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Abstract 

 

    In this research a new returns to scale (RTS) method is proposed to estimate the right and left returns 

to scales (RTSs) of the frontier decision making units (DMUs) in data envelopment analysis (DEA). 

This study modifies Golany and Yu’s RTS method in such a matter that it always can fit within 

estimating the right and left returns to scales of efficient DMUs. 

 It is necessary to say that, since an inefficient decision making unit (DMU) has more than one 

projection on the empirical frontier function hence, the different right and left returns to scales can be 

determined for the inefficient DMU by using our proposed RTS method. Then, an illustrative example 

highlights the method and also the obtained results of the proposed RTS method are compared with 

Golany and Yu’s RTS method. A concluding comment, future extensions and suggest possible future 

direction of research are all summarized in the last section. 
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1. Introduction 

 

     Data envelopment analysis (DEA) is a non-parametric technique. The relative efficiency of decision 

making units (DMUs) can be evaluated by DEA [2,8]. The identification of returns to scale (RTS) is 

one of the most important issues in DEA. We can recognize the optimal size of the DMU under 

assessment with using the RTS behavior of the unit. So far, some methods have been presented to 

determine the returns to scale of DMUs in DEA models [6, 11, 12, 15, 17, 18, 22, 23, 24, and 25]. For 

instance, the concept of most productivity scale size (MPSS) was introduced by Banker [1] that CCR 

model is used to determine returns to scale by Banker’s proposed DEA approach [1]. 
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Färe and Grosskopf [14] provided an alternative approach for estimating returns to scale based on 

optimal solutions of BCC, CCR, and CCR-BCC models. In this vein, Banker and Thrall [3] introduced 

a method for estimating the right and left returns to scales in data envelopment analysis. 

Furthermore, a general definition of the right and left returns to scales has been presented by Hadjicostas 

and Soteriou [16]. Again, Khodabakhshi introduced a method for estimating most productive scale size 

with stochastic data in DEA [20]. Furthermore, an additive model approach for estimating returns to 

scale in imprecise DEA was introduced by Khodabakhshi et al. [21]. 

 Golany and Yu [15] have proposed a method to estimate the right and left returns to scales (RTSs) of 

the DMU under assessment. Their method is not always feasible for all DMUs under assessment. In 

this current study, a new RTS method is proposed to determine the right and left returns to scales in 

DEA that it is always feasible for all DMUs under the assessment. 

The structure of this paper is organized as follows: Section 2 provides preliminary information that will 

be used in the succeeding sections. Previous research efforts about the basic DEA models on 

determining RTS are documented in Section 3. An illustrative example is presented to make 

comparisons between our proposed approach and Golany and Yu’s approach in Section 4. At last, in 

Section 5 the conclusion and some remarks are put forward. 

 

2. Mathematical preliminaries 

 

2.1. Basic DEA models 

 

     Suppose there are n  DMUs  1, 2, ,
j

DMU j n  which product s  outputs 

 1
, , , ,

j j rj sj
y y y Y 0  utilizing m  inputs  1

, , , ,
j j rj mj

x x x X 0  that 
j
Y 0  and 

j
X 0 . There are many alternative ways to characteristic the production technology. The most general 

representation is production possibility set (PPS) which is defined as a set of semipositive  ,X Y  as, 

  ,PPS can produce X Y X Y . There are many models in DEA that the original and important 

models are CCR, BCC, BCC-CCR, and CCR-BCC models. Note that, they are different in RTS 

assumptions. In these models, RTS is constant, variable, non-decreasing and non-increasing, 

respectively. Their PPSs are defined as follows  

[28, p. 42]: 

 

 
1 1

, , , 0 ; 1, 2, , ,
n n

CCR j j j j j

j j

PPS j n  
 

  
     
  

 X Y X X Y Y                    (1) 

   
1

, , , 1 ,
n

BCC CCR j

j

PPS PPS 


  
   
  

X Y X Y                                                      (2) 

   
1

, , , 1 ,
n

BCC CCR CCR j

j

PPS PPS 




  
   
  

X Y X Y                                                (3) 

   
1

, , , 1 .
n

CCR BCC CCR j

j

PPS PPS 




  
   
  

X Y X Y                                                (4) 

 

Assume that   1, ,
o

DMU o n  is one of the observed DMUs. In order to determine the relative 

efficiency of o
DMU  (

o
 

) we need to solve an input-oriented model as,  
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  ,
o o o o o

Min PPS  
 X Y . Thus, CCR, BCC, BCC-CCR, and CCR-BCC models and their dual 

forms are represented by mathematical linear programming M(I) and M(II) as follows: 

 

 

1

1

1

( ) :

. . , 1, , , (5)

, 1, , , (6)

, , , (7)

o o

s

j ij o io

r

m

j rj ro

i

n

M I Max

s t x x i m

y y r s

 

 



  









 

 

 





 

1

1

1 1

( ) :

. . 1, (8)

0, 1, , , (9)

0, 1, , , (10)

0, 1, , , (11)

, (12)

s

o r ro o

r

m

i io

i

s m

r rj i ij o

r i

i

r

o

M II Max u y u

s t v x

u y v x u j n

v i m

u r s

u

 





 

 



   

 

 







 
 

 

where the sets of  and   are as follows: 

 

 0 ; 1, , ,
CCR j

j n   λ                                                                        (13) 

 0 ,
CCR o o

u u                                                                                             (14) 

1

, 1 ,
n

BCC CCR j

j




  
    

  
λ λ                                                                      (15) 

  ,
BCC o o

u u is free                                                                                       (16) 

1

, 1 ,
n

BCC CCR CCR j

j






  
    

  
λ λ                                                                 (17)  

 0 ,
BCC CCR o o

u u


                                                                                        (18) 

1

, 1 ,
n

CCR BCC CCR j

j






  
    

  
λ λ                                                                  (19) 

 0 .
CCR BCC o o

u u


                                                                                        (20)  

 

Now suppose the feasible region of each of the above models in M(I) is denoted by S , then we will 

have the following relations among the feasible regions: 
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, , , ,

.

BCC CCR BCC CCR CCR CCR BCC CCR CCR BCC CCR CCR BCC

BCC BCC CCR CCR BCC

S S S S S S S S S

S S S

   

 

   


   (21) 

 

Hence, we have: 

 

, , , , .
CCR BCC CCR BCC CCR CCR CCR BCC BCC CCR BCC CCR BCC BCC
                  

   
      (22) 

 

Note that in this study, the optimal value of variables is shown by superscript " * ". 

Furthermore, it can be shown that 1
o
 

  in all models and also, models M(I) and M(II) are called 

envelopment and multiplier forms of related models, respectively. 

 

 Definition 1. o
DMU  is technically efficient in model M(I) if and only if 1

o
 

 .  

Otherwise, o
DMU is called technically inefficient. Thus the projection point of o

DMU  is defined as 

 ,
o o o


 
  

 X S Y S  which is a technical efficient point in the related model. Note that 



S and 




S

are respectively optimal vectors of slacks, corresponding with (5) and (6) in model M(I). 

 

 

2.2. Some customary methods for identifying RTS 

 

So far, many methods have been presented to estimate RTS of DMUs in DEA. In this section, three 

common methods BCC, Färe et al., and Kerstens and Eechkaut are reviewed, respectively [3, 13, and 

19]. It is note-worthy to say that, RTS is always determined for points on the BCC-efficient frontier. 

And also, RTS of inefficient DMUs is defined as that of their BCC-projections, [2].  

In the following theorem, BCC model is used to estimate RTS of DMUs. 

 

Theorem 1. Suppose that  ,
o o

X Y  is a point on the BCC-efficient frontier. Then, the following 

conditions identify the situation for RTS at the point: 

(i) Increasing RTS (IRS) prevail at  ,
o o

X Y  if and only if  0
o

u

  for all optimal solutions 

of BCC model in multiplier form. 

(ii) Decreasing RTS (DRS) prevail at  ,
o o

X Y  if and only if  0
o

u

  for all optimal solutions 

of BCC model in multiplier form. 

(iii) Constant RTS (CRS) prevail at  ,
o o

X Y  if and only if  0
o

u

  for at least one optimal 

solution of BCC model in multiplier form. 

 

 

Proof. Refer to [3].    

 

It is noticeable that, obtaining all optimal solutions of the multiplier form of BCC model can be onerous. 

In other words, the method is problematic when BCC model in multiplier form has alternative optimal 

solutions. Hence, this method has been developed by Banker et al. [4], which caused to solve a further 

model, whereas it is not pursued in this research. Note that, two LPs must be solved to estimate RTS of 

each DMU by Theorem 1 [5]. 

Färe and Grosskpof’s method [14] is another method to estimate RTS of DMUs that is demonstrated in 

Theorem 2 as below: 
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Theorem 2. Suppose that  ,
o o

X Y  is a point on the BCC-efficient frontier. Then, the following 

conditions identify the situation for RTS at this point: 

(i) Increasing RTS (IRS) prevail at  ,
o o

X Y  if and only if 
CCR CCR BCC BCC
    


  . 

(ii) Decreasing RTS (DRS) prevail at  ,
o o

X Y  if and only if 
CCR CCR BCC BCC
    


  . 

(iii) Constant RTS (CRS) prevail at  ,
o o

X Y  if and only if 
CCR CCR BCC BCC
    


  . 

 

Proof. Refer to [14].    

 

Banker et al. [2] proved the equivalence of this method with other related methods. There is no problem 

about alternative optimal solutions in Färe and Grosskpof’s method. It is obvious that, its computation 

is expensive because three LP models must be solved to determine RTS of each DMU in the method. 

In this vein, there are other methods for determining RTS of DMUs such as the CCR method [2] and 

Kerstens and Eechkaut’s method [19]. If there are alternative optimal solutions then the CCR method 

is problematic. As four LPs must be solved to determine RTS of each DMU, thus computation of 

Kerstens and Eechkaut’s method is problematic, too. Next Kerstens and Eechkaut’s method will be 

discussed in Theorem 3. 

 

Theorem 3. Suppose that  ,
o o

X Y  is a point on the BCC-efficient frontier. Then, the following 

conditions identify the situation for RTS at this point: 

(i) Increasing RTS (IRS) prevail at  ,
o o

X Y  if and only if 

 max , ,
BCC CCR BCC CCR CCR BCC CCR

strict      

  
 . 

(ii) Decreasing RTS (DRS) prevail at  ,
o o

X Y  if and only if 

 max , ,
CCR BCC BCC CCR CCR BCC CCR

strict      

  
 . 

(iii) Constant RTS (CRS) prevail at  ,
o o

X Y  if and only if 

 max , ,
CCR BCC CCR CCR BCC CCR
      

 
 . 

 

 

Proof. Refer to [19].    

 "Strict max" is defined as  max , ,p strict p q r  if and only if p q  and p r , but it is not used 

in Kerstens and Eechkant’s method. Also, the validity of this method is described in Kerstens and 

Eechkant method [19].  Note that here expression "Strict max" shows the further accuracy. 

    

 

3. Proposed method 

 

     In this section, we propose a RTS method to determine the right and left returns to scales of the 

frontier DMUs that it is always feasible for all DMUs. Our proposed approach is capable of modifying 

infeasibility in Golany and Yu’s method [15]. 

According to Section 2, let’s consider the production possibility set ( )T  with variable RTS assumption 

as follows: 

                                                 
 1.BCCq* =  
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 
1 1 1

, , , 1 , 0 ; 1, 2, , .
n n n

BCC j j j j j j

j j j

T PPS j n   
  

  
       

  
  X Y X X Y Y (23) 

 

Therefore [9, Theorem 2, p. 95], the empirical frontier function is a concave and piece-wise linear 

function that lies above T . 

 

Consider that   1, ,
o

DMU o n . If there is no convex combination of other DMUs with all outputs 

greater than or equal to the outputs of o
DMU and all inputs smaller than or equal to the inputs of 

o
DMU with at least one strict inequality then o

DMU  is technically efficient. Now, we solve the 

following additive DEA model: 

 

1 1

1

1

1

. . , 1, , ,

, 1, , ,

1,

0, 1, , ,

0, 1, , ,

0, 1, , ,

m s

i r

i r

n

j ij i io

j

n

j rj r ro

j

n

j

j

j

i

r

Max s s

s t x s x i m

y s y r s

j n

s i m

s r s









 

 

















  

  



 

 

 

 





                                              (24) 

 

Where input and output slacks are represented by ( 1, , )
i

s i m


  and ( 1, , )
r

s r s


 , 

respectively. 

 

 

It is clear that, if  1, 0 ( , ), 0 ( ), 0 ( )
o j i r

j j o s i s r   
        is an optimal solution of 

the above additive model, then o
DMU  is technically efficient. If o

DMU  is technically inefficient, 

then it can be projected to an efficient position  ,
o o

X Y as follows: 

 

, 1, , ,

, 1, , .

io io i

ro ro r

x x s i m

y y s r s









  

  

                                                             (25) 

 

Now, let o
  be a proportional change in all the inputs of o

DMU and o
  be a proportional change in 

all the outputs. Then, the set of all feasible proportional changes associated with o
DMU  is defined by 

 ,
o o

P X Y  as follows, [15]: 
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   
1 1 1

, , , , 1 , 0 ; 1, , .
n n n

o o o o j j o o j j o o j j

j j j

P j n       
  

  
      
  

  X Y X X Y Y (26) 

 

Now, to identify the best possible improvement in the productivity of o
DMU , we would like to 

minimize o
  and maximize o

 . This improvement can be achieved by maximizing ratio o

o




, or 

minimizing its reciprocal o

o




, with respect to the constraints that the production possibilities set is 

defined by them as follows: 

 

1

1

1

. . , 1, , ,

, 1, , ,

1,

0,

0.

o

o

n

j ij o io

j

n

j rj o ro

j

n

j

j

o

o

Min

s t x x i m

y y r s





 

 













 

 













                                                 (27) 

 

In the following theorem, RTS of  o
DMU  is indicated by the optimal values of o

  and o
 . 

 

Theorem 4. If  , ,
o o

   
λ  be an optimal solution of model (27), then we will have: 

(i) If  1
o o

  
    then RTS of o

DMU is increasing.  

(ii) If  1
o o

  
    then RTS of o

DMU is decreasing.  

(iii) If  
o o

  
   then RTS of o

DMU is constant. 

 

Proof. Refer to [15, p. 30].  

 

It is worth stressing that, as  1, 0 ( 1, , ; )
o o o j

j n j o          is always a feasible 

solution of model (27) for any assessment of o
DMU , thus optimal solution of model (27) must always 

satisfy 
o o

  
 . 

Now, let’s consider the following CCR model: 
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1 1

1

1

. . , 1, , ,

, 1, , ,

0, 1, , ,

0, 1, , ,

0, 1, , ,

m s

o i r

i r

n

j ij i o io

j

n

j rj r ro

j

j

i

r

Min s s

s t x s x i m

y s y r s

j n

s i m

s r s

 

 





 

 













 
  

 

  

  

 

 

 

 




                               (28) 

 

Where    is a non-Archimedean small and positive number. 

 Consider Banker’s variable variation ( )
o

h  as 
1

n

o j

j

h 


 . Note that, o
h , is always positive. Hence 

the constraints of model (28) can be divided by o
h as: 

 

1 1

1

1

1

. . , 1, , ,

1
, 1, , ,

1,

0, 1, , ,

0, 1, , ,

0, 1, , .

m s

o i r

i r

n
j oi

ij io

j o o o

n
j r

rj ro

j o o o

n
j

j o

j

i

r

Min s s

s
s t x x i m

h h h

s
y y r s

h h h

h

j n

s i m

s r s

 

 







 

 















 
  

 

  

  



 

 

 

 





                            (29) 

 

Here by defining new variables o
 , o

 , ( 1, , )
j

j n  , ( 1, , )
i

s i m


 , and ( 1, , )
r

s r s


  as 

follows: 

 

1
, , ( 1, , ), ( 1, , ), ( 1, , ).

jo i r

o o j i r

o o o o o

s s
j n s i m s r s

h h h h h


  

 
  

        (30) 

 

Thus, we will have the following model: 
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1 1

1

1

1

. . , 1, , ,

, 1, , ,

1,

0, 1, , ,

0, 1, , ,

0, 1, , .

m s

o

i r

i ro

n

j ij i o io

j

n

j rj r o ro

j

n

j

j

j

i

r

Min s s

s t x s x i m

y s y r s

j n

s i m

s r s






 

 





  

 















 
  

 

  

  



 

 

 

 





                                   (31) 

 

If o
h has a unique optimal value then the value of o

h is interpreted by Banker as an indicator of RTS 

[1]. Chang and Guh [7] showed that o
h can have alternate optima with values grater and less than one 

for the same model. Therefore, in the CCR formulation, observing an optimal value of o
h tells us 

nothing about RTS. Similarly, in the CCR model, observing the optimal o
  value is not enough to 

obtain the direction of RTS. For instance, we can obtain the same optimal value, say 0.8
o
 

 , from 

0.64
o

 
  and 0.8

o
 

  (indicating decreasing RTS) or from 1.2
o

 
  and 1.5

o
 

  (indicating 

increasing RTS). 

Thus, in order to obtain correct estimates of RTS, we cannot rely on the CCR model (28). For this 

reason, we pay attention to non-linear model (31) and propose to solve its two linear variants instead of 

solving non-linear model (31). Moreover, since RTS are defined as a local property, hence we only 

need to examine them in as   neighborhood of o
DMU . 

 

Now, we first set o
  to be equal to one plus a small arbitrary number (i.e., 1 , 0

o
     ), then 

model (31) is transformed to the following model: 

 

1 1

1

1

1

. . (1 ) , 1, , ,

, 1, , ,

1,

0, 1, , ,

0, 1, , ,

0, 1, , .

m s

o i r

i r

n

j ij i io

j

n

j rj r o ro

j

n

j

j

j

i

r

Max s s

s t x s x i m

y s y r s

j n

s i m

s r s

 

 

 





  

 















 
  

 

   

  



 

 

 

 





                             (32) 
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 Since 

 1, 0 ( 1, , ; ), ( 1, , ), 0 ( 1, , )
o o j i io r

j n j o s x i m s r s   
  

          is a 

feasible solution of model (32) for any assessment of o
DMU , so the optimal solution of model (32) 

must always satisfy 1.
o

 
  

 

Second, we set o
  equal to one minus a small number (i.e., 1 , 0

o
     ), then this transforms 

model (31) into the following model: 

 

1 1

1

1

1

. . , 1, , ,

(1 ) , 1, , ,

1,

0, 1, , ,

0, 1, , ,

0, 1, , .

m s

o i r

i r

n

j ij i o io

j

n

j rj r ro

j

n

j

j

j

i

r

Min s s

s t x s x i m

y s y r s

j n

s i m

s r s

 

 

 





  

 















 
  

 

  

   



 

 

 

 





                              (33) 

 

 Note that, the optimal solution of model (33) must always satisfy 1
o

 
 . Because 

 1, 0 ( 1, , ; ), 0 ( 1, , ), ( 1, , )
o o j i r ro

j n j o s i m s y r s   
  

          is a 

feasible solution of model (33) for any assessment of o
DMU . 

Now, we provide a new method to determine the right and left RTSs using the models (32) and (33): 

 

 

A new method for determining the right and left RTSs 

 

  Suppose that o
DMU is a point on the BCC-efficient frontier. 

1. Solve model (32) to determine the "right" RTS of o
DMU , then associated with Theorem 4: 

1.1. If  1
o

  
    then the right RTS of o

DMU is increasing. 

1.2. If  1
o

  
    then the right RTS of o

DMU is constant. 

1.3. If  1
o

  
    then the right RTS of o

DMU is decreasing. 

 

2. Solve model (33) to determine the "left" RTS of o
DMU , then associated with Theorem 4: 

2.1. If  1
o

  
    then the left RTS of o

DMU is increasing. 

2.2. If  1
o

  
    then the left RTS of o

DMU is constant. 

2.3. If  1
o

  
    then the left RTS of o

DMU is decreasing. 
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For convenience, in the case of a single input and output ( 1)m s  , the following figures depict to 

determine the right RTS: 

 

 

 

Case 1.1.: 

 

 
Fig.1. Increasing right RTS. 
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Case 1.2.: 

 

 
Fig.2. Constant right RTS. 
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Case 1.3.: 

 

 
Fig 3.Decreasing right RTS. 
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As can be seen in figures 1, 2, and 3, it can be seen that ( , )
o o o

DMU  X Y  has increasing left RTS, 

increasing left RTS, and furthermore constant left RTS, respectively. 

 

 

 

Since inefficient DMUs have more than one projection on the empirical frontier function, therefore the 

different right and left returns to scales of them can be determined by using our proposed method. 

In next section, we will present an illustrative example to demonstrate our method then we compare the 

proposed method with Golany and Yu’s method [15] to estimate right and left RTSs of DMUs. 

 

4. An illustrative example 

 

     To illustrate how to use the proposed DEA approach, this study selects a small example related to 

Golany and Yu [15]. 

Table 1 summarizes the data set which was previously analyzed by Golany and Yu [15] on determining 

the right and left RTSs of 9 DMUs which consists of two inputs and one output by our method. Note 

that DMUs 1, 3, 5, 6, 7, and 8 are BCC-efficient DMUs. Furthermore, DMUs 2, 4, and 9 are inefficient 

DMUs. We then make comparisons between our proposed approach and Golany and Yu’s method in 

Table 2. 
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Table 1 

The obtained results from models (32) and (33) for BCC- efficient DMUs. ( 0.0001  ) 

DMU  1
X  2

X  Y  (32)
o

 
 The right RTS (33)

o
 

 The left 

RTS 

 

1  1.1 1.1 1 1.000122 IRS  1.000000 IRS 

2  1.4 1.3 0.95 -----  -----  -----  ----- 

3  2 2 2 1.000100 CRS  0.999910 IRS 

4  2.1 2.2 1.9 -----  -----  -----  ----- 

5  3 3 3 1.000057 DRS  0.999900 CRS 

6  4.2 5 4 1.000081 DRS  0.999886 DRS 

7  5.5 6.5 5 1.000065 DRS  0.999882 DRS 

8  7 8.5 6 1.000000 DRS  0.999871 DRS 

9  5 5 3.9 -----  -----  -----  ----- 

 

 

Table 2 

Comparisons to Golany and Yu’s method. 

 

DMU Results of our proposed method  Results of Golany and Yu’s method 

 

The right RTS The left RTS  The right RTS The left RTS 

 

 

1  IRS  IRS   IRS  N.F.S. 1 

2  -----  -----   inefficient inefficient 

3  CRS  IRS   CRS  IRS 

4  -----  -----   inefficient inefficient 

5  DRS  CRS   DRS  CRS 

6  DRS  DRS   DRS  DRS 

7  DRS  DRS   DRS  DRS 

8  DRS  DRS   N.F.S.  DRS 

9  -----  -----   inefficient inefficient 

 
1 No Feasible Solution. 

 

As presented in Table 2, in our RTS method, IRS prevails at 1
DMU  and furthermore DRS prevails at 

DMUs 6, 7, and 8 on both the right and left RTSs, while Golany and Yu’s method has no feasible 

solution to estimate the right and left RTSs of 8
DMU  and 1

DMU , respectively. Moreover, our new 

RTS method respectively indicates that the right and left RTSs of 3
DMU  are constant and increasing 

and also it indicates DRS and CRS on the right and left RTSs of 5
DMU , respectively. 

Now, in order to determine RTS of inefficient DMUs (DMUs 2, 4, and 9), we first project each of them 

twice to the BCC-efficient frontier. In turn, the input-oriented BCC model is applied then the output-

oriented BCC model is used to project inefficient DMUs onto the efficient frontier. The input and output 

values of the projected units and also the obtained results from models (32) and (33) are given in Table 

3. 
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Table 3  

The obtained results from models (32) and (33) for projections of inefficient DMUs. ( 0.0001  ) 

 

DMU 1
X  2

X  Y   (32)
o

 
 The right RTS (33)

o
 

 The left 

RTS 

 

Input-oriented BCC model: 

2 1.1 1.1 1  1.000122 IRS  1.000000 IRS 

4 1.91 1.91 1.9  1.000075 DRS  0.999910 IRS 

9 4.125 4.575 3.9  1.000000 DRS  0.999895 DRS 

 

Output-oriented BCC model: 

2 1.3 1.3 1.22222  1.000117 IRS  1.000000 IRS 

4 2.1 2.1 2.1  1.000070 DRS  0.999909 IRS 

9 4.43 5 4.142857 1.000000 DRS  0.999893 DRS  

 

 

Table 3 indicates the following analysis for all six projected units: 

 Both the right and left of the projections of 2
DMU  are increasing. 

 Both the right and left of the projections of 9
DMU  are decreasing. 

 The right and left RTSs of the projections of 4
DMU  are decreasing and increasing, 

respectively. 

Therefore according to the above analysis, although DMUs 2 and 9 are inefficient, we can associate 

them with a single RTS condition. 

 

 

5. Conclusion and future extensions 

 

     The economic concept of RTS and approaches to estimate it have been widely investigated within 

the framework DEA and this has, in turn, further extended the applicability DEA.       

In this current study, a new RTS method is proposed to estimate the right and left RTSs of the frontier 

DMUs in DEA by solving two variants of the BCC model. 

The main aim of this study is to modify Golany and Yu’s method to estimate the right and left RTSs of 

DMUs. In other words, using our RTS procedure in order to estimate the right and left RTSs of DMUs, 

we always can determine RTSs. However, Golany and Yu’s method is always incapable of estimating 

RTSs of DMUs.   

 

It is worth stressing that, since inefficient DMUs have more than one projection on the empirical frontier 

function, hence by applying our new RTS method, different right and left RTSs can be determined for 

their projections. We suggest a further analysis in this work for future researches in computing the 

magnitude the right and left RTSs and furthermore in determining the right and left RTSs of BCC-

efficient DMUs for special data e.g., integer, stochastic, interval data, and etc. 
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