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Abstract 

Since it plays a significant role in the best choice of industry and science, it is always chosen 
to find a more accurate job. One of these methods is the TOPSIS method. 

In this article, after introducing the DEA and TOPSIS methods, we will introduce the 

TOPSIS-DEA method and then we will expand this method for interval criteria. In this 
method, there is no need to know the exact weight of the qualities, and this method deals with 

the best option without changing the qualitative qualities. This method is a suitable method 

for choosing the best option when the data is an interval. And it is faster than the classic 

method. 
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1. Introduction 

Data Envelopment Analysis (DEA) is a 

technique based on mathematical 
programming to calculate the relative 

efficiency of a set of homogeneous 

decision-making units [1], in 1978 the 
result of research by Cooper, Charnes and 

Rhodes in an article titled [2] CCR, it was 

published. Due to the complexity of 
decision-making in the presence of 

multiple quantitative and qualitative 

criteria, a special branch of operations 

research, called multi-criteria decision-
making (MCDA) [3], has been created and 

is developing rapidly. One of the methods 

for solving MCDA problems is the 
TOPSIS method [4]. The TOPSIS method, 

by Yun and Huang, was presented in 1981 

[5], in this method, the goal is to be close 
to the ideal option and to be far from the 

anti-ideal option. In the classical TOPSIS 

method, the data matrix is first normalized, 

and after determining the ideal and anti-
ideal points, as well as calculating the 

weight of the criteria and converting 

quantitative to qualitative criteria, it 
calculates the distance of each option to 

the ideal and anti-ideal and finally selects 

the option. is done [6]. In this article, after 

reviewing the DEA-TOPSIS method, 
which is a method based on TOPSIS with 

the structure of DEA problems [7, 8, 9, 10, 

11, 12, 13], without the need to find the 
weight of each criterion and also without 

the need to calculate the distance of 

quantitative criteria from ideal and anti-
ideal, Selects options.  

 

2. A review of the subject literature 

In classic TOPSIS, the selection of ideal 
and anti-ideal points is based on the 

software matrix (maximum or minimum 

Vj(ai) according to different criteria) [7]. 

In the DEA-TOPSIS method, instead of 
choosing ideal and anti-ideal points from 

the software table, we choose ideal and 

anti-ideal options for each criterion 

according to whether it is profit or cost 

[14]. If mj(ai) is the value of the i-th 

option on the j-th and we index different 
criteria, we will have a simpler calculation. 

Suppose that C = Cc ∪ Co so that C 

includes all criteria. Cc includes 

quantitative criteria and Co includes 
qualitative and sequential criteria. We 

assume: 

Cc = {c1
c, ⋯ , cj

c, ⋯ , cqc
c } , Co 

= {c1
o, ⋯ , cj

o, ⋯ , cqo
o }                             (1) 

so that q = qc + qo and qc is the number 

of quantitative criteria and qo is the 

number of qualitative and sequential 

criteria. 

If mj
c(ai) is the value of ai on the 

quantitative criterion Cj
c, for each Cj

c, the 

distance between ai, a+ and a− is as 

follows. 

dj
c(ai)

+
=

|mj
c(a+)−mj

c(ai)|

εj
+                      (2) 

The normalized distance between ai and 

a− on the criterion Cj
c is as follows. 

dj
c(ai)

−
=

|mj
c(a−)−mj

c(ai)|

εj
−                      (3) 

It can be shown that the normalized 

distances (2) and (3) are between 0 and 1 

[7]. 

Distance conditions when the criteria are 

qualitative and ordinal: 

In DEA-TOPSIS, grading is used to 

measure quality criteria, suppose:  

L = {l1 , ⋯ , lr, ⋯ , lm}  

The collection should be arranged so that 

l1 is the best grade and lm is the worst 

grade assigned to the quality criteria, also 

mj
o(ai) = lr. 

dj
o(ai)

−
and dj

o(ai)
+

 respectively show 

the distance between ai and a+ and ai and 

a− on the criterion cj
o. 

As in the qualitative criteria, the 

normalized distance between 0 and 1 was 

set, here also we assume that the distance 



IJDEA Vol.4, No.2, (2016).737-749  

Iravani and Ahadzadeh Namin / IJDEA Vol.10, No.4, (2022), 57-68 

 

59 
 

between a+ and a− on cj
o criterion is equal 

to 1, that is: dj
o(a+)− =  dj

o(a−)+ = 1. 

If m_mj
o(ai) = lr_r, then dj

o(ai)
+

 and 

dj
o(ai)

−
 in the conditions the following 

apply. 
m−r

m
≤ dj

o(ai)
−

≤
m−r+1

m
                          (4) 

r−1

m
≤ dj

o(ai)
+

≤
r

m
  

If wj
c = {w1

c, ⋯ , wj
c, ⋯ , wq

c}, the weight 

related to quality criteria and  

wj
o = {w1

o, ⋯ , wj
o, ⋯ , wq

o } weight 

information is related to quantitative 

criteria, the weighted distance from ai to 

a+ on Cc and Co with soft P is as follows: 

D(ai)
+

=                                               (5) 

{∑ wj
c. (dj

c(ai)+)
p

+
qc
j=1

∑ wj
o. (dj

o(ai)+)
pqo

j=1 }
1 p⁄

  

D(ai)
−

=                                               (6) 

{∑ wj
c. (dj

c(ai)−)
p

+
qc
j=1

∑ wj
o. (dj

o(ai)−)
pqo

j=1 }
1 p⁄

  

In the classic TOPSIS method, the weight 

of each criterion is determined, while in 

many cases the goal of the decision-maker 

is met by observing the relationships 

between the weights. It is enough to 

determine the relationships between the 

weights [15]. 

As mentioned, in the classic TOPSIS 

method, before performing mathematical 

operations, first, the values 

dj
o(ai)

−
 , dj

o(ai)
+

 , wc , wo should be 

calculated for each ai ∈ A and found  

cj
o ∈ CO for each criterion. Here, two 

models are designed without the need to 

find the values dj
o(ai)

−
, dj

o(ai)
+

, wc, wo. 

The first model is designed separately 

according to the distance to the ideal and 

the distance to the anti-ideal, and the final 

decision is made by combining these two 

models. The second model, which is called 

the combined model, uses these two 

distances simultaneously in one model. 

A) Specific optimization model 

Two A and B are designed as below. 

P(ai)
+

= minimize  : D(ai)
+

                  (7) 

st:      

∀ai ∈ A    , D(𝑎i)
+

≤  D(a−)+ ≤ 1 

∀ai ∈ A    , if mj
o(ai) = lr,    

r−1

m
≤ dj

o(ai)
+

≤
r

m
  

∀cj
o ∈ Co  , dj

o(a−)+ = 1 

∑ wj
c + ∑ wj

o = 1
qo
j=1

qc
j=1   

∀cj
o ∈ Co, wj

o ≥ ρ and ∀cj
c ∈ Cc, wj

c ≥ ρ  

In this model, the goal is to minimize the 

distance between each option and the ideal 

option. The first condition states that the 

distance between each option and the ideal 

option must be less than the distance 

between the ideal and anti-ideal options. 

This condition is established in normal 

TOPSIS. The second clause expresses the 

interval in which the distance between 

each option and the ideal option is located 

for each quality criterion. The third and 

fourth clauses are for normalization. 

P(ai)
−

 = maximize  : D(ai)
−

                    (8) 

st:      
 ∀ai ∈ A    , D(𝑎i)

−
≤  D(a+)− ≤ 1  

 ∀ai ∈ A    , if mj
o(ai) = lr , 

m−r

m
≤ dj

o(ai)
−

≤
m−r+1

m
  

∀cj
o ∈ Co  , dj

o(a+)− = 1  

∑ wj
c + ∑ wj

o = 1
qo
j=1

qc
j=1   

∀cj
o ∈ Co, wj

o ≥ ρ   and   ∀cj
c ∈ Cc, wj

c ≥ ρ 

In this model, the goal is to maximize the 

distance between each option and the anti-

ideal option, the first condition states that 

the distance between each option and the 

anti-ideal option must be less than the 

distance between the anti-ideal and ideal 

options, which is true in normal TOPSIS. 
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The second clause expresses the interval in 

which the distance between each option 

and the ideal option is located for each 

quality criterion. The third and fourth 

clauses are for normalization. 

Note that  is a real number is positive. 

Finally, we obtain the collective distance 

from the following relationship. 

D(ai) =
D(ai)

−

D(ai)
+

+D(ai)
−                              (9) 

The combined optimization model is 

obtained simultaneously based on the 

distance to a+ and a−. 

P(ai)                                                               (10) 

maximize:
D(ai)

−

D(ai)+ + D(ai)−
 

st: 

∀ai ∈ A    , D(𝑎i)
+

≤  D(a−)+ ≤ 1 

∀ai ∈ A    , D(ai)
−

  ≤  D(a+)− ≤ 1 

∀ai ∈ A    , if mj
o(ai) = lr ,

r−1

m
≤

dj
o(ai)

+
≤

r

m
  

and 
m−r

m
≤ dj

o(ai)
−

≤
m−r+1

m
  

∀cj
o ∈ Co  , dj

o(a−)+ = 1 

∀cj
o ∈ Co  , dj

o(a+)− = 1 

∑ wj
c + ∑ wj

o = 1
qo
j=1

qc
j=1   

∀cj
o ∈ Co, wj

o ≥ ρ   and   ∀cj
c ∈ Cc, wj

c ≥ ρ 

Note that P(ai)
+

 improves the estimation 

of the weight of quality criteria by 

minimizing the distance ai to the ideal 

point, and P(ai)
−

 improves such 

performance in the case of the distance to 

the anti-ideal point. and P(ai) is designed 

in such a way that it executes the previous 

two processes in one step. 

P(ai)
+

, P(ai)
−

and P(ai) restrictions are a 

guarantee that the above models reach the 

maximum or minimum value at least once. 

 

3. DEA-TOPSIS method for interval 

data 

Since the data are not always definite and 

are used in many interval data problems, 

there is a great deal of research about 

interval DEA [16, 17, 18, 19, 20]. we 

extend the DEA-TOPSIS model for 

interval data. Here, we are going to state 

that the three presented models can be 

expanded for interval criteria, that is, each 

option (ai) is located in an interval for 

each criterion. In other words, the interval 

(Lj, Uj) is for each Cj . Table 1). 

In TOPSIS, the range of ideal and anti-

ideal options is also in the form of an 

interval, and the goal is to be close to the 

ideal option and to be far from the anti-

ideal option [21]. 

First, we introduce the following symbols 

for each criterion Cj : 

Definition 1: aiU and aiL are the upper and 

lower limits of each option, respectively. 

Definition 2: a+U and a+L are respectively 

the best upper bound and the best lower 

bound in each criterion. 

Table 1: Interval criteria 

Options  
A1       ⋯      ⋯       ⋯          

An 

   ⋮   C1 

⋮ 

⋮ 

⋮ 

Cq 

 

standards    mi(Lj,Uj) . 
. 

. . 
. 
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Definition 3: a−U and a−L are respectively 

the worst upper bound and the worst lower 

bound in each criterion 

With these definitions, we have: ∀ ai ∈ A 

(11    )                    D(aiU)
+U

≤ D(a−L)
+U

  

(12)                        D(aiU)
+𝐿

≤ D(a+U)
−L

  

(13)                        D(ai𝐿)
−U

≤ D(a−L)
+U

 

(14)                        D(ai𝐿)
−L

≤ D(a+U)
−L

 

For each cj
c, the distance between aiU and 

a+U and aiU and a−U is as follows. 

|mj
c(a−U) − mj

c(aiU)|,  

|mj
c(a+U) − mj

c(aiU)|           (15) 

For each cj
c, the distance between aiL and 

a+L and aiL and a−L is as follows. 

|mj
c(a−𝐿) − mj

c(aiL)|,  

|mj
c(a+L) − mj

c(aiL)|           (16) 

As mentioned, in this method, the ideal 

and anti-ideal options are selected first, 

and then the normalized distance is 

defined on each option according to the 

normalization function. 

We define the following normalization 

function: 

εj
+U = √∑

(mj
c(a+U) − mj

c(aiU))
2

+ (mj
c(a−L) − mj

c(a+U))
2

n
i=1    (17) 

εj
+L = √∑

(mj
c(a+L) − mj

c(aiL))
2

+ (mj
c(a−L) − mj

c(a+U))
2

n
i=1    (18) 

εj
−𝐿 = √∑

(mj
c(a−L) − mj

c(aiL))
2

+ (mj
c(a+U) − mj

c(a−L))
2

n
i=1    (19) 

εj
−U = √∑

(mj
c(a−U) − mj

c(aiU))
2

+ (mj
c(a+U) − mj

c(a−L))
2

n
i=1   (20) 

The normalized distances on the 𝑐j
c 

criterion according to the above 

normalization function are as follows: 

dj
c(ai)

+𝑈
=

|mj
c(a+U)−mj

c(aiU)|

εj
+U              (21) 

dj
c(ai)

+L
=

|mj
c(a+L)−mj

c(aiL)|

εj
+L               (22) 

dj
c(ai)

−L
=

|mj
c(a−L)−mj

c(aiL)|

εj
−L                (23) 

dj
c(ai)

−U
=

|mj
c(a−U)−mj

c(aiU)|

εj
−U              (24) 

Theorem 1: It can be shown that the 

normalized distances (21), (22), (23) and 

(24) are between 0 and 1, that is: 

∀ ai ∈ A, ∀ cj ∈ C                                 (25) 

0 ≤ {
dj

c(ai)
−L

, dj
c(ai)

−U

, dj
c(ai)

+L
, dj

c(ai)
+𝑈} ≤ 1  

Proof: Because in the relationships 

mentioned for the normalization intervals, 

the numerator is greater than or equal to 

the denominator of the fraction, each of the 

mentioned intervals is between 0 and 1. 

 Distance conditions when the criteria 

are qualitative and ordinal 

Here we consider the quality criteria with 

the same ranking method mentioned in the 

second part. Suppose: 

L = {l1 , ⋯ , lr, ⋯ , lm}  

be the ranking set so that  l1 is the best 

grade and  lm is the worst grade assigned 

to the quality criteria. 

Also mj
o(ai) = lr, that is: 

ai is in the rth degree on the criterion cj
o. 

We have: 

mj
o(a−) = lm  , mj

o(a+) = l1                (26) 

dj
o(ai)

−
and  dj

o(ai)
+

 respectively show 

the distance between ai and a+ and ai and 

a− on the criterion cj
o. 
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As in the qualitative criteria, the 

normalized distance between 0 and 1 was 

set, here also we assume that the distance 

between a+ and a− on the cj
o criterion is 

equal to 1, that is: dj
o(a+)− =  dj

o(a−)+ = 1 

If mj
o(ai) = lr, then dj

o(ai)
+

 and dj
o(ai)

−
 

apply in the following conditions. 
r−1

m
≤ dj

o(ai)
+

≤
r

m
                             (27) 

m−r

m
≤ dj

o(ai)
−

≤
m−r+1

m
                     (28) 

If wj
c = {w1

c, ⋯ , wj
c, ⋯ , wq

c } the weight 

related to quality criteria and  

wj
o = {w1

o, ⋯ , wj
o, ⋯ , wq

o } weight 

information is related to quantitative 

criteria, the weighted distance on Cc and 

Co with soft P is as follows: 

D(ai)
+U

=                                            (29) 

{∑ wj
c. (dj

c(ai)+U)
p

+
qc
j=1

∑ wj
o. (dj

o(ai)+)
pqo

j=1 }
1 p⁄

  

D(ai)+L =                                                    (30) 

{∑ wj
c. (dj

c(ai)+L)
p

+
qc
j=1

∑ wj
o. (dj

o(ai)+)
pqo

j=1 }
1 p⁄

  

D(ai)−U =                                                    (31) 

{∑ wj
c. (dj

c(ai)−U)
p

+
qc
j=1

∑ wj
o. (dj

o(ai)−)
pqo

j=1 }
1 p⁄

  

D(ai)−L =                                                     (32) 

{∑ wj
c. (dj

c(ai)−L)
p

+
qc
j=1

∑ wj
o. (dj

o(ai)−)
pqo

j=1 }
1 p⁄

  

At this stage, we want the decision-maker 

to state the relationships he expects 

regarding the weight of the criteria. Then, 

using the constraints of these variables, 

optimization models are formed. 

 

4. Optimization models for interval 

data 

(i) Four specially designed models 

These four models are dedicated to finding 

the best option in comparison with the best 

and worst conditions. 

A. distance of each option to the upper limit 

of the ideal option: 

P(ai)
+

                                                            (33)     

minimize  : D(ai)
+U

  

𝑠𝑡:      

∀ai ∈ A    , D(ai)
+U

≤  D(a−L)
+U

≤ 1  

∀ai ∈ A    , if    mj
o(ai) = lr 

then          ,
r−1

m
≤ dj

o(ai)
+

≤
r

m
  

∀cj
o ∈ Co  , dj

o(a−)+ = 1 

∑ wj
c + ∑ wj

o = 1
qo
j=1

qc
j=1   

∀cj
o ∈ Co, wj

o ≥ ρ    

and   ∀cj
c ∈ Cc, wj

c ≥ ρ 

B. The distance between each option and 

the anti-ideal option: 

P(ai)
−

                                                      (34) 

maximize  : D(ai)
−U

 

st:      

 ∀ai ∈ A    , D(ai)
−U

≤  D(a−L)
+U

≤ 1  

 ∀ai ∈ A    , if    mj
o(ai) = lr 

  then     ,
m−r

m
≤ dj

o(ai)
−

≤
m−r+1

m
  

∀cj
o ∈ Co  , dj

o(a+)− = 1 

∑ wj
c + ∑ wj

o = 1
qo
j=1

qc
j=1   

∀cj
o ∈ Co, wj

o ≥ ρ    

and   ∀cj
c ∈ Cc, wj

c ≥ ρ 

We define the upper bound for each option 

as follows: 

D(ai)
U

=
D(ai)

−U

D(ai)
−U

+D(ai)
+U                     (35) 

C. The distance of each option to the lower 

limit of the ideal option: 

    P(ai)
+

                                                  (36) 

minimize  : D(ai)
+L

 

𝑠𝑡:      

 ∀ai ∈ A    , D(ai)
+L

≤  D(a+U)
−L

≤ 1  

 ∀ai ∈ A    , if   mj
o(ai) = lr 

   then          ,    
r−1

m
≤ dj

o(ai)
+

≤
r

m
  

∀cj
o ∈ Co  , dj

o(a−)+ = 1 

∑ wj
c + ∑ wj

o = 1
qo
j=1

qc
j=1   

∀cj
o ∈ Co, wj

o ≥ ρ   and   ∀cj
c ∈ Cc, wj

c ≥ ρ 

D. The distance of each option to the 

bottom corner of the anti-ideal option: 

P(ai)
−

                                                       (37) 
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maximize  : D(ai)
−L

 

st:      

 ∀ai ∈ A    , D(ai)
−L

≤  D(a+U)
−L

≤ 1 

 ∀ai ∈ A    , if   mj
o(ai) =

lr   then           ,
m−r

m
≤ dj

o(ai)
−

≤
m−r+1

m
  

∀cj
o ∈ Co  , dj

o(a+)− = 1 

∑ wj
c + ∑ wj

o = 1
qo
j=1

qc
j=1   

∀cj
o ∈ Co, wj

o ≥ ρ   and   ∀cj
c ∈ Cc, wj

c ≥ ρ 

We define the lower bound for each option 

as follows: 

D(ai)
L

=
D(ai)

−L

D(ai)
−L

+D(ai)
+L                     (38) 

To choose the right option, we define 

R(ai) as follows: 

R(ai) =
 D(ai)

L
+D(ai)

U

2
                           (39) 

The higher the 𝑅(ai), the more appropriate 

the option to choose. 

(ii)  Two integrated optimization models 

In these two models, we directly calculate 

the distance to the upper limit and the 

distance to the lower limit for each option. 

A1 - the distance of each option to the 

upper limit: 

p(ai)                                                                   (40) 

maximize  :  𝐷°(ai)U =
D(ai)

−U

D(ai)
−U

+D(ai)
+U  

st:      
 ∀ai ∈ A    , D(ai)+U ≤  D(a−L)+U ≤ 1  
∀ai ∈ A    , D(ai)−U ≤  D(a−L)+U ≤ 1 

∀ai ∈ A    , if mj
o(ai) = lr    then          ,

r−1

m
≤

dj
o(ai)+ ≤

r

m
  

and           ,
m−r

m
≤ dj

o(ai)− ≤
m−r+1

m
  

∀cj
o ∈ Co  , dj

o(a−)+ = 1 

∀cj
o ∈ Co  , dj

o(a+)− = 1 

∑ wj
c + ∑ wj

o = 1
qo
j=1

qc
j=1   

∀cj
o ∈ Co, wj

o ≥ ρ   and   ∀cj
c ∈ Cc, wj

c ≥ ρ 

A2 - the distance of each option up to the 

lower limit: 

P(ai)                                       (41) 

maximize  :  𝐷°(ai)
L

=  
D(ai)

−L

D(ai)
−L

+D(ai)
+L    

st:      
 ∀ai ∈ A    , D(ai)

+L
≤  D(a+U)

−L
≤ 1  

∀ai ∈ A    , D(ai)
−L

≤  D(a+U)
−L

≤ 1  

 ∀ai ∈ A    , if mj
o(ai) = lr    

then   ,
r−1

m
≤ dj

o(ai)
+

≤
r

m
   

and           ,
m−r

m
≤ dj

o(ai)
−

≤
m−r+1

m
  

∀cj
o ∈ Co  , dj

o(a−)+ = 1 

∀cj
o ∈ Co  , dj

o(a+)− = 1 

∑ wj
c + ∑ wj

o = 1
qo
j=1

qc
j=1   

∀cj
o ∈ Co, wj

o ≥ ρ and  ∀cj
c ∈ Cc, wj

c ≥ ρ 
At this stage, to choose the appropriate 

option, we define 𝑅°(ai) as follows: 

𝑅°(ai) =
 𝐷°(ai)

U
+ 𝐷°(ai)

L

2
            (42) 

The higher the value of  𝑅°(ai), the more 

suitable the option is to choose. 

Theorem 2: For each value of the 

parameters, the calculated D(ai) is 

between D(ai)L and D(ai)U. means: 

D(ai)
−L

D(ai)−L + D(ai)+L
= D(ai)

L
≤ 𝐷(ai) 

≤ D(ai)
U

=
D(ai)

−U

D(ai)
−U

+D(ai)
+U               (43) 

Proof: The following relations are 

established: 

𝐷(𝑎𝑖)
+𝐿

≤ 𝐷(𝑎𝑖)
+

≤ 𝐷(𝑎𝑖)
+𝑈

          (44) 

𝐷(𝑎𝑖)
−𝐿

≤ 𝐷(𝑎𝑖)
−

≤ 𝐷(𝑎𝑖)
−𝑈

          (45) 

By adding the unequal sides of (44) and 

(45), we will have: 

𝐷(𝑎𝑖)
+𝐿

+ 𝐷(𝑎𝑖)
−𝐿

≤ 𝐷(𝑎𝑖)
+

+

𝐷(𝑎𝑖)
−

≤ 𝐷(𝑎𝑖)
+𝑈

+  𝐷(𝑎𝑖)
−𝑈

         (46) 

Since each of the sides of the inequality 

(46) is opposite to zero, by dividing the 

relation (45) by (43), we have: 

𝐷(𝑎𝑖)
−𝐿

𝐷(𝑎𝑖)
+𝐿

+𝐷(𝑎𝑖)
−𝐿 ≤

𝐷(𝑎𝑖)
−

𝐷(𝑎𝑖)
+

+𝐷(𝑎𝑖)
−  
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≤
𝐷(𝑎𝑖)

−𝑈

𝐷(𝑎𝑖)
+𝑈

+ 𝐷(𝑎𝑖)
−𝑈              (47) 

This is the same relationship we are 

discussing, so the argument ends. 

Theorem 3: For each parameter value in 

the corresponding intervals D(ai) is 

calculated between  𝐷°(ai)
L
 and  𝐷°(ai)

𝑈
 

has it. means: 

 𝐷°(ai)
L

≤ 𝐷(𝑎𝑖) ≤  𝐷°(ai)
𝑈

            (48) 

Proof: We must show: 

𝑆𝐿 ⊆ 𝑆 ⊆ 𝑆𝑈              (49) 

which shows the zoning of each of the 

unequal sides (49). We want to show that 

if the constraints of the model (19) are 

valid, then the constraints of model (41) 

are valid, and if the constraints of the 

model (40) are valid, then the constraints 

of the model (19) are valid. It should be 

mentioned that the following restrictions 

apply to all models. 
r−1

m
≤ dj

o(ai)
+

≤
r

m
  

 
m−r

m
≤ dj

o(ai)
−

≤
m−r+1

m
  

For this purpose, we must show if the 

relations: 

D(ai)
−

≤  D(a+)− ≤ 1  

D(𝑎i)
+

≤  D(a−)+ ≤ 1  

are established, then the following 

relationships are also established. 

D(ai)
−L

≤  D(a+U)
−L

≤ 1  

D(ai)
+L

≤  D(a+U)
−L

≤ 1  

First, suppose D(𝑎i)
−

≤  D(a+)− ≤ 1, 

then: 

D(a+U)
−L

≤ D(a+)− ⇒ D(a+U)
−L

− 1 ≤

D(a+)− − 1 ≤ 0  

⇒ D(a+U)−L − 1 ≤ 0  

So, the relationship D(ai)
−L

≤

 D(a+U)
−L

≤ 1 is established. Now we 

assume D(𝑎i)
+

≤  D(a−)+ ≤ 1, so: 

D(a+U)
−L

≤ D(a+)− =  D(a−)+ ⇒

D(a+U)
−L

− 1 ≤ D(a−)+ − 1 ≤ 0  

⇒ D(a+U)
−L

− 1 ≤ 0 

So, the relationship D(ai)
−L

≤

 D(a+U)
−L

≤ 1 has been established. Here 

we can conclude: 

𝑆𝐿 ⊆ 𝑆                    (50) 

Now we show that if the relations: 

D(ai)
+U

≤  D(a−L)
+U

≤ 1   

D(ai)
−U

≤  D(a−L)
+U

≤ 1  
are established, then the following 

relationships are also established: 

D(𝑎i)
+

≤  D(a−)+ ≤ 1  
D(ai)

−
≤  D(a+)− ≤ 1  

First, we assume that D(ai)
−U

≤

 D(a−L)
+U

≤ 1, then: 

D(a−)+ ≤  D(a−L)
+U

⇒ D(a−)+ − 1 ≤

 D(a−L)
+U

− 1 ≤ 0  

⇒  D(a−)+ − 1 ≤ 0 

So, the relation D(𝑎i)
+

≤  D(a−)+ ≤ 1 is 

established. 

Now we assume that D(ai)
+U

≤

 D(a−L)
+U

≤ 1, so: 

D(a+)− ≤ D(a+U)
−L

= D(a−L)
+U

⇒

D(a+)− − 1 ≤  D(a−L)
+U

− 1 ≤ 0  

D(a+)− − 1 ≤ 0 
So, the relationship  ،D(ai)

−
≤  D(a+)− ≤

1 is established. From here we can 

conclude: 

𝑆 ⊆ 𝑆𝑈            (51) 

that obtained relations (50) and (51) result 

in relation (49). 

Now if  𝐷°(ai)
L

 ,  𝐷°(ai)
𝑈

 the optimal 

answer of models (40) and (41), we have: 

 𝐷°(ai)
L

≤ 𝐷(𝑎𝑖)  ≤ 𝐷°(ai)
𝑈

  

Which is the ideal of the case. So, the proof 

ends. 
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5. Example 

According to Table 2, we want to choose 

the options with the presented method. In 

this table, the first two criteria are 

quantitative and the third criterion is 

qualitative. The relation of the criterion's 

weight is as: 𝑤1
𝑐 ≥ 𝑤2

𝑐 ≥ 𝑤1
𝑜 . All three 

criteria are profit type. 

First, we rank the options based on quality 

criteria. This rating is possible with the 

following conditions: 

if   ai ≤ 400000 ⇒ ai ϵ l4 

if 400000 <  𝑎i ≤ 800000 ⇒ ai  ϵ l3 

if 800000 <  𝑎i ≤ 1400000 ⇒ ai ϵ l2 

if   ai > 1400000 ⇒ ai ϵ l1 
It can be seen that we have the following 

ranking: 

{1} ∈ l1, {2,3} ∈ l2, {6,7,8} ∈ l3, {4,5} ∈ l4  

Also, it is enough to consider 𝑃(𝑎𝑖+) and 

𝑃(𝑎𝑖−) as below. 

𝑤1
𝑐 ≥ 𝑤2

𝑐 , 𝑤2
𝑐 ≥ 𝑤1

𝑜   ,  𝑤1
𝑜 ≥0.00001 

The normalized distance of each option to 

the upper and lower limits of the anti-

ideal is shown in Table 3. And the 

normalized distance of each option to the 

ideal upper and lower limits is shown in 

Table 4. And finally, the results related to 

the ranking of options are presented in 

Table 5. 

Table 2: Data table 

𝐶1
𝑜

 𝐶2
𝑐

 𝐶1
𝑐

  

3126798 26364        28254 500          961 𝑎1 

1061260 3791          50308 873          1775 𝑎2 

1213541 22964        26846 95            196 𝑎3
 

395241 492            1213 848          1752 𝑎4
 

165818 18053        18061 58            120 𝑎5 

416416 40539        48643 464          955 𝑎6
 

410427 33797        44933 155          342 𝑎7
 

768593 1437          1519 1752      3629 𝑎8
 

 

Table 3: Normalized distance to anti-ideal 

𝐶1
𝑜

 𝐶2
𝑐

 𝐶1
𝑐

  

dL-                          dU- dL-                        d U- 

(0.75, 1) 0.1780        0.2610 0.1063       0.0478 𝑎1 

(0.5, 0.75) 0.0227        0.4739 0.1960       0.1386 𝑎2 

(0.5, 0.75) 0.1546        0.2474 0.0089       0.0063 𝑎3
 

(0.0, 0.25) 0.0               0.0  0.19            0.1367 𝑎4
 

(0.0, 0.25) 0.1208        0.1626   0.0              0.0 𝑎5 

(0.25, 0.5) 0.2755        0.4578 0.0977       0.0699 𝑎6
 

(0.25, 0.5) 0.2291        0.422 0.023         0.0018 𝑎7
 

(0.25, 0.5) 0.0065        0.0029 0.4075       0.2939 𝑎8
 

Table 4: Normalized to the ideal distance 

𝐶1
𝑜

 𝐶2
𝑐

 𝐶1
𝑐

  

dL+                 d U+ dL                         dU+ 
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(0.0, 0.25) 0.1581     0.2277 0.1838        0.3214 𝑎1 

(0.25, 0.5) 0.41          0.0 0.1290        0.2234 𝑎2 

(0.25, 0.5) 0.1782      0.2422 0.2433        0.4136 𝑎3
 

(0.75, 1) 0.4468      0.5069 0.1327        0.2261 𝑎4
 

(0.75, 1) 0.2508      0.3329 0.2487        0.4228 𝑎5 

(0.5, 0.75) 0.0             0.0172 0.1891        0.3221 𝑎6
 

(0.5, 0.75) 0.0752      0.0555 0.2345        0.3960 𝑎7
 

(0.5, 0.75) 0.4362      0.5037 0.0               0.0 𝑎8
 

 

Table 5: Ranking of options 

Ranking  𝑅°(𝑎𝑖)  𝐷°(ai)
L

              𝐷°(ai)
L
 Ranking 𝑅(𝑎𝑖) 𝐷(𝑎𝑖)

𝐿
              𝐷(𝑎𝑖)

𝑈
  

1 0.99997625 0.9999808       0.9999717 2 0.80917565 0.8387067       0. 7796446 𝑎1 

2 0.7901676 0.7499663       0.8303689 3 0.7499663 0.7499663      0.8571123 𝑎2 

3 0.7499857 0.7499877       0.2499888 1 0.81166255 0.7779076      0.8454175 𝑎3
 

8 0.24998765 0.2499888       0.2499865 8 0.34792315 0.3600240      0.3358223 𝑎4
 

7 0.2731133 0.2703373       0.2758893 7 0.35375745 0.3750499      0.332465 𝑎5 

4 0.62865535 0.60798787     0.649332 4 0.60748045 0.6159108      0.5990501 𝑎6
 

5 0.5914966 0.5589863       0.6240069 5 0.64612565 0.6493968      0.6428545 𝑎7
 

6 0.49997615 0.4998784      0.4999739 6 0.67212925 0.6851716      0.6590869 𝑎8
 

Finally, to rank the options, first, we solve 

the models (33), (34), (36) and (37) for 

each option, then we put the obtained 

values in the relations (35) and (38) and we 

also solve models (40) and (41) for each 

option, the results of these calculations are 

shown in table (5). 

The above table shows that the first 3 

options have different ratings by two 

methods, but the other options have the 

same rating in both methods. 

 

6. Conclusions and suggestions 

Since choice plays an important role in 

people's lives, people always seek to find 

quick and reliable ways to choose. The 

method that was presented for interval 

criteria based on DEA-TOPSIS, selects the 

option without needing to know the exact 

weight of data and criteria and without the 

need to convert qualitative criteria into 

quantitative ones. 

Since the criteria are always definite and 

interval and not specific, it is possible to 

expand DEA-TOPSIS for options with a 

combination of criteria. 

The DEA-TOPSIS method can be used for 

fuzzy criteria. 

It is possible to generalize the DEA-

TOPSIS method for interval quality 

criteria. 
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