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Abstract 

   The present study is an attempt toward evaluating the performance of portfolios and asset selection 

using cross-efficiency evaluation. Cross-efficiency evaluation is an effective way of ranking decision 

making units (DMUs) in data envelopment analysis (DEA). Conventional DEA models assume non-

negative values for inputs and outputs. However, we know that unlike return and skewness, variance 

is the only variable in the model that takes non-negative values. This paper focuses on the evaluation 

process of the efficiencies in the cross-efficiency matrix with negative data and proposes the use of 

ordered weighted averaging (OWA) operator weights for cross-efficiency evaluation. The problem 

consists of choosing an optimal set of assets in order to minimize the risk and maximize return. This 

method is illustrated by application in Iranian stock companies and extremely weights are obtained 

via OWA operator in cross efficiency for making the best portfolio. The finding could be used for 

constructing the best portfolio in stock companies, in various finance organization and public and 

private sector companies.     
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1. Introduction 

   In financial literature, a portfolio is an 

appropriate mix investments held by an 

institution or private individuals. Evaluation of 

portfolio performance has created a large 

interest among employees also academic 

researchers because of huge amount of money 

are being invested in financial markets. The 

theory of mean – variance, Markowitz [12] is 

considered the basis of many current models 

and this theory is widely used to select 

portfolios. This model is due to the nature of 

the variance in quadratic form. Other problem 

in Markowitz model is that increasing the 

number of assets will be developed the 

covariance matrix of asset returns and will be 

added to the content calculation. Due to these 

problems sharp one- factor model is proposed 

by Sharp [18]. This method reduces the 

number of calculations required information 

for the decision. Data envelopment analysis 

(DEA) has proved the efficiency for assessing 

the relative efficiency of Decision Making 

Units (DMUs) that employing multiple inputs 

to produce multiple outputs (Charnes et al. 

[2]). Morey and Morey [13] proposed mean – 

variance framework based on Data 

Envelopment Analysis, which the variance of 

the portfolios is used as an input to the DEA 

and expected return is the output. Joro and Na 

[8] introduced mean - variance – skewness 

framework and skewness of returns are also 

considered as an output. Conventional DEA 

models assume non-negative values for inputs 

and outputs. However, we know that unlike 

return and skewness, variance is the only 

variable in the model that takes non-negative 

values. The portfolio optimization problem is a 

well-known problem in financial real world. 

The investor’s objective is to get the maximum 

possible return on an investment with the 

minimum possible risk. Since there are a large 

number of assets to invest in, this objective 

leads to select the best assets via cross-

efficiency matrix in presence of negative data 

by using OWA operator weighted. Cross-

efficiency evaluation, proposed by Sexton et 

al. [17] is effective way of ranking decision 

making units (DMUs). It allows the overall 

efficiencies of the DMUs to be evaluated 

through self- and peer-evaluations. The self-

evaluation allows the efficiencies of the DMUs 

to be evaluated with the most favorable 

weights so that each of them can achieve its 

best possible relative efficiency, whereas the 

peer-evaluation requires the efficiency of each 

DMU to be evaluated with the weights 

determined by the other DMUs. The self-

evaluated efficiency and peer-evaluated 

efficiencies of each DMU are then averaged as 

the overall efficiency of the DMU. Since, its 

remarkable discrimination power, the cross-

efficiency evaluation has found significant 

number of applications in a wide variety of 

areas such as preference voting and project 

ranking [7,22], economic-environmental 
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performance assessment [10,11], Olympic 

ranking and benchmarking [23-25], etc. 

Besides a large number of applications, 

theoretical research has also been conducted 

on the cross-efficiency evaluation. For 

example, Doyle and Green [4,5] presented 

mathematical formulations for possible 

implementations of aggressive and benevolent 

cross efficiencies. Liang et al. [9] suggested 

the concept of game cross-efficiency and 

developed a game cross-efficiency model 

which treats each DMU as a player that seeks 

to maximize own efficiency under the 

condition that the cross efficiency of each of 

the other DMUs dose not deteriorate. Wu et al. 

[25] extended the game cross-efficiency model 

to variable returns to scale later. Conventional 

DEA models assume non-negative values for 

inputs and outputs. These models cannot be 

used for the case in which DMUs include both 

negative and positive inputs and/or outputs. 

Poltera et al. [15] consider a DEA model 

which can be applied in the cases where input/ 

output data take positive and negative values. 

The other models solve negative data such as 

Modified slacks-based measure model 

(MSBM) [16], semi-oriented radial measure 

(SORM) [6] and etc.  

In our work, the use of equal weights for 

cross-efficiency model in presence negative 

data has a significant problem. That is self-

evaluated efficiencies are much less weighted 

than peer-evaluated efficiencies. This is 

because each DMU has only one self-

evaluated efficiency value, but multiple peer- 

evaluated efficiency values. When they are 

simply averaged together, the weight assigned 

to the self-evaluated efficiency is only
1

n
if 

there are n DMUs to be evaluated, whereas the 

remaining weights 
( 1)n

n


are all given to 

those peer-evaluated efficiencies. To 

overcome this problem, the use of ordered 

weighted averaging (OWA) operator weights 

are stated for assets cross- efficiencies in 

presence negative data. The use of OWA 

operator weights for the assets cross-efficiency 

allows the weights to be reasonably allocated 

between self-and peer- evaluated efficiencies 

by investor’s control [20]. The OWA operator 

weights are generated by the minimax 

disparity approach and allow the decision 

maker (DM) or investors to select the best 

assets that are characterized by an orness 

degree [21]. The method consists of choosing 

an optimal set of assets in order to minimize 

the risk and maximize return in cross 

efficiency using OWA operator. Since there 

are a large number of assets to invest in, the 

best assets are chosen via cross-efficiency 

evaluation by using OWA weighted by control 

investors.  

The rest of the paper is organized as follows: 

Section 2 briefly reviews the portfolio 

performance literature, cross-efficiency in 

presence of negative data, OWA operators and 

their weight determination methods. Section 3 
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develops a proposed method for selecting the 

best of portfolio. Section 4 presents 

computational results using Iranian stock 

companies and finally conclusions are given in 

section 5.     

1. Background 

2.1 Portfolio performance literature 

Portfolio theory to investing is published by 

Markowitz (1952). This approach starts by 

assuming that an investor has a given sum of 

money to invest at the present time. This 

money will be invested for a time as the 

investor’s holding period. The end of the 

holding period, the investor will sell all of the 

assets that were bought at the beginning of the 

period and then either consume or reinvest. 

Since portfolio is a collection of assets, it is 

better that to select an optimal portfolio from a 

set of possible portfolios. Hence the investor 

should recognize the returns (and portfolio 

returns), expected (mean) return and standard 

deviation of return. This means that the 

investor wants to both maximize expected 

return and minimize uncertainty (risk). Rate of 

return (or simply the return) of the investor’s 

wealth from the beginning to the end of the 

period is calculated as follows: 

Return 

=

(                    )—(                          ) 

                           
   

            (2.1) 

 

Since Portfolio is a collection of assets, its 

return 
pr can be calculated in a similar manner. 

Thus according to Markowitz, the investor 

should view the rate of return associated to any 

one of these portfolios as what is called in 

statistics a random variable. These variables 

can be described expected return (mean or 
pr ) 

and standard deviation of return. Expected 

return and deviation standard of return are 

calculated as follows: 

1

1/2

1 1

(2.2)

(2.3)

n

p i i

i

n n

p i j ij

i j

r r

   



 



 
  
 





 

Where: 

n=the number of assets in the portfolio 

pr =The expected return of the portfolio 

i =The proportion of the portfolio’s initial 

value invested in asset i 

ir =The expected return of asset i 

p = The deviation standard of the portfolio 

ij = The covariance of the returns between 

asset i and asset j  

In the above, optimal portfolio from the set of 

portfolios will be chosen that maximum 

expected return for varying levels of risk and 

minimum risk for varying levels of expected 

return(Sharp 1985 [19]). Data Envelopment 

Analysis is a nonparametric method for 

evaluating the efficiency of systems with 

multiple inputs and multiple outputs. In this 
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section we present some basic definitions, 

models and concepts that will be used in other 

sections in DEA. They will not be discussed in 

details. Consider
jDMU , ( 1,...,j n ) where 

each DMU consumes m inputs to produce s 

outputs. Suppose that the observed input and 

output vectors of 
jDMU  are 

( , ..., )
1

X x xj mjj
  and 

1( ,..., )j j sjY y y  

respectively, and let 0jX  and 0jX  , 

0jY  and 0.jY   A basic DEA formulation 

in input orientation is as follows: 

min ( )

1 1

. . 1, ..., ,

1

1, ..., ,

1

,

, 0, (2.4)

0

s m
s s
r i

r i

n
s t x s x i m

j ij i io
j

n
y s y r s

j rj r ro
j

s s

 

 







 
  

 


  




  





 




Where is a n-vector of  variables, s 
as-

vector of output slacks, s 
an m-vector of input 

slacks and set  is defined as follows: 

,

withconstant returns to scale,

with non-increasing returns to scale

with variable returns to scale

{

{ ,1 1}

{ ,1 1}

(2.5)

n
R

n
R

n
R



 

 

 

 

 







 

 

Note that subscript ‘o’ refers to the unit under 

the evaluation. A DMU is efficient if 1  and 

all slack variables ,s s 
equal zero; otherwise 

it is inefficient (Charnes et al. [3]). In the DEA 

formulation above, the left –hand sides in the 

constraints define an efficient portfolio.   is a 

multiplier defines the distance from the 

efficient frontier. The slack variables are used 

to ensure that the efficient point is fully 

efficient. This model is used for asset 

selection. The portfolio performance 

evaluation literature is vast. In recent years 

these models have been used to evaluate the 

portfolio efficiency. Also in the Markowitz 

theory, it is required to characterize the whole 

efficient frontier but the proposed models by 

Joro and Na do not need to characterize the 

whole efficient frontier but only the projection 

points. The distance between the asset and its 

projection which means the ratio between the 

variance of the projection point and the 

variance of the asset is considered as an 

efficiency measure ( ) [8].  

2.2 The cross-efficiency evaluation 

Consider n DMUs that are to be evaluated with 

m inputs and s output. Denote by  1,...,ijx m  

and  1,...,rjy r s  the input and output 

values of  1,...,jDMU j n . The 

efficiencies of the n DMUs can then be 

computed by solving the following CCR 

model for each of the n DMUs, respectively 

[2]: 
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1

1

1 1

,

s.t.   1, (2.6)

0,  1,..., ,

, 0, 1,..., , 1,..., .               

s

kk rk rk

r

m

ik ik

i

s s

rk rj ik ij

r r

rk ik

max u y

v x

u y v x j n

u v r s i m






 





  

  





 

 

Where kDMU  is the DMU under evaluation, 

 1,...,ikv i m  and  1,...,rku r s  are input 

and output weights. Let  1,...,rku r s   and 

 1,...,ikv i m   be the optimal solution to the 

above CCR model. Then, 
1

s

kk rk rk

r

u y  



  is 

referred to as the CCR-efficiency of kDMU , 

which is the best relative efficiency of kDMU  

by self-evaluation. If 1kk   , kDMU  is said 

to be CCR-efficient; otherwise, it is said to be 

non-CCR-efficient. 

1 1

s m

jk rk rj ik ijr i
u y v x  

 
  is referred to as 

the cross-efficiency of kDMU to
jDMU  by 

peer-evaluation, where 1,..., ;   .j n j k   

Model (2.6) is solved n times, each time for 

one particular DMU. As a result, we can get 

one CCR-efficiency value and  1n  cross-

efficiency values for each DMU. The n 

efficiency values constitute a cross-efficiency 

matrix, as shown in table (2.1), where 

 1,...,kk k n   are the CCR-efficiency 

values of the n DMUs, i.e. 
kk kk   . The n 

efficiency values of each DMU are then 

simply averaged as its overall performance, 

which is called average cross-efficiency value. 

Based on these overall performance values, the 

n DMUs can be compared or fully ranked. 

Table 2.1 cross-efficiency matrix for n DMUs 

D

M

U 

Target DMU average 

crosses 

efficiency 

 1 2 … n  

1 
11

 
12

 
… 1n

 

1
( ) 1

1n

n

k
k




 

2 
21

 

22

 
… 2n

 

1
( ) 2

1n

n

k
k




 

. 

. 

. 

. 

. 

. 

. 

. 

. 
…  

. 

. 

. 

n 
1n

 

2n

 
… nn

 

1
( )

1n

n

nk
k




 

The above approach about cross-efficiency 

value in CCR efficiencies or constant returns 

to scale (CRS) DEA model was extended to 

the variable returns to scale (VRS) DEA 

model [25]. The VRS DEA model can 

generate negative cross-efficiency scores.  

The VRS DEA model is as follows [1]: 

0

1

0

1 1

1

0

max    

  . .    0,    1,...,

          1 (2.7)

          u 0, 1,...,

0, 1,...,

          0                                               

s

rk rk

r

s m

rk rj ik ij

r i

m

ik ik

i

rk

ik

u y u

s t u y v x u j n

v x

r s

v i m

u



 





   



 

 





 



    

For each ( 1,..., )kDMU k n  under evaluation 

in model (2.7) we obtain a set of optimal 
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weights * *( , )rk rku v . Using this set of weights, 

the DMUk-based cross efficiency for any 

 1,...,jDMU j n  is calculated as 

01

1

1

(2.8)

   k, 1,2,...,

        ( 1,..., )

1
  (2.9)                                              

s

rk rjr
kj m

ik iji

kj

n

j kj

k

u y u
E

v x

j n

The average of all E k n

E E
n


























 

Is used as the cross-efficiency score for

 1,...,jDMU j n . 

 Note that the cross-efficiency score obtained 

in the above manner can be negative. This 

subject is presented by a simple numerical 

example involving five DMUs, with two input 

and single output [25]. 

The negative VRS cross-efficiency score is 

due to the fact that 
01

0
s

rk rjr
u y u


   for 

some
jDMU , i.e., some 

jDMU  will have 

negative efficiency ratios when they use a set 

of optimal weights obtained when kDMU  is 

under evaluation. Naturally, we want every 

output-input efficiency ratio be positive 

regardless of the chosen weights. Therefore, 

adding 
01

0
s

rk rjr
u y u


   into the VRS 

model is proposed when calculating the cross-

efficiency scores [25]. This will also guarantee 

non-negativity of both VRS cross-efficiency 

scores and VRS efficiency ratios. 

Therefore the following modified VRS DEA 

model is used for model (2.7) development 

and application: 

0

1

0

1 1

1

0

1

0

max    

  . .    0,    1,...,

          1

0, 1,2,.., (2.10)

          u 0, 1,...,

0, 1,...,

          0                   

s

rk rk

r

s m

rk rj ik ij

r i

m

ik ik

i

s

rk rj

r

rk

ik

u y u

s t u y v x u j n

v x

u y u j n

r s

v i m

u



 







   



  

 

 





 





                               

 

2.3 Cross-efficiency in the presence of 

negative data 

In the conventional DEA models, each 

( 1,..., )jDMU j n is specified by a pair of 

non-negative input and output vectors 

( , ) m s

j jx y R 

 , in which inputs 

( 1,..., )ijx i m are utilized to produce outputs, 

( 1,..., )rjy r s . These models cannot be used 

for the case in which DMUs include both 

negative and positive inputs and/or outputs. 

Poltera et al. [15] consider a DEA model 

which can be applied in the cases where input/ 

output data take positive and negative values. 

Rang Directional Measure (RDM) model 

proposed by Poltera et al. [15] goes as follows: 
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1

1

1

max

. . 1,..., ,

1,..., ,

1, (2.11)

0 1,..., .

n

j ij io io

j

n

j rj ro ro

j

n

j

j

j

s t x x R i m

y y R r s

j n



 

 











  

  



 







 

Ideal point ( I ) in the presence of negative 

data, is 

(max { : 1,..., },min { : 1,..., }j rj j ijI y r s x i m  

where 

,

min { : 1,..., }, 1,..., ,

max { : 1,..., } 1,..., . (2.12)

io io j ij

ro j rj ro

R x x j n i m

R y j n y r s

   

   

 

The other models solve negative data such as 

Modified slacks-based measure model 

(MSBM), semi-oriented radial measure 

(SORM) and etc. 

In this section, we define cross-efficiency in 

the presence of negative data under variable 

returns to scale (VRS). In financial literature, 

mean – variance model and mean-variance-

skewness are proposed based on Data 

Envelopment Analysis, which the variance of 

the portfolios is used as an input to the DEA 

and expected return and skewness are the 

output.  Thus, we know that unlike return and 

skewness, variance is the only variable in the 

model that takes non-negative values. In this 

paper, new cross-efficiency is introduced 

based on RDM model. 

Definition 2.1 

m s
* *

io ij ro rj 0

i 1 r 1
jo jo m s

* *

io ij ro rj

i 1 r 1

v x u y u

1 1

v R u R

(2.13)

   

 

 

   



 

 

is referred to as the cross-efficiency of oDMU

to
jDMU by peer-evaluation, with negative 

data, where j 1,...,n; j o  .  

In the above mentioned ratio, oDMU  is the 

DMU under evaluation and  1,..., rou r s

and  1,..., iov i m  are the optimal solution to 

the below model. Thus,  1,...,ijx m  and 

 1,...,rjy r s  are the input and output 

values of  1,...,jDMU j n
 

m s

i io r ro 0

i 1 r 1

m s

i ij r rj 0

i 1 r 1

m s

i io r ro

i 1 r 1

i r

min v x u y u

s.t. v x u y u 0 (2.14)

v R u R 1

v 0 u 0 i 1,...,m r 1,...,s

 

 

 

 

  

 

   

 

 

 

 

The above model is RDM model dual. 

Model (2.14) can be stated as follows: 

s m

r ro i io 0

r 1 i 1

m s

i ij r rj 0

i 1 r 1

m s

i io r ro

i 1 r 1

i r

max u y v x u

s.t. v x u y u 0 (2.15)

v R u R 1

v 0 u 0 i 1,...,m r 1,...,s

 

 

 

 

  

 

   

 

 

 
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In the above mentioned ratio (2.13) for DMU 

under evaluation, the nominator represents the 

efficiency (difference between virtual outputs 

and virtual inputs). In addition, the 

denominator designates normalize vector. It is 

clear that the value 
jo is equal to 0 or less 

than 1 and is stated as inefficiency measure. 

Thus, 
jo1  is equal to or less than 1 and is 

stated as efficiency measure. For another 

DMU, the below theorem should be approved. 

Theorem1: 1: 
jo0 1   

Respecting to the first restriction of (2.14) 

model which is RDM model dual, we have: 

jo0   

We should approve
jo 1  : 

Then, by above mentioned ratio (2.13), we 

have:  

m s m s
* * * *

io ij ro rj 0 io ij ro rj

i 1 r 1 i 1 r 1

m s
* *

io ij ro rj 0

i 1 r 1

m s
* *

io ij ij ro rj rj

i 1 r 1

m s
* *

io ij ro rj 0

i 1 r 1

m m s
* * *

io ij io ij ro

i 1 i 1 r 1

v x u y u v R u y

v x u y u

v (x min{x }) u (max{y } y )

v x u y u

v x v min{x } u m

   

 

 

 

  

   

  

  

  

 

   

 

 

 

  
s

*

rj ro rj

r 1

ax{y } u y




Then, we prove below equation: 

s m
* *

0 ro rj io ij

r 1 i 1

u u max{y } v min{x }
 

    

Also, respecting to restriction
j 1  , there 

is 0  . Then, respecting to complementary 

slackness conditions, one constraint is binding. 

Then: 

s m
* *

0 ro ro io io

r 1 i 1

u u y v x
 

    

We have: 

s s
* *

ro ro ro rj

r 1 r 1

m m
* *

io io io ij

i 1 i 1

s s
* *

ro ro ro rj

r 1 r 1

m m
* *

io io io ij

i 1 i 1

u y u max{y }

v x v min{x }

u y u max{y }

v x v min{x }

 

 

 

 






 







  


 

 

 

 

 

 Then, we have: 

s m
* *

0 ro ro io io

r 1 i 1

s m
* *

ro rj io ij

r 1 i 1

u u y v x

u max{y } v min{x }

 

 

  



 

   

So the prove is completed. 

Figure 1 illustrates the concepts dealing with 

cross-efficiency and RDM efficiency, using 

the units A, B, C, D, E and F in the presence of 

negative data. In Figure 1, the RDM 

inefficiency of FDMU  can be evaluated by 

d(P,F)
(2.16)

d(I,F)
 

 

Hence, the efficiency measure equals: 

d(I,F) d(P,F) d(I,P)
1 (2.17)

d(I,F) d(I,F)



  
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Equation (2.17) represents the RDM efficiency 

of FDMU which is between 0 and 1. d(I,F)  

and d(I,P) denote the distance from the ideal 

point I to Fand the distance from the ideal 

point I to P , respectively, and d(P,F) is the 

distance from P to F .  

 

Figure1: RDM and BCC frontier in the 

presence of negative data 

I is the ideal point. Using Figure 1, it is easy to 

see that the efficiency measure yielded by 

model RDM,1  , is a distance measure 

between the observed and its target point P  

with reference to the ideal point.  

2.4 OWA operators and their weight 

determination methods 

An OWA operator of dimension n is a 

mapping : nF    with an associated 

weight vector  1,...,
T

nW w w  such that 

1 ... 1,   1,       1,..., .n iw w o w i n       

And 

1

1

( ,..., ) , (2.18)
n

n i i

i

F a a w b




Where ib is the i th largest of 1,..., na a  . 

OWA operators, introduced by yager [26], 

provide a unified framework for decision 

making under uncertainty, where different 

decision criteria such as maximax (optimistic), 

maximin (pessimistic), equally likely 

(Laplace) and Hurwicz criteria are 

characterized by different OWA operator 

weights.  

For different weight selections, they are 

distinguished by the following orness degree 

[26]: 

   
1

1
(2.19)

1

n

i

i

orness W n i w
n 

 



 

The orness degree can be regarded as a 

measure of the optimism level of the DM. 

To apply OWA operators for decision making, 

it is essential to determine the weights of 

OWA operators. The following models (2.20) 

and (2.21) are two important approaches for 

determining OWA operator weights under a 

given orness degree: 

 

   

n

i i

i=1

1

1

max Disp W = w lnw ,

1
s.t.  orness W = ,   0 1,

1

1, (2.20)

0, 1,..., .                                                    

n

i

i

n

i

i

i

n i w
n

w

w i n

 




   




 







 

And 
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   
1

1

1

1

min δ

s.t. 

1
orness W ,   0 1,

1

1,

0, 1,..., 1, (2.21)

0, 1,..., 1,

0, 1,..., .                                                    

n

i

i

n

i

i

i i

i i

i

n i w
n

w

w w i n

w w i n

w i n

 













    




    

    

 





 

Model (2.20), suggested by O’Hagan [14] 

maximizes the entropy of weight distribution 

and is thus referred to as the maximum entropy 

method, whereas model (2.21) that was 

proposed by Wang and Parkan [21] minimizes 

the maximum disparity between two adjacent 

weights and is thus called the minimax 

disparity approach. 

The OWA operator weights determined by the 

above models have the following 

characteristics: 

The weights are ordered. That is 

1 2 ... 0nw w w     if the orness degree 

0.5   and 1 20 ... nw w w    if 

0.5   . 

The weights have nothing to do with the 

magnitudes of the aggregates       , but 

depend upon their ranking orders and the 

DM’s optimism level (orness degree). 

1 1w  and 0 ( 1)jw j   if 1  .Which 

means that the DM or investor is purely 

optimistic and considers only the biggest value 

 1 maxi ib a  in decision analysis. 

1nw  and 0 ( )jw j n   if 0  , which 

represents that the DM or investor is purely 

pessimistic and is only concerned with the 

most conservative value  minn i ib a  when 

making decision. 

 1 ... 1/nw w n   if 0.5   , which 

stands for that the DM or investor is neutral 

and makes use of all the aggregates        

equally in decision making. 

1,..., nw w  determined by model (2.20) vary in 

the form of geometric progression, i.e. 

1i iw w q   for 1,..., 1i n   , where 0q  , 

while 1,..., nw w  determined by model (2.21) 

vary in the form of arithmetical progression, 

namely, 1i iw w d   for 

 1,...,  i K K n   or 1i iw w d    for 

 ,...,  1i K n K   where 0d  . 

3. Methodology 

Return of assets; consist of money which we 

receive among period plus difference of 

buying and selling.  Return is not definitely 

usually obvious. This uncertain in rate of 

expected return defined as deviation of return. 

Deviation of return is called risk. The 

investor’s objective is to get the maximum 

possible return on an investment with the 

minimum possible risk. In this regard, mean-

variance model Markowitz, expected return is 

treated as output and deviation as input. This 

model is due to the nature of the variance in 

quadratic form. Due to quadratic form 
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investors prefer skewness which means that 

utility functions of investors are not quadratic. 

Thus, we know that unlike return and 

skewness, variance is the only variable in the 

model that takes non-negative values. The 

methodology in this paper starts with asset 

selection via cross-efficiency evaluation in 

presence of negative data using OWA operator 

weights. The data used for this methodology is 

from 20 Iranian stock companies. In many 

cases similar to this example there are a lot of 

assets. It is better that starts with asset 

selection. The choice of the asset can be 

random or discrete. The random choice of 

assets is usually biased and do not promise an 

optimum portfolio; hence it is more rational to 

have an objective choice while selecting the 

assets to be included in the portfolio. Among 

many evaluation methods, Data Envelopment 

Analysis (DEA) is one of the best ways for 

assessing the relative efficiency a group of 

homogenous decision making units (DMUs) 

that use multiple inputs to produce multiple 

outputs, originated from the work by charnes 

et al. [2]. Cross-efficiency evaluation is 

effective way of ranking decision making units 

(DMUs). It allows the overall efficiencies of 

the DMUs to be evaluated through self- and 

peer-evaluations. The self-evaluation allows 

the efficiencies of the DMUs to be evaluated 

with the most favorable weights so that each of 

them can achieve its best possible relative 

efficiency, whereas the peer-evaluation 

requires the efficiency of each DMU to be 

evaluated with the weights determined by the 

other DMUs. Table (3.1) shows cross-

efficiency matrix for n DMUs with negative 

data. Traditional approaches for the cross-

efficiency evaluation do not differentiate 

between self-evaluated and peer-evaluated 

efficiencies. A significant problem with these 

approaches is that the weight assigned to the 

self-evaluated efficiency of each DMU is fixed 

and has no way of incorporating the DM’s or 

investor’s subjective preferences in to the 

evaluation. For example, the investors may 

wish self-evaluated efficiencies to account for 

20% or play a leading role in the final overall 

efficiency assessment. Obviously, equal 

evaluation has no method to obtain this 

purpose. To show the investor’s subjective 

preferences on different efficiencies, the use of 

OWA operator weights is stated for cross-

efficiency evaluation. This requires the re-

ordering of the efficiencies, both self-

evaluated and peer-evaluated, of each DMU, 

as shown in Table (3.2), where 1,..., nw w are 

OWA operator weights, ( , 1,..., )ij i j n  are 

re-ordered efficiencies of each DMU from the 

biggest to the smallest. Obviously, self-

evaluated efficiencies are always ranked in the 

first place, i.e. *

1 1,...,  i ii i n . In order to 

determine the weights of OWA operator, it is 

necessary for the investor to provide his/her 

preferences on different efficiencies or 

optimism level towards the best relative 

efficiencies. For example if the investor wants 
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the self-evaluated efficiencies to account for 

20% in the final overall efficiency assessment, 

then 1w should take 0.2, whereas the other 

weights can be designated minimax disparity 

approach. The orness degree can be regarded 

as a measure of the optimism level of the 

investor. If the investor wants to self-evaluated 

to be more influenced, it should be used of 

orness> 0.5. And if investor wants to peer-

evaluated to be more influenced, it should be 

used of orness< 0.5. Obviously, the best 

selection of stocks is not fixed. It varies with 

the investor’s optimism level or subjective 

performance.  

 

Table 3.1. cross-efficiency matrix for n DMUs 

with negative data 

D

M

U 

Target DMU average crosses 

efficiency with 

negative data 

 1 2 … n  

1 
11

 

12

                
… 1n

 

1
( ) 1

1n

n

k
k




 

2 
21

 

22

 
… 2n

 

1
( ) 21n

n

kk



 

. 

. 

. 

. 

. 

. 

. 

. 

. 

…  

. 

. 

. 

n 
1n

 

2n

 
… nn

 

1
( )

1n

n

nkk



 

 

 

 

 

 

 

Table 3.2.  Re-ordered cross-efficiency matrix 

of the n DMUs 

D

M

U 

Re-ordered efficiencies 

in descending order 
Weighted average 

cross efficiency 

 1st 2n

d 

 nt

h 

 

 
  1w    

2w  

…   

wn  

 

1 
11  12

                
… 1n

 

1
( ) 1

1n

n

k
k




 

2 

21
        

 22

 
… 2n

 

1
( ) 2

1n

n

k
k




 

. 

. 

. 

. 

. 

. 

. 

. 

. 

…  

. 

. 

. 

n 

1n  2n

 
… nn

 

1
( )

1n

n

nk
k




 

 

4. Application in Stocks Company 

We illustrate our approach in cross-efficiency 

evaluation in presence of negative data with 

OWA weight for a data set 20 Iranian stock 

companies. A list of stocks used is provided in 

Table (4.1). In this report, there is expected 

return and variance of stocks which expected 

return is considered as output and variance is 

as input. The example is received from Iranian 

stock companies and is about portfolio 

performance evaluation in a mean-variance 

framework. Three stocks are evaluated as 

efficient in model (2.11) as Mean-Variance 

RDM model (MV-RDM) which portfolio can 

be composed with them. But it is better to use 

cross-efficiency in presence of negative data to 

choose the best portfolio. Thus, we know that 

unlike return, variance is the only variable in 

the model that takes non-negative values. 
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Equation (2.13) is used for efficiency 

evaluation. In the analysis, the variance of the 

stocks is used as an input to the DEA and 

expected return is used as an output. 

Traditional approaches for the cross-efficiency 

evaluation do not differentiate between self-

evaluated and peer-evaluated efficiencies. A 

main problem with these approaches is that the 

weight assigned to the self-evaluated 

efficiency of each DMU is fixed and has no 

way of incorporating the investor’s subjective 

preferences in to the evaluation. Obviously, 

equal evaluation has no way to obtain this 

goal. To show the investor’s subjective 

preferences on different efficiencies, the use of 

OWA operator weights is stated for cross-

efficiency evaluation in Table (4.2). This 

requires the re-ordering of the efficiencies. 

The orness degree can be regarded as a 

measure of the optimism level of the investor. 

If the investor wants to self-evaluated to be 

more influenced, it should be used of orness> 

0.5. And if investor wants to peer-evaluated to 

be more influenced, it should be used of 

orness< 0.5. In the traditional equal of cross-

efficiencies, the weight assigned to the self-

evaluated efficiencies is only 0.05%
1

20

 
 
 

. 

For an optimistic investor, he/she may wish 

the self-evaluated efficiencies to play a more 

role in the final overall efficiency assessment. 

For example, the investor may wish the weight 

for the self-evaluated efficiencies to account 

for 20% rather than 0.05% in the final overall 

efficiency assessment. As it seen in Tables 

(4.3), (4.4) ranks are not the same. We 

calculated these ranks for .8o  and 0.2  . 

Some of the best ranks are designated 

according to investor. We consider six of the 

best ranks. Selecting of stocks to be included 

in portfolio is followed by six of the best ranks 

in Tables (4.5), (4.6) for 0.5 , 0.4   , 

respectively. 

Table 4.1. Descriptive statistics of the Iranian 

stock companies 
Stock companies Expected 

return 

Variance 

VNVIN 7.285 6.534 

VPARS 7.388 10.474 

 VBHMN -2.193 3.720 

VPASAR 10.853 4.256 

DGABR 12.517 32.259 

STRAN 9.052 70.764 

FBAHNR 52.511 57.497 

FMLI -3.676 19.609 

FVLAD 3.537 21.496 

KCHINI 7.57 67.378 

VTVSA 6.896 14.171 

VLSAPA 1.888 29.002 

VNFT 18.737 42.133 

VTGART 1.302 12.419 

VKHARZM 1.231 1.611 

VSAKHT 14.741 11.429 

KHSAPA 3.896 25.358 

VSINA 2.967 4.856 

RTKG 32.677 28.464 

VBMLT 2.022 1.56 
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Table 4.2. OWA operator weights for cross efficiency evaluation 

 0.9  0.8   0.7  0.6   0.5   0.4   0.3   0.2   0.1 

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

0.261 0.149 0.105 0.077 0.05 0.023 0 0 0 

0.221 0.137 0.099 0.074 0.05 0.026 0 0 0 

0.182 0.125 0.093 0.071 0.05 0.029 0.006 0 0 

0.143 0.113 0.087 0.069 0.05 0.031 0.012 0 0 

0.104 0.101 0.082 0.066 0.05 0.034 0.018 0 0 

0.064 0.089 0.076 0.063 0.05 0.037 0.024 0 0 

0.025 0.077 0.07 0.06 0.05 0.04 0.029 0 0 

0 0.065 0.064 0.057 0.05 0.043 0.035 0.004 0 

0 0.053 0.058 0.054 0.05 0.046 0.041 0.016 0 

0 0.041 0.053 0.051 0.05 0.049 0.047 0.029 0 

0 0.029 0.047 0.049 0.05 0.051 0.053 0.041 0 

0 0.016 0.041 0.046 0.05 0.054 0.058 0.053 0 

0 0.004 0.035 0.043 0.05 0.057 0.064 0.065 0 

0 0 0.029 0.04 0.05 0.06 0.07 0.077 0.025 

0 0 0.024 0.037 0.05 0.063 0.076 0.089 0.064 

0 0 0.018 0.034 0.05 0.066 0.082 0.101 0.104 

0 0 0.012 0.031 0.05 0.069 0.087 0.113 0.143 

0 0 0.006 0.029 0.05 0.071 0.093 0.125 0.182 

0 0 0 0.026 0.05 0.074 0.099 0.137 0.221 

0 0 0 0.023 0.05 0.077 0.105 0.149 0.261 

 
Table 4.3. Cross efficiency by optimism level of the investor for 0.5   

 
 Stock 

companie
s 

MV 

RDM 
Ranking 
RDM 

  0.9   0.8   0.7   0.6   0.5 Ranking 

  0.8 

1 VNVIN 0.89 7 0.812 0.837 0.850 0.856 0.860 5 

2 VPARS 0.83 9 0.765 0.786 0.796 0.795 0.792 8 

3 VBHMN 0.81 10 0.707 0.732 0.745 0.757 0.767 11 

4 VPASAR 1 2 0.911 0.942 0.958 0.969 0.980 2 

5 DGABR 0.65 14 0.622 0.630 0.632 0.615 0.597 13 

6 STRAN 0.41 20 0.399 0.399 0.397 0.381 0.364 20 

7 FBAHNR 1 3 0.916 0.892 0.879 0.778 0.728 4 

8 FMLI 0.62 17 0.579 0.591 0.597 0.590 0.583 17 

9 FVLAD 0.66 13 0.617 0.630 0.635 0.625 0.615 14 

10 KCHINI 0.43 19 0.414 0.415 0.414 0.398 0.382 19 

11 VTVSA 0.77 11 0.718 0.736 0.744 0.738 0.731 10 

12 VLSAPA 0.59 18 0.552 0.562 0.565 0.553 0.541 18 

13 VNFT 0.63 15 0.608 0.611 0.611 0.590 0.568 15 

14 VTGART 0.72 12 0.667 0.686 0.694 0.692 0.689 12 

15 VKHARZM 0.96 6 0.777 0.806 0.822 0.840 0.857 7 

16 VSAKHT 0.96 5 0.876 0.898 0.908 0.902 0.895 3 

17 KHSAPA 0.63 16 0.592 0.603 0.607 0.596 0.584 16 

18 VSINA 0.83 8 0.756 0.783 0.797 0.806 0.815 9 

19 RTKG 1 1 0.975 0.978 0.977 0.941 0.905 1 

20 VBMLT 0.96 4 0.790 0.820 0.836 0.854 0.871 6 
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Table 4.4. Cross efficiency by OWA operator weights for 0.4   
 

 Stock 

companies 

MV 

RDM 

Ranking 

RDM 
  0.4   0.3   0.2   0.1 Ranking

  0.2 

1 VNVIN 0.89 7 0.864 0.868 0.863 0.852 4 

2 VPARS 0.83 9 0.790 0.786 0.773 0.742 8 

3 VBHMN 0.81 10 0.778 0.788 0.794 0.803 7 

4 VPASAR 1 1 0.990 1.000 1.000 1.004 1 

5 DGABR 0.65 14 0.579 0.561 0.530 0.462 16 

6 STRAN 0.41 20 0.347 0.330 0.303 0.245 20 

7 FBAHNR 1 3 0.728 0.676 0.606 0.453 12 

8 FMLI 0.62 17 0.576 0.568 0.551 0.515 14 

9 FVLAD 0.66 13 0.605 0.594 0.572 0.524 13 

10 KCHINI 0.43 19 0.367 0.350 0.325 0.270 19 

11 VTVSA 0.77 11 0.725 0.717 0.699 0.658 10 

12 VLSAPA 0.59 18 0.529 0.516 0.493 0.442 17 

13 VNFT 0.63 15 0.547 0.524 0.489 0.412 18 

14 VTGART 0.72 12 0.686 0.682 0.669 0.640 11 

15 VKHARZ

M 

0.96 6 0.874 0.890 0.904 0.929 3 

16 VSAKHT 0.96 5 0.888 0.880 0.858 0.811 5 

17 KHSAPA 0.63 16 0.572 0.560 0.536 0.485 15 

18 VSINA 0.83 8 0.824 0.832 0.834 0.835 6 

19 RTKG 1 2 0.869 0.831 0.772 0.645 9 

20 VBMLT 0.96 4 0.889 0.906 0.919 0.946 2 

 

 

Table 4.5. Selecting the best assets for making portfolio for 0.5   
 

  Expected return Variance Ranking 

19  RTKG 32.677 28.464 1 

4 VPASAR 10.853 4.256 2 

16 VSAKHT 14.741 11.429 3 

7 FBAHNR 52.511 57.497 4 

1 VNVIN 7.285 6.534 5 

20 VBMLT 2.022 1.56 6 

 

 

Table 4.6. Selecting the best assets for making portfolio for 0.4   
 

  Expected return Variance Ranking 

4 VNVIN 7.285 6.534 1 

20 VBMLT 2.022 1.56 2 

15 VKHARZM 1.231 1.611 3 

1 VNVIN 7.285 6.534 4 

16 VSAKHT 14.741 11.429 5 

18 VSINA 2.967 4.856 6 
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5. Conclusion 

In this paper, a new method is suggested for 

selecting the best of portfolio with one input 

(variance) and one output (expected return) in 

the DEA context in presence negative data. 

The cross-efficiency evaluation is an important 

method for ranking DMUs in DEA. 

Traditional approaches for the cross-efficiency 

evaluation do not differentiate between self-

evaluated and peer-evaluated efficiencies. A 

main problem with these approaches is that the 

weight assigned to the self-evaluated 

efficiency of each DMU is fixed and has no 

way of incorporating the investor’s subjective 

preferences in to the evaluation. To show the 

investor’s subjective preferences on different 

efficiencies, the use of OWA operator weights 

is stated for cross-efficiency evaluation. In this 

case, if the investor wants to self-evaluated to 

be more influenced, it should be used of 

orness> 0.5. Thus, if investor wants to peer-

evaluated to be more influenced, it should be 

used of orness< 0.5. In Tables 8,9 rankings 

have been designated for six of the best  stocks 

via OWA operator weights in cross-efficiency 

evaluation in presence negative data. Since 

there are a large number of assets to invest in, 

this objective leads to two investment 

problems. First, the assets are selected for 

making portfolio and second, the proportion or 

weights are determined to be allocated to the 

selected assets. Selection of assets to be 

included in portfolio is followed by using 

cross-efficiency evaluation. Model (2.10) is 

used for this purpose. In this regard, this model 

is used to analyze the given 20 Iranian stock 

companies and six of the best stocks are 

obtained.  
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