟∈𝑈𝑂

{
𝑦𝑟𝑜

∑  𝑛
𝑗=1𝜆𝑗

∗𝑦𝑟𝑗
}

 

𝜃2�̃� =
2 −

𝑚𝑖𝑛
𝑖∈𝐷𝑈𝐼

{  
∑  𝑛
𝑗=1𝜆�̂�

∗∗
𝑥𝑖𝑗

𝑥𝑖𝑜+𝛥𝑥𝑖𝑜
}

𝜁2𝑜
∗∗

𝑚𝑎𝑥
𝑖∈𝐷𝑈𝐼

{
𝑥𝑖𝑜

∑  𝑛
𝑗=1𝜆𝑗

∗𝑥𝑖𝑗
}
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is a feasible solution to the model (2-I). 

Note that 
𝑚𝑎𝑥𝑖∈𝐷𝐷𝐼{

∑  𝑛
𝑗=1𝜆�̂�

∗∗
𝑥𝑖𝑗

𝑥𝑖𝑜+𝛥𝑥𝑖𝑜
}

𝜁1𝑜
∗∗ ≤ 1 

because for every 

𝑖 ∈ 𝐷𝐷𝐼, 𝜁1𝑜
∗∗(𝑥𝑖𝑜 + 𝛥𝑥𝑖𝑜) ≥ ∑  𝑛

𝑗=1 𝜆�̂�
∗∗
𝑥𝑖𝑗 . 

𝜃1�̃�𝑥𝑖𝑜 =
2 −

𝑚𝑎𝑥
𝑖∈𝐷𝐷𝐼

{
∑  𝑛
𝑗=1𝜆�̂�

∗∗
𝑥𝑖𝑗

𝑥𝑖𝑜+𝛥𝑥𝑖𝑜
}

𝜁1𝑜
∗∗

𝑚𝑖𝑛
𝑖∈𝐷𝐷𝐼

{
𝑥𝑖𝑜

∑  𝑛
𝑗=1 𝜆𝑗

∗𝑥𝑖𝑗
}

𝑥𝑖𝑜

≥
1

𝑚𝑖𝑛
𝑖∈𝐷𝐷𝐼

{
𝑥𝑖𝑜

∑  𝑛
𝑗=1𝜆𝑗

∗𝑥𝑖𝑗
}
𝑥𝑖𝑜  

≥
1
𝑥𝑖𝑜

∑  𝑛
𝑗=1𝜆𝑗

∗𝑥𝑖𝑗

𝑥𝑖𝑜 =
∑  𝑛
𝑗=1 𝜆𝑗

∗𝑥𝑖𝑗

𝑥𝑖𝑜
𝑥𝑖𝑜 =∑ 

𝑛

𝑗=1

𝜆𝑗
∗𝑥𝑖𝑗  

 

and, similarly: 

𝜃2�̃�𝑥𝑖𝑜 ≤∑ 

𝑛

𝑗=1

𝜆𝑗
∗𝑥𝑖𝑗 ;   𝑖 ∈ 𝐷𝑈𝐼       

𝜑1�̃�𝑦𝑟𝑜 ≤∑ 

𝑛

𝑗=1

𝜆𝑗
∗𝑦𝑟𝑗   ;   𝑟 ∈ 𝐷𝑂     

𝜑2�̃�𝑦𝑟𝑜 ≥∑ 

𝑛

𝑗=1

𝜆𝑗
∗𝑦𝑟𝑗   ; 𝑟 ∈ 𝑈𝑂. 

 

Clearly, this solution is also satisfied by 

the other constraints of model (2-I); 

hence, it is a feasible solution to the 

model (2-I) thus:  

𝜃1𝑜
∗ ≤ 𝜃1�̃� =

2 −
𝑚𝑎𝑥
𝑖∈𝐷𝐷𝐼

{
∑  𝑛
𝑗=1𝜆�̂�

∗∗
𝑥𝑖𝑗

𝑥𝑖𝑜+𝛥𝑥𝑖𝑜
}

𝜁1𝑜
∗∗

𝑚𝑖𝑛
𝑖∈𝐷𝐷𝐼

{
𝑥𝑖𝑜

∑  𝑛
𝑗=1 𝜆𝑗

∗𝑥𝑖𝑗
}

 

 

and consequently:  

𝜃1𝑜
∗ 𝑚𝑖𝑛
𝑖∈𝐷𝐷𝐼

{
𝑥𝑖𝑜

∑  𝑛
𝑗=1 𝜆𝑗

∗𝑥𝑖𝑗
} ≤ 2 −

𝑚𝑎𝑥
𝑖∈𝐷𝐷𝐼

{
∑  𝑛
𝑗=1𝜆�̂�

∗∗
𝑥𝑖𝑗

𝑥𝑖𝑜+𝛥𝑥𝑖𝑜
}

𝜁1𝑜
∗∗  

𝑚𝑎𝑥
𝑖∈𝐷𝐷𝐼

{
∑  𝑛
𝑗=1 𝜆�̂�

∗∗
𝑥𝑖𝑗

𝑥𝑖𝑜+𝛥𝑥𝑖𝑜
}

𝜁1𝑜
∗∗ ≤ 2 − 𝜃1𝑜

∗ 𝑚𝑖𝑛
𝑖∈𝐷𝐷𝐼

{
𝑥𝑖𝑜

∑  𝑛
𝑗=1 𝜆𝑗

∗𝑥𝑖𝑗
} 

𝑚𝑎𝑥
𝑖∈𝐷𝐷𝐼

{
∑  𝑛
𝑗=1𝜆�̂�

∗∗
𝑥𝑖𝑗

𝑥𝑖𝑜+𝛥𝑥𝑖𝑜
}

2 − θ1𝑜
∗ 𝑚𝑖𝑛
𝑖∈𝐷𝐷𝐼

{
xio

∑  n
j=1 λj

∗xij
}
≤ ζ1o

∗∗ . 

 

On the other hand, because λĵj=1,...,n
∗∗

 are 

optimal solutions and λĵj=1,...,n
∗

 are feasible 

solutions of model(8-I) and the quantity 

of slack variables in the optimal solution 

must be smaller than those in the feasible 

solution, then: 

max
i∈DDI

{
∑  n
j=1 λĵ

∗∗
xij

xio + Δxio
} ≥ max

i∈DDI
{
∑  n
j=1 λĵ

∗
xij

xio + Δxio
} 

and  

2 − θ1o
∗ min
i∈DDI

{
xio

∑  n
j=1 λĵ

∗
xij
} = 1 

then: 

max
i∈DDI

{
∑  n
j=1 λĵ

∗∗
xij

xio+Δxio
}

2 − θ1o
∗ min
i∈DDI

{
xio

∑  n
j=1λĵ

∗∗
xij
}
≥ max

i∈DDI
{
∑  n
j=1 λĵ

∗
xij

xio + Δxio
} 

i.e: 

ζ1o
∗ ≤ ζ1o

∗∗  

thus:  

ζ1o
∗ = ζ1o

∗∗  

and therefore the proof is completed.∎  

 

6. Conclusion 

In this paper, resource allocation problem 

for systems with a supervising center is 

investigated. It is assumed that the units 

under supervision are homogeneous 

because otherwise, the efficiency scores 

may reflect the underlying differences in 

environments rather than inefficiencies. 

In these systems (i.e. organizations) 

homogeneous units consume both 

desirable and undesirable inputs to 

produce outputs some of which might be 

undesirable. The proposed method not 

only considers environmental factors such 

as smoke pollution and waste but also 

considers economic ones, both of which 

are of fundamental importance to 

resource allocation. 

As it was discussed, the previous methods 

in the literature were not designed to 

solve problems with non discretionary 

data; while the proposed method , as it 

was shown, can do so. Another difference 

is that the new method puts emphasis on 

efficiency and return to scale 

simultaneously as opposed to the previous 
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methods in which resources are allocated 

between units to improve efficiency or 

maximize the total amount of outputs. 

To consider both return to scale and 

efficiency simultaneously, our model uses 

the notion of MPSS points and allocates 

available resources between units in a 

way that not only the overall system 

distance is minimized, but also the 

distance from any unit to it's MPSS points 

is minimized as well. In addition to 

illustrate the applicability of the proposed 

model, two real-life examples were 

solved. 

The majority of resource allocation 

situations are dealt with in the proposed 

method. What remains can be of interest 

to other scientists and thus subjects for 

further researches. Devising a method for 

resource allocation in an organization 

which deals with fuzzy type data is 

proposed as an inspiring further research 

question. Moreover, the way data is 

handled in this paper might be used as a 

guideline for further researches in solving 

transportation and/or network problems.  
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