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Abstract  

This paper proposes a suitable benchmark for inefficient commercial bank branches by using Data 

Envelopment Analysis (DEA). In order to render an inefficient bank branch efficient, it is necessary to 

decrease inputs and increase outputs. As there are priorities for decreasing some certain inputs and 

increasing some certain outputs over other inputs and outputs, respectively, it is necessary to consider 

and incorporate the managers’ view regarding the priorities in the models which are applied. So, in 

this paper, using the enhanced Russell model for an inefficient bank branch, we propose the decrease 

in inputs and the increase in outputs, taking the managers’ priorities into account. Finally, in a 

numerical example, we apply the proposed procedure to the authentic information from 30 

commercial bank branches, to show the application of the procedure.  

Keywords: Data Envelopment Analysis, Benchmark, Linear programming. 

 

1   Introduction  

  Data Envelopment Analysis (DEA), by Charnes, Cooper and Rhodes [3], is a method for evaluating 

the relative efficiency of comparable entities referred to as Decision Making Units (DMUs). DEA 

forms a production possibility frontier, or an efficient surface. If a DMU lies on the surface, i.e., there 

is no other DMU that can either produce the same outputs by consuming less inputs (input-oriented 

DEA) or produce more outputs by consuming the same amount of inputs (output-oriented DEA), it is 

referred to as an efficient unit, otherwise inefficient. DEA also provides efficiency scores and 

reference units for inefficient DMUs. The efficiency score tells the percentage by which a DMU 

should decrease its inputs (input-oriented DEA) or increase its outputs (output oriented DEA) in order 

to become efficient. Reference units are hypothetical units on the efficient surface, which can be 

regarded as target units for inefficient units. In the traditional DEA, they are obtained by projecting an 

inefficient DMU radially onto the efficient surface. The production theoretical argument for this 

principle is that the DMU preserves its current input-output mix. However, from a managerial point of 
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view, it is possible that some other solution on the efficient surface might be a more preferable target, 

i.e., there exists an input-output mix that is more suitable for the inefficient unit than the one obtained 

through radial projection. One line of research in DEA concentrates on finding these targets for 

inefficient DMUs (Golany [6], Thanassoulis and Dyson [11] and Zhu [12]). The DMU can use the 

targets as goals or benchmarking units when working its way toward efficiency. 

In Golany [6], a set of hypothetical reference units is generated and presented to the DMU. The DMU 

may choose one of them as a target, or new reference units may be generated. In Thanassoulis and 

Dyson [11], the DMU may articulate its preferences as a set of preference weights over improvements 

for different input-output levels, or as an ideal target (neither necessarily optimal nor feasible ). The 

target corresponding to the preference weights or the ideal target is then calculated. In the model by 

Zhu [12], the DMU articulates its preferences as weights reflecting the relative degree of desirability 

of the potential adjustments of current input or output levels. One major problem with a radial 

measure of technical efficiency is that it does not reflect all identifiable potential for increasing 

outputs and reducing inputs. 

In economics, the concept of efficiency is intimately related to the idea of Pareto optimality. An input-

output bundle is not Pareto optimal if there remains the possibility of any net increase in outputs or 

net reduction in inputs. When positive output and input slacks are present at the optimal solution of a 

CCR or BCC linear programming problem in DEA, the corresponding radial projection of an 

observed input-output combination does not meet the criterion of Pareto optimality and should not 

qualify as an efficient point. The nonradial Russell measure was proposed by Färe and Lovell [5]. 

Russell [9] pointed out that this measure fails to satisfy a number of desirable properties of an 

efficiency measure.For further explanation, notice the following example. Consider the evaluation of 

various branches of a commercial bank. We have the following inputs/outputs:  

Inputs: number of employees in the branch, area of the branch building, operation costs and 

equipment. Outputs: resources, granted loans, total revenue, services and customer satisfaction. 

In the classic models CCR, BCC, revised Russell and SBM, in order to make an inefficient branch 

efficient, we have to decrease all inputs and increase all outputs to project the DMU onto the efficient 

frontier. In evaluating these branches, the management declares that the priority for making inefficient 

branches efficient is to decrease costs and the number of employees, and to increase services and 

customer satisfaction. To make it clear, as the first priority, they should try to project the branch onto 

the strong efficiency frontier by decreasing costs and the number of employees, and increasing 

services and customer satisfaction. Otherwise, on the second priority, they should cover the 

weaknesses existing in the former stage by decreasing the equipment and the area of the branch 

building, and increasing resources, granted loans, and total revenue. The importance of the matter is 

that the equipment and the area of the branch building are of vital importance to the management, and 

decreasing them may damage the banking process. Considering the fact that there are some 

restrictions in collecting resources, granting loans, and earning revenues, the management has decided 

to put them in the second priority. 

This paper is organized as follows. Section 2  provides a brief overview of DEA methodology and 

benchmarking. Section 3 proposes a modified model to incorporate the managers views in the 

enhanced Russell model. Section 4 contains an application of the proposed model by a numerical 

example for 30 bank branches. Section 5 provides the conclusion. 
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2   Preliminaries 

   Consider DMUsn  with m  inputs and s  outputs. The input and output vectors of 
jDMU  

),1,=( nj   are 
t

sjjj

t

mjjj yyYxxX ),,(=,),,(= 11   where 0.0,0,0,  jjjj YYXX  

By using the variable returns to scale, convexity, and possibility postulates, the non-empty production 

possibility set (PPS) is defined as follows: 

 .,1=0,1,=,,:),(=
1=1=1=

njYYXXYXT jj

n

jjj

n

jjj

n

jv     

By the above definition, the BCC model proposed by Banker et al. [1] is as follows: 
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Clearly, the evaluated 
pDMU  is efficient if and only if 1=

*  and all slack variables in the optimal 

solution are zero in problem (1). Koopmans [3] defined an input-output vector as technically efficient 

if and only if increasing any output or decreasing any input is possible only by decreasing some other 

output or increasing some other input, respectively. A nonradial Pareto-Koopmans measure of 

technical efficiency for 
pDMU  can be computed as follows: 
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 In model (2) we suppose that all inputs and outputs are of the same importance in determining the 

efficiency. That is to say, the priority in increasing or decreasing the outputs or the inputs, 

respectively, is the same for all inputs and outputs. If there are different importance for different 

inputs/outputs, we can use the following objective function instead of objective function (2).  
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where i , r  show the importance of i  , r , respectively.     

Definition1. A DMU is called the benchmark for an inefficient unit if the DMU is on the efficiency 

frontier and its inputs are not greater than (less than or equal to) and its outputs are not less than those 

of that unit. 

DMUs can benefit from benchmarking for continuous development and creating appropriate 

conditions. Benchmarking cannot generally be used to solve the problems in an organization, but it 

can be employed to accept activities prior to introducing novel processes. Benchmarking is, therefore, 

beyond comparison, as awareness of conditions increases willingness for change; Measures should be 

taken only when an organization is ready for change, and in order for a unit to be a successful 

benchmark, the necessary preparations must be carried out and appropriate conditions should be 

brought about. 

 

3   A modification to the enhanced Russell model 

   Suppose that the management wants to give absolute priority to group of inputs over other inputs to 

decrease, and also to a group of outputs over others to increase, and reach the frontier. 1I  and 2I  are 

indices of the input set that are of the first and second priority, respectively, for the manager to 
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decrease the inputs and 1O  and 2O  are indices of the output set that are of the first and second 

priority, respectively, for the manager to increase the outputs. For this propose, suppose inputs and 

outputs vectors of 
jDMU  ),1,=( nj   are as follows, respectively. 
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The model used in this form will be as follows:  
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In model (3), M is a large number which is used to show the view of the manager in the objective 

function. We can define eR  as the ratio of input average efficiency to output average efficiency. 

Therefore, we have:  
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Theorem 1. In each optimal solution of model (3) all input and output constraints are binding. 
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which is a contradiction. The proof is, therefore, completed.   

Theorem 2. 1<0 eR . 
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Theorem 3. 1=eR  if and only if 
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Proof. Suppose 1=eR  . To prove that 
pDMU  is Pareto efficient, i.e., it is not dominated by any 

member in vT , by contradiction assume there is vTYX ),(  such that ).,(),( pp YXYX 


Therefore, there exists 0  such that ).,(),(
1=1= ppjj

n

jjj

n

j
YXYX 


   Thus, there exists 

1 2 =1
, <

n

j tj tpj
t I I x x    or there exists .>,

1=21 qpqjj

n

j
yyOOq   

Without loss of generality, suppose there exists ,<
1=21 tptjj

n

j
xxIIt  so define 

=1
= < 1.

n

j tjj

t

tp

x

x





Set tiIIi

x

x

i

tp

tjj

n

j

t 


,1,=,= 21

1=



  .1,= 21 OOrr     

Then ),,,,(
2121

OOII   is a feasible solution of the model and we have 

1,<

)  (
1

)  (
1

21

2
,

1

rOrrOr

iIiitiIi

M
lMk

M
qMp



















 

which is contradiction.     
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Now, suppose that 
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which implies that 
pDMU  is not Pareto efficient, and this is a contradiction.  

Theorem 4. eR  is strongly monotonic in inputs and outputs. 

Proof. Suppose that, in the evaluation of 
pDMU  , ),,,,(

*

2

*

1

*

2

*

1

*

OOII   is the optimal solution, 

then we have  .,=,,= 21

**

1=21

**

1=
OOryyIIixx rprrjj

n

jipiijj

n

j
    

Now assume that we increase at least one of the inputs by a constant  , say 

0).>(= tptp xx  

Consider the 
th

t  input constrains ),(= 
**

1=
  tpttjj

n

j
xx .1It   

Suppose .
)( 

=

**

1,=

kx

xx

tp

tpptjj

n

pjj

t


 


  Regarding ,
 

=

*

1=*

tp

tjj

n

j

t
x

x



 note that we 

always have 1.
*
p Therefore, we have 

.=
 

<
)( 

=
*

*

1=

**

1,=

t

tp

tjj

n

j

tp

tpptjj

n

pjj

t
x

x

x

xx













  

Therefore, by defining tiIiii  ,,= 1

*  , the solution ),,,,(
*

2

*

1

*

21

*

OOII   is a feasible 

solution of DMU  under evaluation , and we have 



 68                                      M.R.Mozaffari, et al /IJDEA Vol. 1, No. 2 (2013) 61-73 

.

)  (
1

)  (
1

<

)  (
1

)  (
1

*

2

*

1

*

2

*

1

*

2

*

1

*

21

rOrrOr

iIiiIi

rOrrOr

iIiiIi

M
lMk

M
qMp

M
lMk

M
qMp





































  

This show that eR  is strictly decreasing with respect to the inputs of the DMU  under 

evaluation. It can be shown, in a similar manner, that eR  is strictly increasing with respect to 

the outputs of the DMU  under evaluation.  
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Therefore, considering Theorem 1 and the above variable alteration in model (3), the SBM model is 

modified to the following model :  
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If Model (4) has multiple optimal solutions, there are several benchmarks for DMUp and more 

choices of suitable benchmarks for the management to choose from. Therefore, in order to find the 

multiple optimal solutions of Model (4), we solve it again after adding the constraint  
*

. It is 

not, of course, possible to find all the alternative solutions; One can only determine the extreme 

DMUs and find their convex combination as the desirable benchmark. 

To solve Model (4), we obtain Model (5) by a change of variable, and then we transform the 

fractional linear model to a linear programming model.  Finally, we put the optimal solution of Model 
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the DMUs. 
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To be precise, we know that from any optimal solution of model (5) with ,0> we can obtain an 

optimal solution of model (3) through the change of variables (4). Considering ),,(


ri tt be the 

extreme points of the model (5) the value of M is given by the following equation.   
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4   An application  

  The real data set, documented in Table 1, contains 30 banks with four inputs and four outputs, where 

the set of inputs/outputs are given as follows:  

Inputs:     Level of education of the staff.       Number of the staff in the branch.   

   Working experience of the staff.    Interest paid to customers. 

Outputs:    Resources.       Expenditure.     Revenues.     Volume of activity. 

The data for the above inputs and outputs are shown in Table 1. In this section we solve linear model 

(5) with GAMS software. The parameter value 'M' in models (4) and (5) has been considered equal to 

100. 
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Table 1 

Data contains 30 banks with four inputs and four outputs 

  

DMUs  
 1i    2i    3i    4i    1o    2o    3o    4o   

1  73504.25 86 4000 61196520.56 57029.55 40.88 1269 175 

2  36582.75 89.77 2565 66287094.89 36872 18.55 8543.33 313.11 

3  25002.25 87 1343 47612874.67 38680 20.22 6594.77 274.88 

4  36684.75 94 1500 349278138.6 35933 32.44 10516.55 248.55 

5  36834.5 83.44 1680 68356757.22 54457.77 30.11 9684.66 221.66 

6  62611.62 97 3750 75508661.33 72277.11 11.77 8022 329 

7  41572.77 90.66 3313 114264317.2 36625.44 101.22 14513.33 264.66 

8  55949.62 92 1500 74950922.22 46360.33 17.11 1622.55 226.11 

9  95522.75 89.55 1600 106720450.6 86063.33 71.44 10645 297.88 

10  59080.62 95.22 1725 66010355.44 47242.11 26.22 6824.33 215.77 

11  40736.12 78.33 1920 86613046.78 38977.77 184.11 12226 178.33 

12  27300.62 89.66 4433 69942333.33 38214.88 21.77 7561.77 157.44 

13  63295 106.33 2500 78657408.78 58340.44 45.22 7584 269.55 

14  94969.87 93.77 2800 78951533.89 88472.33 40 661.22 136.22 

15  50062 93.44 1630 69126959.33 50499 14.33 10264.11 125.11 

16  45926.25 85 1127 146206909 47907.22 25 7491.55 188.55 

17  82202.5 104 3400 107289969.8 59579.77 19.88 4952.77 157.33 

18  88782.5 92.33 1304 165532950.4 83075.11 23.44 4917 141.55 

19  87247.25 96.11 4206 68355245.33 51026.55 17.55 1528.33 217.77 

20  33196.5 100.44 1340 92342642.33 29658.11 77.33 14766.33 306.22 

21  28402.75 89.33 1393 44055007.78 27735 19.22 940.66 165.11 

22  122897.87 121.88 2191 94312914.11 102855.11 47.55 2510.44 238 

23  32587.75 100 2140 89070348.78 34063.66 23.11 2110.88 349 

24  60866.37 92 1231 69549538.56 53731.33 63.33 10219.55 163.55 

25  86429.87 90 1960 164581079.9 75776.55 53.88 4480.33 253.44 

26  253690 890 13430 694238180 1000 3 650 27 

27  1002200 920 16000 1829518580 9000 17 164 29 

28  66803.12 93.55 1603 143921177.8 72552.66 75.88 12091.22 184.77 

29  40156.12 82.33 2300 65099487.67 38630.77 24.88 1460.55 75.33 

30  986780 950 13040 3891855920 1800 7 491 14 

 

Now in Table 1, the suitable index for inefficient branches can be suggested by considering the 

priority of decreasing 21, ii  and 3i  and also priority of increasing 3o  and 4o .  

( {1,2}={3,4},={4},={1,2,3},= 2121 OOII ). Therefore, we calculate optimal values in order to 

evaluate the bank branches by model (5). Then considering the change of variables, the optimal 

solution of model (4) will be obtained. We put the optimal value of model (4) in the Table  
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Table 2    

 Benchmarks for each branch by using the proposed approach.   

 

The results of Model (4) are provided in Table 2. The set of inefficient units is denoted by IN; For the 

data in Table 1, this set is  

 .,,,,,,,,, 302726251917131284 DMUDMUDMUDMUDMUDMUDMUDMUDMUDMUIN 
 

By Model (4) and the results of Table 2, the desirable benchmark for 4DMU  is obtained from the 

convex combination of units 5, 7, 9, 11, and 20; and for 8DMU  it is obtained from the convex 

combination of units 3, 5, 20  and 24. Moreover, 20DMU  is a good benchmark for units 26, 27, and 

30. Looking more closely at the inputs and outputs of 30DMU , one can observe that the necessary 

amount of decrease for inputs 1-3, which have higher priority, is 0.03, 0.11, and 0.10, respectively, 

and the decrease required for input 4 to reach 20DMU  is 0.2. 

  DMUs  
 1i    2i    3i    4i    1o    2o    3o    4o   

1  73504.25 86.00 4000.00 6.11965E+7 57029.56 40.89 1269.00 175.00 

2   36582.75 89.78 2565.00   6.62871E+7 36872.00 18.56 8543.33 313.11 

3   25002.25 87.00 1343.00 4.76129E+7 38680.00 20.22 6594.78 274.89 

4   36684.75 94.00 1500.00 8.87670E+7 35933.00 90.82 13564.99 272.14 

5   36834.50 83.44 1680.00 6.83568E+7 54457.78 30.11 9684.67 221.67 

6   62611.63 97.00 3750.00 7.55087E+7 72277.11 11.78 8022.00 329.00 

7   41572.77 90.67 3313.00 1.14264E+8 36625.44 101.22 14513.33 264.67 

8   38851.85 89.92 1500.00 7.49509E+7 46360.33 48.76 11170.70 240.34 

9   95522.75 89.56 1600.00 1.06720E+8 86063.33 71.44 10645.00 297.89 

10   39697.81 91.10 1725.00 6.60104E+7 47242.11 34.57 8676.21 290.85 

11   40736.13 78.33 1920.00 8.66130E+7 38977.78 184.11 12226.00 178.33 

12   27300.63 89.35 1408.82 5.52739E+7 38214.89 28.79 7893.31 281.21 

13   53669.46 93.60 2500.00 7.86574E+7 58340.44 45.22 9632.53 300.76 

14   94969.88 93.78 2800.00 7.89515E+7 88472.33 40.00 661.22 136.22 

15   50062.00 93.44 1630.00 6.91270E+7 50499.00 14.33 10264.11 125.11 

16   45926.25 85.00 1127.00 1.46207E+8 47907.22 25.00 7491.56 188.56 

17   66259.14 94.67 1477.92 0.99970E+8 59579.78 74.21 12580.06 301.80 

18   88782.50 92.33 1304.00 1.65533E+8 83075.11 23.44 4917.00 141.56 

19   35453.47 85.13 1621.83 6.83552E+7 51026.56 32.96 9804.68 233.31 

20   33196.50 100.44 1340.00 9.23426E+7 29658.11 77.33 14766.33 306.22 

21    8402.75 89.33 1393.00 4.40550E+7 27735.00 19.22 940.67 165.11 

22  122897.88 121.89 2191.00 9.43129E+7 102855.11 47.56 2510.44 238.00 

23   32587.75 100.00 140.00 8.90703E+7 34063.67 23.11 2110.89 349.00 

24   60866.38 92.00 1231.00 6.95495E+7 53731.33 63.33 10219.56 163.56 

25   84279.99 90.00 1907.35 1.07781E+8 75776.56 77.02 11443.43 292.00 

26   33196.50 100.44 1340.00 9.23426E+7 29658.11 77.33 14766.33 306.22 

27   33196.50 100.44 1340.00 9.23426E+7 29658.11 77.33 14766.33 306.22 

28   66803.13 93.56 1603.00 1.43921E+8 72552.67 75.89 12091.22 184.78 

29   40156.13 82.33 2300.00 6.50995E+7 38630.78 24.89 1460.56 75.33 

30   33196.50 100.44 1340.00 9.23426E+7 29658.11 77.33 14766.33 306.22 
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5   Conclusion 

   The main nature of benchmarking is an attempt for improvement and its purpose is to provide 

performance levels and a quantitative criterion for the results. In internal benchmarking, a DMU is 

compared with another DMU within the organization, which leads to easier interactions, more 

profound analyses, and clarification of problems. In this paper suggested a model using an modified 

Russell to find a suitable index for inefficient commercial banks. The suggest model can introduce a 

suitable efficient branch in order to give priority to decrease some inputs also to give priority to 

increase some outputs. For practical application, the discretionary and nondiscretionary data can be 

determined and also the suggest model can be studied in mentioned in order to eliminate the priorities 

which are on the discretionary and nondiscretionary introduce the suitable and practical index.  
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