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Abstract 

 

   Negative data handling has gained a remarkable importance in the literature of Data Envelopment 

Analysis (DEA) to address many real life problems. Various erstwhile applications, in this arena, 

referred relocation of the origin to a superior (RDM) or to an inferior (Translated Input Oriented BCC) 

neighboring point. In this paper, the conditions for Rotation Invariance of various Data Envelopment 

Analysis models are discussed. Specifically, in presence of partially negative data, a rotation using the 

Cone Ratio model, beyond a threshold value of the oblique index does not alter the efficient frontier. 

So, a solution can be obtained without relocating the origin. In this context, two models, termed as Input 

Oriented BCC model with Relocated Origin  (IOBCC-RO) and Input oriented BCC model with Rotated 

Axis (IOBCC-RA), are applied on a case of "the notional effluent processing system" (from Sharp et al 

(2006)) to observe their impact on the radial efficiency scores. 

  

Keywords: Data Envelopment Analysis, BCC DEA models, CCR DEA models, Translation 

Invariance, Rotation Invariance, Partially negative Data, Input Oriented RDM. 

1. Introduction 

   The term “Data envelopment analysis” (DEA) started gaining its momentum when Farrell M. J. 

(1957) [6] constructed linear models for expressing "An efficient production function" from a set of 

observed homogenous firms to identify Efficient ones. Later on, Charnes et al. (1978) [3] compared the 

performance of students from participating and non-participating schools using two models (a nonlinear 

model and a linear programming-based approach). Depending on the transformation process, a Decision 
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Making Unit (DMU) is called an efficient performer if it uses fewer quantities of each input to generate 

the same set of outputs or produces more outputs from the same set of input resources than its rivals. 

The assumption of constant return on scale (CRS) was the basis for setting linear equations. Later on, 

it was extended by Banker et al. (1984) [2] (BCC model) to variable scaling techniques (increasing and 

decreasing return to scale, scale efficiency etc).  

 Till the year of 1989 the application of DEA was restricted to the nonnegative data as DMU scoring 

negative value on a variable were eliminated. The combined effort of Ali and Seiford (1990) [1] (and 

Cooper et al (2011) [4]) added a new property in DEA called “Translational Invariance”. However, they 

never made any comments on zero or on negative data. Pastor (1993) [9] was the first who applied this 

theorem to all three basic models of DEA for solving the problem of measuring the performances of 23 

bank branches. A data transformation process was applied to turn the negative values into positive 

values. Moreover, he showed (Pastor (1996) [10]) that a displacement does not alter the efficient frontier 

for certain DEA formulations (specifically, the additive model for both inputs and outputs and the BCC 

model for outputs (inputs) is any input (output) is mixed data (combined with positive and negative)) 

and thus these approaches are translation invariant. Though, additive models were found most efficient 

in this regard, the solution was not unit invariant and “it yields in respect of an inefficient unit the 

‘furthest’ targets on the production frontier” [Portela et al (2004) [11]]. Halme et al., (1998) [7] proposed 

a priori approach for dealing with interval scale variables which presented an opportunity to represent 

an interval variable with the subtraction of two ratio scale variables. An extra output (input) was 

generated due to the negative input scale (output) variable. This model is indeed legitimate for non-

discretionary interval variables as radial DEA models are not symmetrical with respect to input or 

outputs (Zhu. J, and Cook. W. D (2007)) [15]. Few eminent authors also argued to use very small 

positive numbers in place of a negative output as both of them do not contribute much in framing higher 

efficiency score. A completely new thought came up as Portela et al. (2004) [11], proposed a Range 

Directional Model, based on directional distance functions from a so called Ideal point, for helping a 

Portuguese bank to manage the performance of its branches. The bank wanted to set targets for the 

branches on such variables as growth in number of clients, growth in funds deposited and so on. These 

variables could take positive and negative values, preventing the use of traditional DEA. They pointed 

out inefficiency of a firm in comparison to deviation seen from the Ideal point in the context of input 

as well as output. They developed two variants of a range directional measure (RDM) model. One 

version, labelled as RDM+, is for the cases where targets are sought to improve those variables where 

the DMU is furthest from best attainable levels while a second, labelled as RDM-, is for cases where 

improvement is prioritised for variables where the DMU is closest to best attainable levels. Sharp et al. 

(2006) [13] introduced a slack-based model which was both unit invariant and translation invariant in 

nature. As a derivative of RDM+ approach of Portela et al. (2004) [11], a modified slack-based measure 
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(MSBM) was proposed, which could provide an efficiency score between 0 and 1, even in the presence 

of negative outputs and negative inputs. A semi-oriented radial measure, proposed by Emrouznejad, A., 

Anouze, A. L. (2010) [5], addressed the radial measure on the positive and negative parts on a variable 

rather than on the main variable. Though, it could not ensure the Pareto Efficient Solution but was able 

to handle a negative part of a variable in a positive format. Matin R. K, Azizi R (2010) [8] presented a 

new two phase approach based on a modified version of the classical additive DEA model. It allowed 

a Decision Maker to set a target for up to a specific (here positive) level of a subset of input/ output 

variables for the benchmarks.  

 In this context, under the condition of partial negative data, two formulations, termed as relocation and 

rotation based Input Oriented BCC DEA models, are introduced to assess their performances. Partial 

negative data literally means that there has to be at least one input (output) in which all DMUs posses 

strictly positive or nonnegative values. Being another variation of relocation, the former model, which 

is also termed as an input oriented RDM+ model, measures the efficiency score from a preconceived 

reference point (which is away from the origin). The later one applies a rotational property on the same 

data and makes it worthy of using BCC model. Moreover, eminent researchers have classified CCR 

model and Slack Based Additive Models as translation unworthy and worthy models. But, the new 

process makes them eligible for handling the negative data. The first example, referred here, not only 

approves the theoretical proofs to display the identical outcomes in cases like with and without rotation 

but also yields the Transformation Matrix which can be used for relating their dual prices. This step of 

predicting the dual prices for the later one is found mandatory as Production Possibility Set may get 

changed due to rotation. In the second example, the data of "the notional effluent processing system" is 

revisited to cite reasons which account for having radial efficiency scores of the three variations of the 

proposed VRS models to lay within the radial scores derived from RDM+ and MSBM.  

 

2. Definitions and Theorems:  

2.1. Data Envelopment Analysis with BCC Model  

From an assumption of constant returns to scale, Banker et al (1984) [2] found proportional changes in 

weighted output that derive  

 

Primal form Dual form 

𝑀𝑎𝑥 ℎ0 = (∑ 𝑞𝑗. 𝑦𝑟𝑗
𝑚
𝑗=1 ) − 𝑤0  𝑀𝑖𝑛 𝜃0 − 𝜖(∑ 𝑆𝑖

𝑣
𝑖=1 + ∑ 𝑆𝑗

𝑚
𝑗=1 )  

http://www.deazone.com/tutorial/the.htm
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Subjected to: ∑ 𝑣𝑗 . 𝑅𝑟𝑗
𝑣
𝑗=1 = 1;  

∑ 𝑢𝑖 . 𝑅𝑟𝑖
𝑣
𝑖=1 ≥ ∑ 𝑞𝑗 . 𝑦𝑟𝑗

𝑜𝑏𝑠𝑚
𝑗=1 + 𝑤0;  

𝑢𝑖 , 𝑞𝑗 ≥ 𝜖; 𝑤0 = 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 

Where𝜖 = 𝑛𝑜𝑛 − 𝐴𝑟𝑐ℎ𝑒𝑚𝑒𝑑𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 

For any DMU r 

Subjected to: 𝜃0. 𝑅𝑟𝑖 + 𝑆𝑖 =

∑ 𝜆𝑟 . 𝑅𝑟𝑖
𝑐
𝑟=1 ; 𝑆𝑖, 𝜆𝑟 ≥ 0  

For any jth input 𝑖 = 1,2…𝑣 

𝑦𝑟𝑗
𝑜𝑏𝑠 = 𝑆𝑗 + ∑ 𝜆𝑟 . 𝑦𝑟𝑗

𝑜𝑏𝑠𝑐
𝑟=1  𝑓𝑜𝑟 𝑗 = 1,2…𝑚  

𝑆𝑖 ≥ 0 𝑓𝑜𝑟 𝑗 = 1,2…𝑚; ∑ 𝜆𝑟
𝑐
𝑟=1 = 1;  

from the alterations in weighted inputs. The algebraic models of VRS (Variable Return to Scale) for c 

DMUs (each of which consumes v inputs given by the 𝑅 = [𝑅𝑟𝑖]𝑐,𝑣to generate m outputs given by 𝑌 =

[𝑦𝑟𝑗
𝑜𝑏𝑠]𝑐,𝑚) are shown above. 

2.2. A BCC-Efficient Unit 

A DMU is called BCC-efficient if θ* = 1, and if there exists at least one optimal solution (u*, q*), for 

which u* > 0 and q*> 0, otherwise, the DMU in question is considered to be BCC-inefficient. A Solution 

(u*, q*) from BCC-inefficient units (θ*< 1), must necessarily involve at least one DMU (known as a 

peer group) within the given set that manages to yield weighted outputs that are equivalent to its 

weighted inputs. The set of peer groups is specified as: 𝐸0
′ = {𝑟: ∑ 𝑞𝑗𝑦𝑟𝑗

𝑜𝑏𝑠𝑚
𝑗=1 = ∑ 𝑢𝑖𝑅𝑟𝑖

𝑣
𝑖=1 } 

2.3. Range Directional Model (RDM+) 

The expression of RDM+ is dependent on the selection of the best option which plays a key role to 

assess the performance of a DMU (the model is given below (Portela et al (2004)) [11]). By means of 

𝛽0 inefficiency of a DMU is measured. Any type of slack is represented as a proportion of the deviation 

from an Ideal Performer. However, it does show up with a score which signifies weakest arena of 

performance.    

 

𝑀𝑎𝑥 𝛽0  

Subjected to: 

𝑅𝑜𝑖 ≥ ∑ 𝜆𝑟 . 𝑅𝑟𝑖
𝑐
𝑟=1 + 𝛽0(𝑅𝑟𝑜 − 𝑅𝑀𝐼𝑁,𝑖); 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑠𝑖𝑔𝑛 𝑜𝑓 𝑅𝑟𝑖(𝑓𝑜𝑟 𝑟 = 1,2… 𝑐)    

for any jth input 𝑖 = 1,2…𝑣; 𝛽0 = 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑; ∑ 𝜆𝑟
𝑐
𝑟=1 = 1; 

𝑦𝑜𝑗 ≤ ∑ 𝜆𝑟 . 𝑦𝑟𝑗
𝑐
𝑟=1 − 𝛽0(𝑦𝑚𝑎𝑥,𝑗 − 𝑦𝑜𝑗); 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑠𝑖𝑔𝑛 𝑜𝑓 𝑦𝑟𝑗(𝑓𝑜𝑟 𝑟 = 1,2… 𝑐)   

2.4. Translation Invariance 

Given any problem, a DEA model is said to be translation invariant if translating the original input 

and/or output values results in a new problem that has the same optimal solution for the envelopment 

form as the old one. Unlike a CCR model, an Additive model and an RDM+ are capable of presenting 

such property. An Input (Outputs) Oriented BCC model can display it when Outputs (Inputs) are 

negative.  
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2.5. Partially Negative Data 

Input (Output) Constraints are classified here into four categories for example, strictly positive data 

(which has all strictly positive input (Output) elements), nonnegative data (which has a mix of positive 

or zero input (Output) elements), mixed data (which has both positive as well as negative input (Output) 

elements) and strictly negative data (which has all strictly negative input (Output) elements). If the input 

(output) data set contains at least one input (output) (not all), in which all DMUs are strictly positive or 

non-negative, is called Partially Negative data.  

2.6. Rotation Invariance 

Given any problem of a Partially Negative Data, a DEA model is said to be Rotation invariant if, 

Rotating any non-negative input and/or output axes (beyond a threshold angle) with respect to a negative 

input (output) data results in a new problem that has the same optimal solution for the envelopment 

form as the old one.      

 

3. Proposed Model 

   In the perspective of partial negative data two variations of BCC model are applied here for making 

a comparison. The first section elaborates on a new BCC DEA model which is based on the relocation 

of the origin. The next one shows its similarity with an Input oriented RDM+ model whereas the third 

section discusses on the impact of rotation. Few tests are made here to clarify their translation, Unit and 

Rotation based Invariance. 

3.1.1. Input Oriented Range Directional Model  

An input oriented RDM+ is conceived from the notion of enumerating mix inefficiency pertaining to 

utilization of inputs (in comparison to a so called best user (real or hypothetical consumer of inputs)) in 

producing same amount of output or more of the considered DMU. This model is expressed as follows:  

𝑀𝑎𝑥 𝛽0  

Subjected to: 

𝑅𝑜𝑖 ≥ ∑ 𝜆𝑟 . 𝑅𝑟𝑖
𝑐
𝑟=1 + 𝛽0(𝑅𝑜𝑖 − 𝑅𝑀𝐼𝑁,𝑖); 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑠𝑖𝑔𝑛 𝑜𝑓 𝑅𝑟𝑖(𝑓𝑜𝑟 𝑟 = 1,2… 𝑐)  

Or (1 − 𝛽0)(𝑅𝑜𝑖 − 𝑅𝑀𝐼𝑁,𝑖) ≥ ∑ 𝜆𝑟 . (𝑅𝑟𝑖 − 𝑅𝑀𝐼𝑁,𝑖)
𝑐
𝑟=1     

for any jth input 𝑖 = 1,2…𝑣; 𝛽0 = 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑; ∑ 𝜆𝑟
𝑐
𝑟=1 = 1; 

𝑦𝑜𝑗 ≤ ∑ 𝜆𝑟 . 𝑦𝑟𝑗
𝑐
𝑟=1 ; 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑠𝑖𝑔𝑛 𝑜𝑓 𝑦𝑟𝑗(𝑓𝑜𝑟 𝑟 = 1,2… 𝑐)   

In order to make Input Oriented BCC DEA model applicable here, a suitable translation of the output 

data and a following choice of 𝑅𝑀𝐼𝑁,𝑖 are necessary:   
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𝑅𝑀𝐼𝑁,𝑖 = {

0 𝑖𝑓 𝑅𝑟𝑖 ≥ 0

−max
𝑖

(|𝑅𝑟𝑖|) = −
𝑎𝑖

2
𝑖𝑓 ∞ ≥ 𝑅𝑟𝑖 ≥ −∞

−max
𝑖

(|𝑅𝑟𝑖|) = − 𝑎𝑖 𝑖𝑓 0 ≥ 𝑅𝑟𝑖 ≥ −∞

}  

The resulting model shown below apparently looks like as if the original data was translated.  

𝑀𝑖𝑛 𝛽0  

Subjected to: 𝛽0𝑅𝑜𝑖 ≥ ∑ 𝜆𝑟 . 𝑅𝑟𝑖
𝑐
𝑟=1 ; 𝑤ℎ𝑒𝑟𝑒 𝑅𝑟𝑖 ≥ 0  

𝛽0 (𝑅𝑜𝑖 +
𝑎𝑖

2
) ≥ ∑ 𝜆𝑟 . (𝑅𝑟𝑖 +

𝑎𝑖

2
)𝑐

𝑟=1 ;  𝑖𝑓 ∞ ≥ 𝑅𝑟𝑖 ≥ −∞  

𝛽0(𝑅𝑜𝑖 + 𝑎𝑖) ≥ ∑ 𝜆𝑟 . (𝑅𝑟𝑖 + 𝑎𝑖)
𝑐
𝑟=1 ;  𝑖𝑓 0 ≥ 𝑅𝑟𝑖 ≥ −∞  

𝜆𝑟 ≥ 0  and ∑ 𝜆𝑟
𝑐
𝑟=1 = 1; for any jth input 𝑖 = 1,2…𝑣; 

𝛽0 = 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑;  𝑦𝑟𝑗
′ ≤ ∑ 𝜆𝑟 . 𝑦𝑟𝑗

′𝑐
𝑟=1  𝑓𝑜𝑟 𝑗 = 1,2…𝑚 𝑤ℎ𝑒𝑟𝑒 𝑦𝑟𝑗

′ = 𝑦𝑟𝑗 + 𝑘𝑗 ≥ 0   

 

3.2. Translation Invariance and Unit Invariance properties: IO-RDM model is Translation Invariant 

as the original form can be retrieved, if a small movement 𝑡𝑖 , is made for any ith input variable (shown 

below).  

 

Translated Input Oriented BCC DEA Model 

𝛽0(𝑅𝑜𝑖 + 𝑡𝑖 − (0 + 𝑡𝑖)) ≥ ∑ 𝜆𝑟 . (𝑅𝑟𝑖 + 𝑡𝑖 − (0 + 𝑡𝑖))
𝑐
𝑟=1 ; 𝑤ℎ𝑒𝑟𝑒 𝑅𝑟𝑖 ≥ 0  

𝛽0𝑅𝑜𝑖 ≥ ∑ 𝜆𝑟 . (𝑅𝑟𝑖)
𝑐
𝑟=1 ;  

𝛽0 (𝑅𝑜𝑖 + 𝑡𝑖 +
𝑎𝑖

2
− 𝑡𝑖) ≥ ∑ 𝜆𝑟 . (𝑅𝑟𝑖 + 𝑡𝑖 +

𝑎𝑖

2
− 𝑡𝑖)

𝑐
𝑟=1 ; 𝑖𝑓 ∞ ≥ 𝑅𝑟𝑖 ≥ −∞   

𝛽0 (𝑅𝑜𝑖 +
𝑎𝑖

2
) ≥ ∑ 𝜆𝑟 . (𝑅𝑟𝑖 +

𝑎𝑖

2
)𝑐

𝑟=1 ;  

𝛽0(𝑅𝑜𝑖 + 𝑡𝑖 + 𝑎𝑖 − 𝑡𝑖) ≥ ∑ 𝜆𝑟 . (𝑅𝑟𝑖 + 𝑡𝑖 + 𝑎𝑖 − 𝑡𝑖)
𝑐
𝑟=1 ; 𝑖𝑓 0 ≥ 𝑅𝑟𝑖 ≥ −∞   

𝛽0(𝑅𝑜𝑖 + 𝑎𝑖) ≥ ∑ 𝜆𝑟 . (𝑅𝑟𝑖 + 𝑎𝑖)
𝑐
𝑟=1 ;  

𝜆𝑟 ≥ 0 𝑎𝑛𝑑  ∑ 𝜆𝑟
𝑐
𝑟=1 = 1; 

This model is unit invariant too, as any ith input of all levels and jth output of all levels are if multiplied 

by constants like, 𝑡′𝑖 𝑎𝑛𝑑 𝜏𝑗 respectively then also the basic form of equalities and inequalities do not 

change their original form (shown below).  

 

Input Oriented BCC DEA Model 

𝛽0(𝑅𝑜𝑖𝑡
′
𝑖) ≥ ∑ 𝜆𝑟 . (𝑅𝑟𝑖𝑡

′
𝑖)

𝑐
𝑟=1 𝑤ℎ𝑒𝑟𝑒 𝑅𝑟𝑖 ≥ 0  
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𝛽0𝑅𝑜𝑖 ≥ ∑ 𝜆𝑟 . (𝑅𝑟𝑖)
𝑐
𝑟=1   

𝛽0 (𝑅𝑜𝑖 +
𝑎𝑖

2
) 𝑡′𝑖 ≥ ∑ 𝜆𝑟 . (𝑅𝑟𝑖 +

𝑎𝑖

2
)𝑐

𝑟=1 𝑡′𝑖; 𝑖𝑓 ∞ ≥ 𝑅𝑟𝑖 ≥ −∞    

𝛽0 (𝑅𝑜𝑖 +
𝑎𝑖

2
) ≥ ∑ 𝜆𝑟 . (𝑅𝑟𝑖 +

𝑎𝑖

2
)𝑐

𝑟=1 ;  

𝛽0(𝑅𝑜𝑖 + 𝑎𝑖)𝑡′𝑖 ≥ ∑ 𝜆𝑟 . (𝑅𝑟𝑖 + 𝑎𝑖)
𝑐
𝑟=1 𝑡′𝑖; 𝑖𝑓 0 ≥ 𝑅𝑟𝑖 ≥ −∞    

𝛽0(𝑅𝑜𝑖 + 𝑎𝑖) ≥ ∑ 𝜆𝑟 . (𝑅𝑟𝑖 + 𝑎𝑖)
𝑐
𝑟=1 ;  

𝑦𝑜𝑗𝜏𝑗 ≤ ∑ 𝜆𝑟 . 𝑦𝑟𝑗𝜏𝑗
𝑐
𝑟=1  or 𝑦𝑜𝑗 ≤ ∑ 𝜆𝑟 . 𝑦𝑟𝑗

𝑐
𝑟=1  

3.2. Rotated Input oriented BCC model 

The process of rotation, in the proposed model, is briefed as follows: 

 Step-1: Find constraints with strictly positive input data. Go to step 2 it is available.  Go 

to step 3 if it is not found. 

 Step-2: Select any one if more than one is available. Go to step 4. 

 Step-3: Select any one nonnegative constraint which has less number of zeros.  Replace 

each zero with a very small positive number. Go to step 4.   

 Step-4: Add a slack variable to the constraint to make it linear. 

 Step-5: Make all constraints with negative and mixed input data into positive data by 

 choosing a suitable number. 

 Step-6: The BCC model is applied with the new set of constraints.  

The distinction between two forms (with and without rotation) are displayed below. The multiplication 

of 𝑘𝑖′ (having same unit of the corresponding resource) with a unit less number 
𝑅𝑟𝑞

𝑎𝑞
 is essentially made 

to convert any remaining input equation (having mixed data) into positive ones. 

Without Rotation With Rotation 

𝑀𝑖𝑛 𝜃0  𝑀𝑖𝑛 𝜃0  

Subjected to: 

 𝜃0𝑅𝑜𝑖 ≥ ∑ 𝜆𝑟 . 𝑅𝑟𝑖
𝑐
𝑟=1 ; 𝑓𝑜𝑟 𝑟 =

1,2… 𝑐  

𝑓𝑜𝑟 𝑖 = 1,2…𝑣1; 𝑅𝑟𝑖 ≥ 0; 

𝜃0𝑅𝑜𝑖′ ≥ ∑ 𝜆𝑟 . 𝑅𝑟𝑖′
𝑐
𝑟=1 ;  

𝐹𝑜𝑟 𝑖′ = 𝑣1(𝑣1 + 1),… 𝑣; when 

 ∞ ≥ 𝑅𝑟𝑖′ ≥ −∞ 

 𝑦𝑟𝑗
𝑜𝑏𝑠 ≤ ∑ 𝜆𝑟 . 𝑦𝑟𝑗

𝑜𝑏𝑠𝑐
𝑟=1   

Subjected to: 

 𝜃0𝑅𝑜𝑖 ≥ ∑ 𝜆𝑟 . 𝑅𝑟𝑖
𝑐
𝑟=1 ; 𝑓𝑜𝑟 𝑟 = 1,2… 𝑐  

𝑓𝑜𝑟 𝑖 = 1,2… (𝑞 − 1), (𝑞 + 1)…𝑣1;  

𝜃0𝑅𝑜𝑞 = 𝑆1 + ∑ 𝜆𝑟 . 𝑅𝑟𝑞
𝑐
𝑟=1 ; such that 𝑅𝑟𝑖 ≥ 0; 

𝜃0 (𝑅𝑜𝑖′ + 𝑘𝑖′
𝑅𝑜𝑞

𝑎𝑞
) ≥ ∑ 𝜆𝑟 . (𝑅𝑟𝑖′ + 𝑘𝑖′

𝑅𝑟𝑞

𝑎𝑞
)𝑐

𝑟=1 + 𝑘𝑖′𝑆1  

Such that, (𝑅𝑟𝑖′ + 𝑘𝑖′
𝑅𝑟𝑞

𝑎𝑞
) ≥ 0  

𝐹𝑜𝑟 𝑖′ = (𝑣1 + 1),…𝑣;𝑤ℎ𝑒𝑛 ∞ ≥ 𝑅𝑟𝑖′ ≥ −∞ 
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𝑓𝑜𝑟 𝑗 = 1,2…𝑚;  

 ∑ 𝜆𝑟
𝑐
𝑟=1 = 1;  

 𝜆𝑟 ≥ 0; 

 𝑦𝑟𝑗
𝑜𝑏𝑠 ≤ ∑ 𝜆𝑟 . 𝑦𝑟𝑗

𝑜𝑏𝑠𝑐
𝑟=1  𝑓𝑜𝑟 𝑗 = 1,2…𝑚;  

 ∑ 𝜆𝑟
𝑐
𝑟=1 = 1; 𝜆𝑟 ≥ 0;  

Any linear combination with such a linear constraint with other non-positive constraints will never 

change the magnitude of slacks at the optimal step and thus their original dual price remain same even 

after such changes (Theorem 3).    

The reason for making these changes is shown in the subsequent Figure (Figure 1). This problem is 

basically a partially Negative Data Problem as there is one positive input (on X axis). Here an input 

oriented frontier is created by A and D among Four DMUs. Each of them is producing unit amount of 

an output. The former model would like to solve it by shifting away the origin to a superior point O'. 

This Relocation prevents the penetration of Y axis (showing Nonnegative data) into the frontier. But, 

in the later one, the origin is being kept at its place and the orientation of two axes is changed so that all 

allotted points can remain one side of them. This concept is essentially true as the technology, initially, 

was accepting those points which are not totally Pareto efficient than the Origin (Here, B and C, are 

Pareto inferior than O, but, the other two are not.). Thus, it becomes imperative to rotate the vertical 

axis to accommodate all points provided here (A new system is created from the primary system by 

offering a rotation to the variable which possesses nonnegative data). This process ultimately makes the 

origin O superior than the DMUs considered before. Therefore, it does not offer any hindrance to apply 

the normal BCC DEA model. And it will no longer be an undesirable event which compels to choose 

radial directions which may cause increase in one input due to the reduction in the other (violation of 

normal rules of DEA). Assuming that any point which had a location (L1, L2) on the basis of old 

coordinate system now gets value (K1, K2). The relationship is defined as below: 

𝐾1 = 𝐿1 − 𝐿2. 𝐶𝑜𝑡𝛽;𝐾2 = 𝐿2. 𝐶𝑜𝑠𝑒𝑐𝛽; 180° ≥ 𝛽 ≥ 90° 

The rotation makes the internal angle obtuse which ultimately increases the magnitude from L1 to K1. 

It is important to note that the reference point O' is much better than the origin O of the old system. 

Thus, it is obvious that the current system will provide less efficiency score than the old one. The later 

model is apparently looking like an intermediate BCC model which can be used before shifting the 

origin to a superior point (suggested by IO-RDM). The necessity of switching over to the former two 

models is due to the violation of the basic requirement of not having at least one nonnegative input data. 

If all of them are of mixed type (Y axis can also assume take negative as well as positive data), then 

there may be at least one point which possesses Pareto-superiority than O. Under such circumstances 

O can never be Pareto Superior than all provided points. This would compel the transfer of the origin 

from O to elsewhere.   

3.2.1. Rotation Invariance 
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Given any problem, a DEA model is said to be rotation invariant if rotating the derived nonnegative 

input constraint (from averaging) (beyond certain angle) with respected to the mixed input data results 

in a new problem that has the same optimal solution for the envelopment form as the old one. 

Proof: Let there be a partially negative input data. Then according to the steps stated before any ith 

mixed input data can be converted into a nonnegative data (shown below) by providing a least number 

𝑘𝑖.     

𝜃0 (𝑅𝑜𝑖 + 𝑘𝑖
𝑅𝑜𝑞

𝑎𝑞
) ≥ ∑ 𝜆𝑟 . (𝑅𝑟𝑖 + 𝑘𝑖

𝑅𝑟𝑞

𝑎𝑞
)𝑐

𝑟=1  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (𝑅𝑟𝑖 + 𝑘𝑖
𝑅𝑟𝑞

𝑎𝑞
) ≥ 0  

The rotation invariance can be shown by rewriting this inequality in the following way: 

𝜃0 (𝑅𝑜𝑖 + 𝑘𝑖
𝑅𝑜𝑞

𝑎𝑞
) ≥ ∑ 𝜆𝑟 . (𝑅𝑟𝑖 + 𝑘𝑖

𝑅𝑟𝑞

𝑎𝑞
)𝑐

𝑟=1 − 𝜖𝑘𝑖 (𝜃0
𝑅𝑜𝑞

𝑎𝑞
− ∑ 𝜆𝑟 .

𝑅𝑟𝑞

𝑎𝑞

𝑐
𝑟=1 )  

Here, 𝜖 is a small non-negative value. The rearrangement of terms gives the next expression. 

𝜃0 (𝑅𝑜𝑖 + (1 + 𝜖𝑖)𝑘𝑖
𝑅𝑜𝑞

𝑎𝑞
) ≥ ∑ 𝜆𝑟 . (𝑅𝑟𝑖 + (1 + 𝜖𝑖)𝑘𝑖

𝑅𝑟𝑞

𝑎𝑞
)𝑐

𝑟=1   

This inequality is having a near identical form with the one stated before. A replacement of 𝑘𝑖with a 

larger positive number (1 + 𝜖𝑖)𝑘𝑖 has happened here. Thus, any positive number which is larger than 

𝑘𝑖 is worthy of consideration.  

 

4. Effect of Rotation on the BCC, CCR and Additive Models 

   In this section the primary focus is to notice whether the previously described rotation process makes 

any change in the optimal solutions from the BCC, CCR and Additive models or not. In this regard, the 

following theoretical proofs will be quite relevant. 

Theorem 1: The optimal solution from the Rotated BCC or CCR model in a partial negative data 

problem remains same as its original output.   

Proof: The mathematical form of a CCR DEA model is given below:  

𝑀𝑖𝑛 = 𝜃0 − 𝜖(𝑒1
𝑇. 𝑆1 + 𝑒2

𝑇 . 𝑆2 + 𝑒′𝑇 . 𝑆′)  

𝜃0. 𝑋01 = ∑ 𝑋𝑟1
𝑐
𝑟=1 . 𝛾𝑟 + 𝑆1  

𝜃0. 𝑥𝑜𝑡 = ∑ 𝑥𝑟𝑡
𝑐
𝑟=1 . 𝛾𝑟 + 𝑆3 + 𝑆  

𝜃0. 𝑋02 = ∑ 𝑋𝑟2
𝑐
𝑟=1 . 𝛾𝑟 + 𝑆2  

𝑌0 = ∑ 𝑌𝑟
𝑐
𝑟=1 . 𝛾𝑟 − 𝑆′  

In the above problem, 𝑋𝑟1 𝑎𝑛𝑑 𝑋𝑟2 represent the mixed and nonnegative type of Input data. Matrix 

form of the above model is shown below: 
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[
 
 
 
 

−1 0 𝜖 𝜖 𝜖 0 0
0 −𝑌 𝐼 0 0 0 0

−𝑋01

−𝑥𝑜𝑡

−𝑋02

𝑋1

𝑥𝑟𝑡

𝑋2

0
0

𝐼
0

0 0 0
0 1 1

0 0 𝐼 0 0]
 
 
 
 

[
 
 
 
 
 
 
𝜃
𝛾

𝑆′
𝑆1

𝑆2

𝑆3

𝑆 ]
 
 
 
 
 
 

= [

0
−𝑌0

0
0

]  

To reveal the impact of rotation (using Cone Ratio model) the Input Equations are separately mentioned 

in terms of a Matrix.  

[
−𝑥𝑜𝑡 𝑥𝑟𝑡 1 1 0
−𝑋02 𝑋2 0 0 𝐼

]

[
 
 
 
 
𝜃
𝛾
𝑆1

𝑆
𝑆2]

 
 
 
 

= [
0
0
]  𝑎𝑛𝑑 𝑙𝑒𝑡 ∅ = [

1 0
𝐵 𝐼

] 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∅−1 = [
1 0

−𝐵 𝐼
]    

A new input matrix is generated by multiplying it with the matrix ∅ (given above).    

[
1 0
𝐵 𝐼

] [
−𝑥𝑜𝑡 𝑥𝑡 1 1 0
−𝑋02 𝑋2 0 0 𝐼

]

[
 
 
 
 
𝜃
𝛾
𝑆1

𝑆
𝑆2]

 
 
 
 

= [
1 0
𝐵 𝐼

] [
0
0
] = [

0
0
]  

Letting, [
𝑥𝑜𝑡

′

𝑋02
] = [

1 0
𝐵 𝐼

] [
𝑥𝑜𝑡

𝑋02
] and [

𝑥𝑡
′

𝑋2
] = [

1 0
𝐵 𝐼

] [
𝑥𝑡

𝑋2
], 𝑥𝑜𝑡

′𝑎𝑛𝑑 𝑥𝑡
′can be shown as: 

According to the definition, 𝐵 is given by a column matrix shown below: 

𝐵 = [

𝑘1

⋮
𝑘𝑣1

]  𝑎𝑛𝑑 𝑘𝑔 > 0  

In this relation 𝑘𝑔 is selected in such a manner that 𝑋01
′ ≥ 0 can be established.  

A more elaborated form this matrix is shown below which is applicable to the complete form containing 

Objective Function, Input constraints etc.  

   𝜎 =

[
 
 
 
 
1 0 0 0 0
0 𝐼 0 0 0
0
0
0

0
0
0

𝐼
0

0
1

0 𝐵

0
0
𝐼]
 
 
 
 

; 𝜎 is invertible and 𝜎−1 =

[
 
 
 
 
1 0 0 0 0
0 𝐼 0 0 0
0
0
0

0
0
0

𝐼
0

0
1

0 −𝐵

0
0
𝐼]
 
 
 
 

 

The multiplication of 𝜎 will lead to the rotation to the nonnegative input data set with respect to the 

mixed data set and which in turn will make them to become nonnegative data. It is obvious from here 

that in spite of this multiplication the value of the right hand side does not change.  
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[
 
 
 
 
1 0 0 0 0
0 𝐼 0 0 0
0
0
0

0
0
0

𝐼
0

0
1

0 𝐵

0
0
𝐼]
 
 
 
 

[
 
 
 
 

−1 0 𝜖 𝜖 𝜖 0 0
0 −𝑌 𝐼 0 0 0 0

−𝑋01

−𝑥𝑜𝑡

−𝑋02

𝑋1

𝑥𝑡

𝑋2

0
0

𝐼
0

0 0 0
0 1 1

0 0 𝐼 0 0]
 
 
 
 

[
 
 
 
 
 
 
𝜃
𝛾

𝑆′
𝑆1

𝑆2

𝑆3

𝑆 ]
 
 
 
 
 
 

=

[
 
 
 
 
1 0 0 0 0
0 𝐼 0 0 0
0
0
0

0
0
0

𝐼
0

0
1

0 𝐵

0
0
𝐼]
 
 
 
 

[
 
 
 
 

0
−𝑌0

0
0
0 ]

 
 
 
 

  

[
 
 
 
 

−1 0 𝜖 𝜖 𝜖 0 0
0 −𝑌 𝐼 0 0 0 0

−𝑋01

−𝑥𝑜𝑡

−𝑋′02

𝑋1

𝑥𝑡

𝑋′2

0
0

𝐼
0

0 0 0
0 1 1

0 0 𝐼 0 0]
 
 
 
 

[
 
 
 
 
 
 
𝜃
𝛾

𝑆′
𝑆1

𝑆2

𝑆3

𝑆 ]
 
 
 
 
 
 

=

[
 
 
 
 

0
−𝑌0

0
0
0 ]

 
 
 
 

  

In order to make Revised Simplex Technique applicable in this problem, the following divisions are 

necessary: 

 [
−1 𝐶
𝑃 𝑃′

] [
𝜃
𝛿
] = [

0
∇
] ; where, 𝑃 = −[

0
𝑋01

𝑥𝑜𝑡

𝑋02

] ; 𝑃′ = [

𝑌 𝐼 0 0 0 0
𝑋1

𝑥𝑡

0
0

𝐼
0

0 0 0
0 1 1

𝑋2′ 0 0 𝐼 0 0

]  𝑎𝑛𝑑 𝐶 =

[
 
 
 
 
0
−𝜖
𝜖
𝜖
0
0 ]

 
 
 
 
𝑇

 

[
1 0
0 𝜑

] =

[
 
 
 
 
1 0 0 0 0
0 𝐼 0 0 0
0
0
0

0
0
0

𝐼
0

0
1

0 𝐵

0
0
𝐼]
 
 
 
 

 where 𝜑 = [

𝐼 0 0 0
0
0

𝐼
0

0
1

0
0

0 0 𝐵 𝐼

]  𝑎𝑛𝑑 𝜑−1 = [

𝐼 0 0 0
0
0

𝐼
0

0
1

0
0

0 0 −𝐵 𝐼

] 

[
−1 𝐶
𝑃 𝑃′

] [
𝜃
𝛿
] = [

0
∇
]  

It leads to following two equations: 𝜃 = 𝐶𝛿 and 𝑃𝜃 + 𝑃′𝛿 = ∇; Expressing the model in terms of basic 

variables the following matrix can be obtained. 

  [
−1 𝐶𝑏

𝑃 𝑃𝑏′
] [

𝜃
𝛿𝑏

] = [
0
∇
]  𝑜𝑟 [

𝜃
𝛿𝑏

] = [
−1 𝐶𝑏

𝑃 𝑃𝑏′
]
−1

[
0
∇
] 

[
𝜃
𝛿𝑏

] = [
−1 𝐶𝑏

𝑃 𝑃𝑏′
]
−1

[
1 0
0 𝜑

]
−1

[
1 0
0 𝜑

] [
0
∇
] = [

−1 𝐶𝑏

𝜑𝑃 𝜑𝑃𝑏′
]
−1

[
0

𝜑∇
] ;  

 

Thus, the optimal value of the decision variables do not change even if a multiplication with 𝜑 is taken 

place. This proof is extended to BCC Model by adding an artificial variable in the equality constraint 

and changing the objective function using a large number M. This format is suitable for the application 

of revised simplex method. 
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 𝑀𝑖𝑛 = 𝜃0 − 𝜖(𝑒1
𝑇. 𝑆1 + 𝑒2

𝑇 . 𝑆2 + 𝑒′𝑇 . 𝑆′) + 𝑀𝑅  

𝑒1
𝑇𝛾 + 𝑅 = 1;  

𝜃0. 𝑋01 = ∑ 𝑋𝑟1
𝑐
𝑟=1 . 𝛾𝑟 + 𝑆1  

𝜃0. 𝑥𝑜𝑡 = ∑ 𝑥𝑟𝑡
𝑐
𝑟=1 . 𝛾𝑟 + 𝑆3 + 𝑆  

𝜃0. 𝑋02 = ∑ 𝑋𝑟2
𝑐
𝑟=1 . 𝛾𝑟 + 𝑆2  

𝑌0 = ∑ 𝑌𝑟
𝑐
𝑟=1 . 𝛾𝑟 − 𝑆′  

Matrix form of the above model: 

[
 
 
 
 
 
−1
   0

−𝑀
    1

0
𝑒𝑇

𝜖
0

𝜖
0

𝜖 0 0
0 0 0

     0    0 −𝑌 𝐼 0 0 0 0
−𝑋01

−𝑥𝑜𝑡

0
0

−𝑋02 0

𝑋1

𝑥𝑡

𝑋2

0
0

𝐼
0

0 0 0
0 1 1

0 0 𝐼 0 0]
 
 
 
 
 

[
 
 
 
 
 
 
 
𝜃
𝑅
𝛾

𝑆′
𝑆1

𝑆2

𝑆3

𝑆 ]
 
 
 
 
 
 
 

=

[
 
 
 
 
 

0
1

−𝑌0

0
0
0 ]

 
 
 
 
 

  

For this matrix a change has to be made for 𝜎 so as to allow desirable changes in the resource equations.  

 𝜎 =

[
 
 
 
 
𝐼′ 0 0 0 0
0 𝐼 0 0 0
0
0
0

0
0
0

𝐼
0

0
1

0 𝐵

0
0
𝐼]
 
 
 
 

 𝑤ℎ𝑒𝑟𝑒 𝐼′ = [
1 0
0 1

] 

The same steps can be repeated for showing that the choice of 𝑘𝑔 can finish the rotation process and 

still it does not produce a different solution.  

SLACK BASED MODEL WITHOUT ROTATION 

𝑀𝑎𝑥 = (𝑒1
𝑇 . 𝑆1 + 𝑒2

𝑇 . 𝑆2 + 𝑒3
𝑇 . 𝑆′ + 𝑆3)  

𝑋01 = ∑ 𝑋𝑟1
𝑐
𝑟=1 . 𝛾𝑟 + 𝑆1  

𝑥𝑜𝑡 = ∑ 𝑥𝑟𝑡
𝑐
𝑟=1 . 𝛾𝑟 + 𝑆3  

𝑋02 = ∑ 𝑋𝑟2
𝑐
𝑟=1 . 𝛾𝑟 + 𝑆2;  

𝑌0 = ∑ 𝑌𝑟
𝑐
𝑟=1 . 𝛾𝑟 − 𝑆′  

𝑒𝑇 . 𝛾 = 1  

 

Theorem 2: The optimal solution of a Rotated Slack Based Additive Model in a partially negative data 

problem remains same as its original output. 

Proof: The matrix form of the Slack Based Additive Model (given above) is shown below.  
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[
 
 
 
 
 
−1
0

𝑒1
𝑇

𝐼
𝑒2

𝑇

0
𝑒3

𝑇

0

1
0

0
𝑋1

0 0 0 0 1 𝑥𝑡

0 0
0
0

0
0

0
𝐼
0

𝐼 0 𝑋2

0
0

0
0

−𝑌
𝑒𝑇 ]

 
 
 
 
 

[
 
 
 
 
 
−𝑍
𝑆1

𝑆2

𝑆3

𝑆′
𝛾 ]

 
 
 
 
 

=

[
 
 
 
 
 

0
𝑋𝑂1

𝑥𝑜𝑡

𝑋𝑂2

−𝑌0

1 ]
 
 
 
 
 

 

In order to arrange it according to a revised simplex problem the following terms are added.   

[
1 𝐶1 0
0 𝐼 𝐴

] [
𝑍
𝑃1

𝑃2

] = [
0
𝑏
]   𝑤ℎ𝑒𝑟𝑒, 𝐶1 = [

𝑒1

𝑒2
𝑒3

0

]

𝑇

𝑎𝑛𝑑 𝐴 = [

𝑋1

𝑥𝑡

𝑋2

−𝑌

]  

Furthermore, at any iteration the value of the basic variables is derived from solving the following 

matrix. 𝐶𝐵 𝑎𝑛𝑑 𝐵 represent the matrix of coefficients in the objective function and technological 

coefficients in the constraints.      

[
1 𝐶𝐵

0 𝐵
] [

𝑍
𝑃𝐵

] = [
0
𝑏
] or [

𝑍
𝑃𝐵

] = [
1 −𝐶𝐵𝐵−1

0 𝐵−1
] [

0
𝑏
] = [

−𝐶𝐵𝐵−1𝑏

𝐵−1𝑏
]  

[
1 −𝐶𝐵𝐵−1

0 𝐵−1
] [

1 𝐶1 0
0 𝐼 𝐴

] [
𝑍
𝑃1

𝑃2

] = [
−𝐶𝐵𝐵−1𝑏

𝐵−1𝑏
] = [

𝑍
𝑃𝐵

]  

[
1 𝐶1−𝐶𝐵𝐵−1 −𝐶𝐵𝐵−1𝐴
0 𝐵−1                𝐵−1𝐴

] [
𝑍
𝑃1

𝑃2

] = [
−𝐶𝐵𝐵−1𝑏

𝐵−1𝑏
] = [

𝑍
𝑃𝐵

]  

To make the rotation happen the following matrix multiplication is done. Unlike the previous problem 

the right hand side gets a different matrix due to it.  

[
 
 
 
 
 
1 0 0 0 0 0
0
0

𝐼
0

0
1

0
0

0 0
0 0

0
0
0

0
0
0

𝛿
0
0

𝐼 0 0
0
0

𝐼
0

0
1]
 
 
 
 
 

[
 
 
 
 
 
−1
0

𝑒1
𝑇

𝐼
𝑒2

𝑇

0
𝑒3

𝑇

0

1
0

0
𝑋1

0 0 0 0 1 𝑥𝑡

0 0
0
0

0
0

0
𝐼
0

𝐼 0 𝑋2

0
0

0
0

−𝑌
𝑒𝑇 ]

 
 
 
 
 

[
 
 
 
 
 
−𝑍
𝑆1

𝑆2

𝑆3

𝑆′
𝛾 ]

 
 
 
 
 

=

[
 
 
 
 
 

0
𝑋𝑂1

𝑥𝑜𝑡

𝑋𝑂2

−𝑌0

1 ]
 
 
 
 
 

   

[
 
 
 
 
 

0
𝑋𝑂1

𝑥𝑜𝑡

𝑋𝑂2
′

−𝑌0

1 ]
 
 
 
 
 

=

[
 
 
 
 
 
1 0 0 0 0 0
0
0

𝐼
0

0
1

0
0

0 0
0 0

0
0
0

0
0
0

𝛿
0
0

𝐼 0 0
0
0

𝐼
0

0
1]
 
 
 
 
 

[
 
 
 
 
 

0
𝑋𝑂1

𝑥𝑜𝑡

𝑋𝑂2

−𝑌0

1 ]
 
 
 
 
 

  

In order to observe the impact of rotation the following notations are added here. The impact of 

multiplication with the transformation matrix, 𝜔, is seen from the matrix given below. 
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𝜔 = [
1 0
0 𝜑

]  𝑤ℎ𝑒𝑟𝑒 𝜑 =

[
 
 
 
 
𝐼
0

0
1

0
0

0 0
0 0

0 𝛿 𝐼 0 0
0
0

0
0

0
0

𝐼
0

0
1]
 
 
 
 

    

[
1 0
0 𝜑

] [
1 𝐶1 0
0 𝐼   𝐴

] [
𝑍
𝑃1

𝑃2

] = [
1 0
0 𝜑

] [
0
𝑏
]  𝑜𝑟 [

1 𝐶1 0
0 𝜑 𝜑𝐴

] [
𝑍
𝑃1

𝑃2

] = [
0
𝜑𝑏

]  

Similar changes are needed to be incorporated in the matrix with Basic variables to obtain the solution 

for the basic variables.    

[
1 0
0 𝜑

] [
1 𝐶𝐵

0 𝐵
] [

𝑍
𝑃𝐵

] = [
1 0
0 𝜑

] [
0
𝑏
] = [

0
𝜑𝑏

]  

[
1 𝐶𝐵

0 𝜑𝐵
] [

𝑍
𝑃𝐵

] = [
0
𝜑𝑏

]  

[
𝑍
𝑃𝐵

] = [
1 −𝐶𝐵𝐵−1𝜑−1

0 𝐵−1𝜑−1 ] [
0
𝜑𝑏

] = [
−𝐶𝐵𝐵−1𝑏

𝐵−1𝑏
]  

It can be seen that in spite of offering a rotation the solution remains same as 𝜑 is purely invertible. In 

brief, two theorems ensure same primal solutions for pre and post rotation stages due to the any number 

beyond the threshold value.  

Theorem 3: Dual prices at the pre-rotation stage remain same as the post rotation stages if the key 

constraint possesses a dual price equal to zero.  

 

A slack is an outcome when the usage of resources is less than the provided amount. From the Slackness 

theorem it can be stated that for the slack vector (𝑆(= 𝐴𝑋 − 𝐷)) present in the primal model and value 

of resources (given as (𝑌)) the dot-product 𝑆𝑇𝑌 = 0 must happen. In these two problems (shown 

below), the matrix of all technological coefficients, 𝐴, contains all 

SYSTEM 1 (all nonnegative data) SYSTEM 2 (with negative data) 

𝑀𝑎𝑥 = 𝐶𝑇𝑋  𝑀𝑎𝑥 = 𝐶𝑇𝑋  

𝐴𝑋 + 𝑆 = 𝐷  

𝑋 ≥ 0 𝑎𝑛𝑑 𝑆 ≥ 0  

𝐴 = 𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑜𝑤𝑠  

𝐴′𝑋 + 𝑆′ = 𝐷′  

𝑋 ≥ 0 𝑎𝑛𝑑 𝑆′ ≥ 0  

𝐴′ = 𝑓𝑒𝑤 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑜𝑤𝑠   

non-negative real numbers and the purpose is to know whether a new matrix 𝐴′(= ∆𝐴) which does not 

have all non-negative real numbers can have the same dual prices or not. The multiplication with ∆ 

(which is invertible) is done for keeping a part of the constraint set unchanged whereas the others are 

altered by dint of them. The slack vector resulting from this change are mentioned below: 
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 𝑆′ = ∆𝑆 = ∆𝐴𝑋 − ∆𝐷 = 𝐴′𝑋 − 𝐷′𝑎𝑛𝑑 ∆= [
𝐼 −𝐵
0 𝐼

]  𝑜𝑟 ∆−1= [
𝐼 𝐵
0 𝐼

]  

  ∆𝐴 = 𝐴′ 𝑎𝑛𝑑 ∆𝐷 = [
𝐼 −𝐵
0 𝐼

] [
𝐷1

𝐷2
] = [

𝐷1 − 𝐵.𝐷2

𝐷2
] 

𝑆 = ∆−1𝑆′ = [
𝐼 𝐵
0 𝐼

] [
𝑆1′

𝑆2′
] = [

𝑆1′ + 𝐵. 𝑆2′

𝑆2′
] ≥ 𝑆′ 𝑤ℎ𝑒𝑟𝑒 𝑆′ ≥ 0  

Replacement of 𝑆′, into the equation 𝑆𝑇𝑌 = 0, will lead to 𝑆′𝑇(∆−1)𝑇𝑌 = 0, which creates a new set 

of resource values 𝑌′ = (∆)𝑇𝑌. 

𝑌′ = [
𝑌1′

𝑌2′
] = [

𝐼 0
𝐵𝑇 𝐼

] [
𝑌1

𝑌2
] = [

𝑌1

𝐵𝑇𝑌1 + 𝑌2
]  𝑜𝑟 {

𝑌1 = 𝑌1′

𝑌1 = (𝐵𝑇)−1(𝑌2
′ − 𝑌2)

}… . (𝑒1)  

𝑌 = [
𝑌1

𝑌2
] = [(∆−1)𝑇]−1𝑌′ = [

𝐼 0
−𝐵𝑇 𝐼

] [
𝑌1′

𝑌2′
] =  [

𝑌1′

−𝐵𝑇𝑌1′ + 𝑌2′
] ≤ [

𝑌1′

𝑌2′
] = 𝑌′   

It is evident from here that due to nonnegative property of 𝑆 the process mentioned above will lead to 

another variable, 𝑆′, of same kind. But, at the same time the vector of dual variables of system 2 will 

be greater than or equal to its counterpart present in the system 1. It literally indicates that the Production 

Possibility Sets in Pre and Post rotation stages may not remain same (as dissimilarity exists in the lower 

part of two dual price matrix). So, it is imperative to use a suitable transformation process to generate 

the dual price matrix of the original problem.  

 

5. Numerical Example 

5.1. Example 1: To answer the question “who is best?” among six DMUs (Table 1), the Relocated 

Input Oriented BCC DEA is applied. The efficiency is assessed from a conceived superior input 

reference point (0, -33.3) instead of (0, 0).      

Table 1: Data 

 Input set  

DMU Input 1 Input 2 Output  

A 8939.19 -25.717 223 

B 8625.56 12.1427 287 

C 10813.5 -9.2901 317 

D 10638.4 -11.128 291 

E 6240.65 33.3594 295 

F 4719.57 32.3765 222 
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The outputs of the above model are shown in Table 2 and Table 3. From the theorems of DEA, it is well 

understood that B and D are truly inefficient (Table 2) whereas the rests need further tests for give 

assurance about their strongly efficient stature.   

Table 2: RADIAL EFFICIENCY SCORE 

Model A B C D E F 

Transformed Model 1 0.93827 1 0.95371 1 1 

The coefficient matrix in Table 3 clarifies that B and D can be inferior DMUs than the corresponding 

hypothetical firms composed of A, C and E.   

Table 3: Values of Decision Variables  

 A B C D E F 

L1 1 0.19901 0 0.26816 0 0 

L2 0 0 0 0 0 0 

L3 0 0.28766 1 0.69578 0 0 

L4 0 0 0 0 0 0 

L5 0 0.51333 0 0.03606 1 0 

L6 0 0 0 0 0 1 

Apart from that B and D are not free from mix inefficiency (Table 4). Both of them do generate 

nonnegative input slacks in case of input 2. So, they remain inefficient in terms of both radial as well 

as mix measures.  

Table 4: MEASUREMENT OF INPUT SLACKS  

MODEL Constraints A B C D E F 

Translated 

BCC Model 

or 

IO-RDM 

INPUT 1 0 0 0 0 0 0 

INPUT 2 0 2.05918 0 1.54409 0 0 

OUTPUT 
0 0 0 0 0 0 

Output of the Rotated BCC DEA: The present problem has one input (input 1) which has all positive 

values. Thus, by keeping K1 as 50, the second constraint is transformed. The outputs of this model are 

shown in Table 5 and Table 6.  

Table 5: RADIAL EFFICIENCY SCORE 

MODEL A B C D E F 

Transformed BCC DEA 1 0.91941 1 0.93948 1 1 
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B and D both are found inefficient as before which are dominated by two hypothetical firms comprised 

with A, C and E.  

Table 6: Values of Decision Variables  

 A B C D E F 

L1 1 0.1898 0 0.2596 0 0 

L2 0 0 0 0 0 0 

L3 0 0.25751 1 0.6677 0 0 

L4 0 0 0 0 0 0 

L5 0 0.55269 0 0.0727 1 0 

L6 0 0 0 0 0 1 

S1 0 0 0 0 0 0 

R 0 0 0 0 0 0 

 

Table 7: PREDICTION OF INPUT AND OUTPUT SLACKS (UNIT DEPENDENT) 

MODEL Constraints A B C D E F 

TRANSFORMED 

BCC DEA 

 

INPUT 1 0 0 0 0 0 0 

INPUT 2 0 0 0 0 0 0 

OUTPUT 0 0 0 0 0 0 

 

However, as expected the efficiency score of them are less as mentioned in Table 2. Apart from that 

there is no slack which gets a positive value (Table 7). Therefore, B and D no longer remain mix-

inefficient.  

The proposed model does have dual prices equal to or less than the original one (Theorem 3). However, 

the following transformation matrix can be engaged to derive one from the other. The dual price of the 

actual model can be derived from a matrix multiplication with a transposed dual price of the proposed 

model and the transition matrix (Table 8). The element in the second row and first column is set as 

0.00462 (
𝐾1

𝑎𝑜1
=

50

10813.5
). 

Table 8: Transition Matrix 

1 0 0 0 

0.00462 1 0 0 

0 0 1 0 

0 0 0 1 
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To test the effectiveness of the Transition Matrix , the performance of D is measured by using 

multiplier models on pre and post rotation data (Table 9).  The optimal value and the values of decision 

variables remain same in both cases. However, a clear difference in the dual price can be observed in 

both cases. The original model has dual price greater than or equal to the proposed one. The matrix 

multiplication of the transpose of the dual price found in the proposed model with the transformation 

matrix will build up the dual price vector of the original model. 

Table 9: Comparison of Outputs of Two Models 

Variable Value Reduced Cost 

L1 0.25959 0 

L2 0 8.11E-02 

L3 0.66774 0 

L4 0 6.05E-02 

L5 7.27E-02 0 

L6 0 0.101715 

S1 0 0 

S2 0 9.22E-03 

S3 0 3.68E-03 

Constr 

Slack or 

Surplus Dual Price 

1 0 1.04E-04 

2 0 9.22E-03 

3 0 -3.68E-03 

4 0 0.130501 

5 0 -1.04E-04 
 

Variable Value Reduced Cost 

L1 0.25959 0 

L2 0 8.11E-02 

L3 0.66774 0 

L4 0 6.05E-02 

L5 7.27E-02 0 

L6 0 0.101715 

Constr 

Slack or 

Surplus Dual Price 

1 0 6.10E-05 

2 0 9.22E-03 

3 0 -3.68E-03 

4 0 0.130501 
 

Optimal Value: T = 0.939484 Optimal Value: T = 0.939484 

Output of CCR DEA Model with and without rotation: To observe the effect of rotation on the 

results on the CCR model the two models, stated above, are run. Both models have astonishingly 

displayed the same results shown in Table 10 and Table 11. 

Table 10: Radial Efficiency from CCR Models (with and without Rotation) 

MODEL A B C D E F 

CCR DEA 1 0.90961 0.963533 0.91431 1 0.99508 

Scale Efficiency  1 0.98934 0.96353 0.97321 1 0.99508 
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The efficiency scores of B, C, D and F are indicative of radial inefficiencies which may be due to the 

presence of scale inefficiency (Table 10). All four DMUs referred before are being dominated by few 

hypothetical firms composed from the convex combination of A and E.  

Table 11: Values of Decision Variables  

 A B C D E F 

L1 1 0.42033 0.87953 0.84582 0 0 

L2 0 0 0 0 0 0 

L3 0 0 0 0 0 0 

L4 0 0 0 0 0 0 

L5 0 0.65514 0.40971 0.34705 1 0.75254 

L6 0 0 0 0 0 0 

R 0 0 0 0 0 0 

S1 0 0 0 0 0 0 

 

Output of SBM Model with and without rotation: Slack Based Additive model is referred for both 

occasions to verify the similarities of outcomes. Only one optimal table (Table 12) is mentioned here 

as the decision variables posses identical values on both the occasions. A and E are clearly efficient 

DMUs and others consume more than the required amount.    

 

Table 12: Values of Decision Variables for Additive Model 

 A B C D E F 

S1 0 782.181 0 583.875 0 0 

S2 0 0 0 0 0 0 

S3 0 0 0 0 0 0 

L1 1 0.18487 0 0.2630 0 0 

L2 0 0 0 0 0 0 

L3 0 0.24139 1 0.6788 0 0 

L4 0 0 0 0 0 0 

L5 0 0.57374 0 0.0582 1 0 

L6 0 0 0 0 0 1 
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5.2. Example 2: The case of "notional Effluent Processing System" referred by Sharp et al (2006) is 

revisited here (Table 13).  

 

Table 13: Notional effluent processing system 

DMU (I1) Cost  (I2) Effluent  (O1) Saleable (O2) CO2  (O3) Methane 

1 1.03 -0.05 0.56 -0.09 -0.44 

2 1.75 -0.17 0.74 -0.24 -0.31 

3 1.44 -0.56 1.37 -0.35 -0.21 

4 10.8 -0.22 5.61 -0.98 -3.79 

5 1.3 -0.07 0.49 -1.08 -0.34 

6 1.98 -0.1 1.61 -0.44 -0.34 

7 0.97 -0.17 0.82 -0.08 -0.43 

8 9.82 -2.32 5.61 -1.42 -1.94 

9 1.59 0 0.52 0 -0.37 

10 5.96 -0.15 2.14 -0.52 -0.18 

11 1.29 -0.11 0.57 0 -0.24 

12 2.38 -0.25 0.57 -0.67 -0.43 

13 10.3 -0.16 9.56 -0.58 0 

 

The problem referred here is a perfect example of partially negative data problem thus the proposed 

models can be approved here. Three variations are applied on the data set: 

 Rotation and Relocation Based Input Oriented BCC Model: The radial measure of 

efficiency is derived by offering rotation to the input side and adding an arbitrary value to 

the second output for translation. These treatments will allow the application of a regular 

BCC model.   

 Rotation Based Input Oriented BCC Model: Both input and output sides are transformed 

through the rotation process and a regular BCC model is applied afterwards. 

 Relocation Based Input Oriented BCC Model: Translation based model (which is similar 

to the IORDM+) is applied here. 

Table 14 displays the output of all these three models. The radial efficiency scores are found to be same 

for the former two models. However, the scores resulting from the third model stay always greater than 

or equal to the former two.  
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Table 14: Output of the Proposed Models 

DMU Rotation and 

Translation 

Rotation Only Translation 

Based I BCC 

Rotation Based 

CCR 

1 0.94175 0.94175 0.94566 0.57843 

2 0.67505 0.67505 0.88102 0.44446 

3 1 1 1 1 

4 0.55804 0.55804 0.6613 0.55165 

5 0.86275 0.86275 0.89149 0.39618 

6 0.8584 0.8584 0.8584 0.85468 

7 1 1 1 1 

8 1 1 1 0.60065 

9 0.81132 0.81132 0.95259 0.74015 

10 0.45398 0.45398 0.83739 0.38167 

11 1 1 1 1 

12 0.40756 0.40756 0.80255 0.25173 

13 1 1 1 1 

Assuming the existence of an Ideal Performer which consumes an input set of (0.97, -2.32) and produces 

an output set of (9.56, 0, 0) the RDM+ was applied on the data (Table 14). It is to be noticed that RDM+ 

provides Efficiency Score (which does not include any norm calculation) greater than or equal to 

IORDM+ (mentioned before). Since, RDM+ highlights the weakest area of performance in the context 

of input consumption or output production, thus, the results of these two can only be same if the 

weakness exists on the Input side. However, inequality can also happen if output side is worse than the 

input side. A comparative study made in between Table 14 and Table 15 can reveal that each of these 

models are good enough to track the efficient DMUs. The author has verified that the results of MSBM 

(mentioned in Emrouznejad, A., Anouze, A. L. (2010) [5]) can also be regenerated from even after the 

application of rotation (while keeping the objective function same). Dissimilarities are largely observed 

in the outputs of MSBM and the proposed models because of an inequality of 𝜌𝑅𝐷𝑀 ≥ 𝜌𝐼𝑂𝑅𝐷𝑀 ≥

𝜌𝑀𝑆𝐵𝑀. Following arguments can be cited to justify this statement. 𝜌𝑐,𝑀𝑆𝐵𝑀, being a MSBM efficiency 

measure of any DMU-c, implicates all types of slack variables. Whereas, inefficiency in the model of 

IORDM (RDM) is (here 𝛽𝐼𝑐  (𝛽𝑐)) referred here to point out inefficiencies due to input handling (poor 

performances in every possible arena of input and output set).    

𝛽𝐼𝑐 = max (
𝑆𝐼𝑗

𝑅𝐼𝑗
) 𝑎𝑛𝑑 𝛽𝑐 = max (

𝑆𝐼𝑗

𝑅𝐼𝑗
,
𝑆𝑂𝑗

𝑅𝑂𝑗
) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗  
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𝜌𝑐,𝑀𝑆𝐵𝑀 =
1−

1

𝑣
∑

𝑆𝐼𝑖
𝑅𝐼𝑖

𝑣
𝑖=1

1+
1

𝑚
∑

𝑆𝑂𝑗

𝑅𝑂𝑗

𝑚
𝑗=1

≤ (1 −
1

𝑣
∑

𝑆𝐼𝑖

𝑅𝐼𝑖

𝑣
𝑖=1 ) ≤ (1 −

𝑆𝐼𝑖′

𝑅𝐼𝑖′
) = 𝜌𝐼𝑂𝑅𝐷𝑀 ≤ 𝜌𝑅𝐷𝑀  

A rotation based CCR model is also applied to understand the extent of scale efficiency. DMU 5 faces 

the highest possible scale inefficiency whereas in spite of being almost scale efficient, DMU 4 and 

DMU 6 are inefficient due to their poor performances.        

Table 15: Outputs of RDM and MSBM 

DMU RDM+ MSBM 

1 0.965 0.88 

2 0.918 0.74 

3 1 1 

4 0.735 0.56 

5 0.924 0.70 

6 0.971 0.78 

7 1 1 

8 1 1 

9 0.994 0.89 

10 0.860 0.72 

11 1 1 

12 0.845 0.68 

13 1 1 

 

6. Conclusion 

   In an example Portela et al (2004) [11] mentioned the problem of using negative data in a normal 

BCC DEA model which leads to improper radial directions and subsequently a different opinion from 

the slack based models. Shifting of origin to a superior or an inferior point is needed to make it eligible 

to identify the proper frontier. But, this method cannot generate unique outcome as the efficiency score 

can be better or worse due to the choice of such points. The first model, proposed here, counts 

everything from a new origin (which is superior to the old one). Any better choice than this new point 

will lead to enhancement of efficiency score. Moreover, like IO-RDM, this model is not translation 

invariant. 

The second one, under partial negative data, proposes for not making any shift of origin and is capable 

producing the same output as in case of the original model. By means of rotation the partial negative 
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data is transformed into non-negative data. It can be seen from this small example that all these models 

are perfectly capable of identifying efficient and inefficient DMUs by determining efficiency scores 

accurately. Like the former model, the later one does not make an unnecessary interception on the 

frontier. But, in spite of the successful operation this model can never be applied if the condition stated 

before is violated. In a nutshell, if the input data does not have at least one member with all positive 

data then a relocation of origin will be the only way of getting solution. Lastly, from the example stated 

before it can be understood that a rotation process, unlike translation property, does not have 

reservations for any DEA models. It is therefore not at all necessary to relocate an Origin in case of a 

partially negative data and to score a better efficiency value due to it.    
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