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Abstract 

The current study extends and provides a generalization of the range directional model 
(RDM). The proposed generalized RDM (GRDM) model utilizes an ideal point (IP) and anti-

ideal point (AIP) simultaneously to evaluate the efficiency score. It is evident that approaching 

to the IP, not necessarily, leads to moving away from the AIP. This obviously happens when 
the IP, AIP, and DMU lie on a common line; however, the depicted situation usually occurs 

hardly ever. On the other side, there are loads of situations in which a DMU requires not only 

to approach the IP but also to move away from the AIP, simultaneously. The GRDM model 
imposes two criteria (i.e., approaching to IP and moving away from AIP) to asses DMUs. 

Therefore, the efficiency score, when GRDM is used, is less than or equal to the efficiency 

score obtained by using the RDM model; consequently, the discrimination power of the 

GRDM model is better than that of the RDM model due to finding more inefficiency regarding 
both IP and AIP. The GRDM model is unit- and translation-invariant. A numerical example 

is applied to demonstrate the applicability of the proposed model in comparison with the RDM 

model. 
 

Keywords: RDM model; Ideal and Anti Ideal Point; Inefficiency; Data Envelopment 

Analysis (DEA)
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1. Introduction  
Data envelopment analysis (DEA), which 

was introduced by Farrell [1] and 

developed by Charnes et al. [2], is a non-

parametric linear programming (LP) 
methodology used to evaluate the 

efficiency score of a number of similar 

processing decision-making units 
(DMUs).  

All inputs and outputs are assumed to be 

positive in many applications of DEA. 

However, this assumption is inapplicable 
to several situations, such as analyses of 

financial statements (e.g, Smith [3] and 

Feroz et al. [4]) and the rating of mutual 
funds (Murthi et al. [5]), Therefore, the 

problem of handling negative data has 

elicited the attention of researchers. 
Negative inputs and/or outputs have been 

investigated, and data transformation has 

been applied to measure the efficiency 

score. In this manner, all values of a given 
variable can be translated, and all negative 

data can be turned to positive data (Pastor 

[6] and Lovell [7]). The transformation of 
negative data may affect the solution of 

DEA results (Seiford et al. [8]). Negative 

data can be subdivided into the two types. 
The first type contains naturally negative 

data, which are measured on a ratio scale 

with a natural zero (Portela et al. [9]). The 

second type holds avoidably negative data, 
which include those measured on an 

interval or ordinal scale without any 

natural zero (Ueda et al. [10]). One of the 
main approaches for dealing with negative 

input and output is that of research of 

Portela et al. [9]. They introduced the 

RDM, which is a non-oriented model and 
looks simultaneously for input contraction 

and output expansion. RDM is based on 

the directional distance function proposed 
by Chung et al. [11]. The RDM model is 

unit- and translation-invariant but never 

identifies all sources of inefficiency. 
Additionally, there are some recent studies 

dealing with negative data in other aspects.  

In many real-life practical situations, 

like the banking industry, the main target 

is to move away from the worst possible 
case (i.e. AIP) rather than move toward the 

best possible case (i.e. IP). This can 

happen when decision makers do not have 

technically the full potential for 
approaching to the best case, while they 

are able to keep themselves far from the 

worst case.  In this study, a new approach 
is developed to handle the negative data. 

We propose a generalization form of RDM 

that is formulated based on moving toward 

the IP while moving away from AIP. The 
new approach increases the discrimination 

power of RDM. Moreover, the proposed 

method is a suitable approach in the 
situation in which we have a plan to both 

move away and move toward the AIP and 

IP, respectively. For instance, in the 
banking industry, all banks have a strong 

desire to move away just from the worst 

possible situations rather than move 

toward the best possible case in order to 
prevent Bankruptcy. These situations 

could be account balance, bank loans, non-

current receivables and so forth.  
The rest of this paper is organized as 

follows. Section 2 reviews the RDM 

model. Section 3 introduces the proposed 
GRDM. Section 4 discusses the 

application of the proposed model. The 

last section provides the conclusion. 

 
2. RDM 

We consider n DMUs that are indexed by

( 1,..., )j j n . The performance of each 

DMU is characterized by a production 

process of consuming m inputs 

 ; 1, ,ijx i m  to yield s outputs

 ; 1, ,rjy r s . Chung et al. [11] 

presented an LP model called the generic 
directional distance model to measure the 

DEA efficiency score of a specific DMU 

as follows Model (1). 
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Max                         (1) 

s.t. 

1

, 1, , ,
i

n

j ij io x

j

x x g i m 


         (1.1) 

1

, 1, , ,
r

n

j rj ro y

j

y y g r s 


    (1.2) 

1

1,
n

j

j




           (1.3) 

0, 0, 0,

1, , , 1, , , 1, , .

ry xi jg g

j n i m r s

  

  
     (1.4) 

 

where ( , )
i rx yg g is the directional vector. 

A popular choice in the presence of 

positive data is the observed input and 

output levels. In the negative data 

scenario, Model (1) needs to be modified. 
Portela et al. [9] developed the idea of 

Model (1) and defined an IP as follows:  

 
 

1

1

 IP's input= min{ } , 1,2, , ,

 IP's output= max{ } , 1,2, , .

ij
j n

rj
j n

ith x i m

rth y r s

 

 

 


 


  (2) 

 

where the ith IP’s input component is the 

lowest value among the observed input 

vector ix . The maximum value is 

considered for the rth IP’s output. The 

purpose of choosing IP is to identify the 

direction vectors ( , )
i rx yg g  for each 

DMU (Figure 1). Therefore, ( , )
i rx yg g

is selected on the basis of the under 

evaluation DMUo
 as follows: 

1

1

min{ }, 1,..., ,

max{ } , 1,..., .

io io ij
j n

ro rj ro
j n

g x x i m

g y y r s

 

 

  



  

   (3)  

 
 
Portela et al. [9] modified the generic 

directional distance model in the presence 

of negative data. The modified model, 

RDM, is defined as Model (4). 

1z =Max             (4) 

s.t. 

1

, 1, , ,
n

j ij io io

j

x x R i m 


   (4.1) 

1

, 1, , ,
n

j rj ro ro

j

y y R r s 


   (4.2) 

1

1,
n

j

j




           (4.3) 

0, 1, , .j j n            (4.4) 

 

where  1min { }io io j n ijR x x    and 

 1max { }ro j n rj roR y y   are 

parameters in Model (4) and defined as 

follows: 

1

1

min{ }, 1,..., ,

max{ } , 1,..., .

io io ij
j n

ro rj ro
j n

R x x i m

R y y r s

 

 

  



  

   (5) 

 

The optimal objective value of the RDM 

model shows the maximum inefficiency of 

under evaluation oDMU . The advantage of 

the RDM model over the generic 

directional distance model, which can deal 
with negative data, is that it is unit- and 

translation-invariant and yields 

inefficiency scores between 0 and 1 
(Portela et al. [9].)  
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3. GRDM 
AIP is as crucial as IP. AIP is a point that 

is created by the observed DMUs in the 

worst case. Mathematically, 

 
 

1

1

 AIP's input = max{ } , 1, , ,

 AIP'soutput = min{ } , 1, , .

ij
j n

rj
j n

ith x i m

rth y r s

 

 

 


 


 (6) 

 

The RDM model uses IP to project DMUs 

onto the efficient frontier. This purpose 

aims to move toward IP. Generally, 
moving toward IP does not mean moving 

away from AIP. This may occur when IP, 

AIP, and the observed 
oDMU do not lie on 

a unique line. Therefore, the RDM model 

should be modified to incorporate the AIP. 

In our proposed model (GRDM), the RDM 

model is modified by including AIP. 
Precisely, DMUs move toward the IP 

while moving away from AIP in the 

GRDM model. In other words, another 
criterion (moving away from AIP) is 

added to measure the efficiency score of 

the RDM model. Figure 2 shows the IP and 
AIP geometrically. DMUp is considered 

for evaluation. The RDM model suggests 

a movement (dotted line) to attain the 

efficient frontier, and the GRDM model 
suggests the combination of two different 

movements (solid lines) to attain the 

efficient frontier. Targets Q  and R  are on 

the efficient frontier. However, R is 

achieved based on two criteria (moving 

away from AIP and moving toward IP, 

simultaneously), and Q is just obtained 

based on moving toward IP.  

 

According to the aforementioned 
considerations, our proposed model, 

GRDM, is formulated as Model (7). 

2 maxz                         (7) 

s.t. 

1

, 1, , ,
n

j ij io io io

j

x x R R i m  


    (7.1) 

1

, 1, , ,
n

j rj ro ro ro

j

y y R R r s  


    (7.3) 

1

1,
n

j

j




           (7.2) 

, , 0, 1, , .j j n              (7.3) 

 

where , ,io ro ioR R R and 
roR  are parameters 

and defined as Eqs. 8-11: 

 
1
min{ } ,io io ij

j n
R x x

 
             (8) 

 
1
max{ } ,ro rj ro

j n
R y y

 
            (9) 

 
1
max{ } ,io ij io

j n
R x x

 
            (10) 

 
1
min{ }ro ro rj

j n
R y y

 
             (11) 

 

To show that the generalized model 

provides the maximum inefficiency of

oDMU , we prove that * * 1.    

 

Theorem 1: The optimal objective value 

of Model (7) is not greater than 1, 
* * 1.    

Proof: The dual form of the GRDM 
model is as Model (12): 

1

1 1

min
m s

i io r ro o

i r

f v x u y u
 

     (12) 

s.t. 

1 1

0, 1, , ,
m s

i ij r rj o

i r

v x u y u j n
 

     (12.1) 

1 1

1,
m s

i io r ro

i r

v R u R
 

          (12.2) 

1 1

1,
m s

i io r ro

i r

v R u R
 

          (12.3) 
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, 0, 1, , , 1, , ,i rv u i m r s   (12.4) 

 .ou is free         (12.5) 

 
For proof, we use the connection between 

the objective value of dual and primal 

models. By considering Models (7) and 

(12) and using the weak duality theorem, 
for any feasible solution of the primal and 

dual models, the following holds. 

1 1

,
m s

i io r ro o

i r

v x u y u 
 

        (13) 

 

To prove that
* * 1   , we make a 

feasible solution with the objective value 

of one in Model (12). Toward this end, 
Model (12) can be rewritten as  

0,( 1, , )ru r s   by adding a new 

constraint
1

1
m

i io o

i

v x u


  , that is, 

2

1

min
m

i io o

i

f v x u


            (14) 

s.t. 

1

0, 1, , ,
m

i ij o

i

v x u j n


         (14.1) 

1

1,
m

i io

i

v R


         (14.2) 

''

1

1,
m

i io

i

v R


         (14.3) 

1

1,
m

i io o

i

v x u


                     (14.4) 

0, 1, , ,iv i m         (14.5) 

.ou is free                     (14.6) 

 

The dual form of Model (14) is expressed 

using real values , ,s p q  and a 

nonnegative vector 
1( ,..., )n    as 

Model (15). 

 

 

3 maxf p q s             (15) 

s.t. 

1

, 1,..., ,
n

j ij io io io io

j

x pR qR sx x i m


      (15.1) 

1

1,
n

j

j

s


           (15.2) 

0, 1, , .j j n          (15.3) 

 

Thus, 1, 0, 0, 0s q p     is a 

feasible solution of Model (15). The 

objective value for this feasible solution is 
one. This solution is optimal according to 

the fundamental theorem of duality. 

Therefore, at least one optimal solution 

exists for Model (14) with 2 1f  , that is,

* * *

1( ,...., , )m ov v u . 

According to this solution, 
* * *

1 1 1( , , , , ) ( , , ,0, ,0, )m m o m ov v u u u v v u  

is a feasible solution of Model (12) with 

1 1f  . By the Eq.(13), 
* * 1   . 

 

Definition1: ( 1, , )jDMU j n  is called 

GRDM efficient if and only if * * 0    

and all constraints of Model (7) are 
satisfied in the equality (i.e., all slacks are 

0). Otherwise,
jDMU is GRDM 

inefficient. 

 

The efficiency of ( , )o ox y for 
oDMU can 

be improved by GRDM as Eqs. 16-17: 

* * * *

1

,

1, , ,

n

io j ij io io io i

j

x x x R R s

i m

   



    



  (16) 

* * * *

1

,

1, , .

n

ro j rj ro ro ro r

j

y y y R R t

r s

   



    



 (17) 

 

GRDM has several properties, which are 
presented in the following lemmas. RDM 

is a special case of the GRDM model. 
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Specifically, the RDM model can be 

obtained by setting 0  . 

Lemmas 1, 2, and 3 have straightforward 

proof; hence, the proof is omitted here. 
 

Lemma1: The inefficiency score of 

GRDM is greater than or equal to the 

inefficiency score of RDM (i.e. * *

2 1z z ). 

Lemma2:  GRDM is translation-invariant. 

Lemma3:  GRDM is unit-invariant. 

Lemma4: The improved activity  x , yio ro
 

defined by Eqs 16-17 is GRDM-efficient. 

Proof: Let an optimal maximum slack 

solution of GRDM for
oDMU be 

 * * * * *, , , ,s t     . According to Eqs. 

16-17, the improved activity for 
oDMU is:  

* * * *

1

,

1, , ,

n

io j ij io io io i

j

x x x R R s

i m

   



    



 (18) 

* * * *

1

,

1, , .

n

ro j rj ro ro ro r

j

y y y R R t

r s

   



    



  (19) 

 
The GRDM for evaluating the improved 

activity  ,io rox y  can be written as Model 

(20). 

max               (20) 

s.t. 

1

,

1, , ,

n

j ij io io io

j

x x R R

i m

  


  



               (20.1) 

1

,

1, , ,

n

j rj ro io io

j

y y R R

r s

  


  




      (20.2) 

1

1,
n

j

j




                     (20.3) 

, , 0, 1, , .j j n           (20.4) 

where 

 

 

 

1

1

1

min { } ,

max { } ,

max { }

io io j n ij

ro j n rj ro

io j n ij io

R x x

R y y

R x x

 

 

 

 

 

  

 

 and  1min { } .ro ro j n rjR y y 
    Using 

Eqs. 18-19, we obtain 

 

    

    
 

 

* * *

1

* * *

1

* * *

1

* * *

* * *

* * *

min { }

ˆ           max { }

           

.

n

j ij io io io i

j

io io io i j n ij

j n ij io io io i i

io io

io

i i i i

x x R R s

x R R s x

x x R R s s

x R

R

s s s s

  

  

  

     

    

 







 



 

   

    

   

     

     

    

  

 (21) 

 

 

1

* * *

* * *

* * *.

n

j rj ro

j

io

io

r r r r

y y

R

R

t t t t



     

    

 



   

 

   

    

  



(22) 

Three cases are in direct contradiction to 
the optimal solution of Model (7) for

oDMU . These cases are as follows: 

Case1: 0, 0,    

   

 

* * * * * *

* * * * * *

* * * * * *

(1 ) (1 )

1 ( ) .

          

       

      

      

       

      

  (23) 

Case2: 0, 0,    

   

 

* * * * * *

* * * * * *

* * * * * *

(1 ) (1 )

1 .

          

       

      

      

       

      

  (24) 

Case3: 0, 0    

 

 

 

 

* * *

* * *

* * * *

* * * *

1 ( )

1

     

    

    

    

   

  

     

   

         (25) 

Consequently, the only possible case is

( , ) (0,0)   . Furthermore, if 

0   ,then  
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* *

1 1 1 1

* *

1 1

0
m m s s

i i r r

i i r r

m s

i r

i r

s s t t

s t

   

   

 

 

    



   

 

(26) 

Hence,
1 1

0
m s

i r

i r

s t 

 

   , which implies that

0, ( 1, , , 1, , )i rs t i m r s     . Thus, 

the conditions of the GRDM efficiency are 

satisfied and achieved as claimed.   

Notably, weights that correspond to the 

relative importance of the item can be 

assigned to  and   as follows: 

  ww Max           (27) 

s.t.      

'

1

,

1,..., ,

n

j ij io io io

j

x x R R

i m

  


  




         (27.1) 

'

1

,

1,..., ,

n

j rj ro io io

j

y y R R

r s

  


  




      (27.2) 





n

j

j

1

,1          (27.3) 

njj ,...,1;0,,         (27.4) 

where 1w w    and , 0.w w    

 

4. Numerical Illustration 

We consider a dataset that consists of 13 

DMUs, and each DMU has two inputs, 

namely 1 2andx x , and three outputs, 

namely 1y , 2y and 3y . The inputs are Cost 

and Effluent, and the outputs are Saleable, 
CO2, and Methane (Sharp et al. [10]). 

Table 1 shows the data for the 13 DMUs. 

Models (4) and (7) are applied to the 

dataset of Table 1. Table 2 shows the 
results. Three DMUs (DMU2, DMU4, and 

DMU12) have notably different efficiency 

scores when evaluated by Models (4) and 
(7). This means that these DMUs have an 

intention to move away from the AIP 

while approaching to the IP. This intention 
has never seen among other DMUs.  

Tables 3 and 4 show the projection points 

generated by GRDM and RDM, 

respectively.  

In the optimal solutions, while 
* 0   ( 

for DMUs 3, 7, 8, 9, 11 and 13), the 

optimal solution of the GRDM model is as 
the RDM model. In this case, the 

projection point of under evaluation DMU 

is the same. This confirms that the RDM 

model is a particular case of the GRDM 
model. 

According to the last rows of Tables 3 and 

4, the overall input consumption used by 
the projected DMUs obtained by GRDM is 

higher than the overall input consumption 

used by the projected DMUs with the 
RDM model. Moreover, the overall output 

productions produced by the projected 

DMUs using the GRDM model, are more 

than the overall output production 
produced by the projected DMUs using the 

RDM model.  
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Table 1. Data set of 13 DMUs 

DMU 
1x  2x  1y  2y  3y  

DMU 1 1.03 -0.05 0.56 -0.09 -0.44 

DMU 2 1.75 -0.17 0.74 -0.24 -0.31 

DMU 3 1.44 -0.56 1.37 -0.35 -0.21 

DMU 4 10.8 -0.22 5.61 -0.98 -3.79 

DMU 5 1.3 -0.07 0.049 -1.08 -0.34 

DMU 6 1.98 -0.1 1.61 -0.44 -0.34 

DMU 7 0.97 -0.17 0.82 -0.08 -0.43 

DMU 8 9.82 -2.32 5.61 -1.42 -1.94 

DMU 9 1.59 0 0.52 0 -0.37 

DMU 10 5.96 -0.15 2.14 -0.52 -0.18 

DMU 11 1.29 -0.11 0.57 0 -0.24 

DMU 12 2.38 -0.25 0.57 -0.67 -0.43 

DMU 13 10.3 -0.16 9.56 -0.58 0 

 

 

Table 2: GRDM and RDM optimal solutions 

 

GRDM RDM 

Efficiency *  
*  Efficiency *  

DMU 1 0.9648 0 0.0351 0.0964 0.0351 

DMU 2 0.9177 0.001463 0.0808 0.9181 0.0818 

DMU 3 1 0 0 1 0 

DMU 4 0.3045 0.6954 0 0.7352 0.2647 

DMU 5 0.9242 0 0.0757 0.9242 0.0757 

DMU 6 0.9708 0 0.02917 0.9708 0.02917 

DMU 7 1 0 0 1 0 

DMU 8 1 0 0 1 0 

DMU 9 0.9944 0 0.0055 0.9944 0.0055 

DMU 10 0.8595 0 0.1404 0.8595 0.1404 

DMU 11 1 0 0 1 0 

DMU 12 0.8255 0.05214 0.1223 0.8448 0.1551 

DMU 13 1 0 0 1 0 
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Table3: Projection points obtained by GRDM and optimal solution for Lambdas 
 ( 1)xp i  ( 2)xp i  ( 1)yp r  ( 2)yp r  ( 3)yp r  Optimal Lambdas 

DMU 1 1.02 -0.16 0.78 -0.07 -0.40 
* * *

3 7 130.01527, 0.97929, 0.00544      

DMU 2 1.36 -0.32 0.94 -0.16 -0.23 
* * * *

3 7 11 130.4691, 0.34314, 0.1408, 0.04696        

DMU 3 1.44 -0.56 1.37 -0.35 -0.21 
*

3 1   

DMU 4 10.27 -0.30 9.31 -0.63 -0.12 
* *

8 130.09861, 0.90139    

DMU 5 1.29 -0.18 0.71 -0.06 -0.25 
* *

3 70.64895, 0.35108,    

DMU 6 1.70 -0.55 1.61 -0.36 -0.20 
* *

3 130.94238, 0.05762    

DMU 7 0.97 -0.17 0.82 -0.08 -0.43 
*

7 1   

DMU 8 9.82 -2.32 5.61 -1.42 -1.94 
*

8 1   

DMU 9 1.59 0.00 0.52 0.00 -0.37 
*

11 1   

DMU 10 2.71 -0.50 2.54 -0.38 -0.18 
* *

3 130.73678, 0.26322    

DMU 11 1.29 -0.11 0.57 0 -0.24 
*

11 1   

DMU 12 1.41 -0.48 1.22 -0.29 -0.22 
* *

3 130.96292, 0.03708    

DMU 13 10.30 -0.16 9.56 -0.58 0 
*

13 1   

Sum 45.17 -5.81 35.56 -4.38 -4.79  

 

 

 
Table4: Projection points obtained by RDM and optimal solution for Lambdas 

 ( 1)xp i  ( 2)xp i  ( 1)yp r  ( 2)yp r  ( 3)yp r  Optimal Lambdas 

DMU 1 0.97 -0.17 0.82 -0.08 -0.43 
* * *

3 7 130.01779, 0.97796, 0.00425      

DMU 2 1.21 -0.30 0.96 -0.16 -0.31 
* * *

3 7 110.5689, 0.39528, 0.03581      

DMU 3 1.44 -0.56 1.37 -0.35 -0.21 
*

3 1   

DMU 4 7.44 -1.00 5.61 -0.77 -0.81 
* * *

3 8 130.2699, 0.20583, 0.52427      

DMU 5 1.12 -0.14 0.70 -0.04 -0.34 
* *

3 70.64895, 0.35105    

DMU 6 1.70 -0.55 1.61 -0.36 -0.20 
* *

3 120.94238, 0.05762    

DMU 7 0.97 -0.17 0.82 -0.08 -0.43 
*

7 1   

DMU 8 9.82 -2.32 5.61 -1.42 -1.94 
*

8 1   

DMU 9 1.59 0.00 0.52 0.00 -0.37 
*

11 1   

DMU 10 2.71 -0.50 2.54 -0.38 -0.18 
* *

3 130.75806, 0.24194    

DMU 11 1.29 -0.11 0.57 0 -0.24 
*

12 1   

DMU 12 1.35 -0.49 1.27 -0.30 -0.25 
*

3 1   

DMU 13 10.3 -0.16 9.56 -0.58 0 
*

13 1   

Sum 41.91 -6.47 31.96 -4.52 -5.71  
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Table 5 demonstrates the optimal solution 
obtained by applying Model (27), the 

weighted GRDM, to the dataset of Table 1. 

The intention of decision-makers to get 

away from AIP is assumed to be four times 
higher than their intention to move toward 

IP. Table 5 shows that the projection points 
differ for RDM and GRDM. Consequently, 

the weighted GRDM model can be used for 

different management points of view and 

situations. 
 

 
Table 5: Optimal solutions and projection points obtained by weighted GRDM when

0.8, 0.2w w    

 Efficiency *  
*  ( 1)xp i  ( 2)xp i  ( 1)yp r  ( 2)yp r  ( 3)yp r  

DMU 1 0.991527 0.003316 0.0291 1 -0.18 0.82 -0.08 -0.42 

DMU 2 0.973224 0.02184 0.04652 1.52 -0.36 1.16 -0.2 -0.22 

DMU 3 1 0 0 1.44 -0.56 1.37 -0.35 -0.21 

DMU 4 0.443671 0.695411 0 10.25 -0.37 9.17 -0.66 -0.19 

DMU 5 0.982767 0.003693 0.071394 1.24 -0.4 1.14 -0.24 -0.3 

DMU 6 0.977641 0.027948 0 1.73 -0.55 1.64 -0.36 -0.2 

DMU 7 1 0 0 0.97 -0.17 0.82 -0.08 -0.43 

DMU 8 1 0 0 9.82 -2.32 5.61 -1.42 -1.94 

DMU 9 0.998894 0 0.005531 1.29 -0.11 0.57 0 -0.24 

DMU 10 0.96898 0.012194 0.106325 5.37 -0.38 5 -0.45 -0.12 

DMU 11 1 0 0 1.29 -0.11 0.57 0 -0.24 

DMU 12 0.933826 0.052142 0.122303 1.77 -0.55 1.67 -0.36 -0.2 

DMU 13 1 0 0 10.3 -0.16 9.56 -0.58 0 

Sum    47.99 -6.22 39.1 -4.78 -4.71 

 
5. Conclusion 

In many situations, for instance, the 

banking industry, decision-maker prefers 
to move away from the worst possible case 

(or AIP) rather than move toward IP. In 

particular, in all sports leagues, some weak 
teams struggle to not lie among the last 

there or four teams because they have to 

compete in the lower league for the next 

season. In another case, all banks require 
account balance to be increased by their 

customers. If not, the bank would be about 

to bankruptcy in the not-too-distant future. 
The GRDM model can readily deal with 

these sorts of problems. Our proposed 

model is formulated based on two main 
objectives. First, try to move toward the 

best possible situation (IP); the RDM 

model also considers this issue. Second, 

try to move away from the worst possible 

situation (AIP) not taken into 
consideration by the RDM model. 

Therefore, the GRDM model can quickly 

transform to RDM model by excluding the 
AIP from the model. Consequently, the 

RDM model is a particular case of the 

GRDM model.  

It should be mentioned that our proposed 
method is still suffering from excluding 

the environmental factor constraints, 

which can be considered to utilize the 
proposed model in a real-life situation; it 

can, therefore, be addressed as a future 

study. Moreover, investigating the 
proposed model in the presence of non-

homogenous DMUs would be the future 
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study. Furthermore, big data in DEA has 
not been considered in the presence of the 

negative data yet and is highly 

recommended to interested researchers. 
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