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Abstract 
One way to increase the discrimination ability in data envelopment analysis (DEA) is to use 
the pessimistic view in the performance evaluation. A traditional and usual approach to 
move from the optimistic to the pessimistic view is to expand the production possibility set. 
By expanding the production possibility set, the distance between each unit can be increased 
from the efficiency frontier, and then a smaller number of units are located on the boundary. 
On the other hand, in practical applications, we are confronted with imprecise inputs and 
outputs. Expressions of inputs and outputs as imprecise data can give us an opportunity to 
use it in order to increase the efficiency discrimination. Our view of the ambiguity in the 
data focus on fuzzy relation. We introduce a fuzzy monotonicity assumption and construct a 
fuzzy production possibility set (FPPS) with varying degrees of feasibility. Using the 
tolerance approach a nonsymmetric fuzzy linear programming model and subsequently a 
parametric DEA model are constructed. By applying this model, it will be seen that, for a 
specific and small tolerance of constraints, The discrimination efficiency of the units 
increases. Finally, we propose a procedure for ranking of DMUs and employ it to rank 
iranian national universities. 
 
Keywords: Imprecise data envelopment analysis, Fuzzy relation,  production possibility set 
ranking. 
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1. Introduction 
Data envelopment analysis is a 
mathematical programming technique 
which is used to compute relative 
efficiency, rank, return to scale, 
benchmarks and other applications of 
Decision Making Units (DMUs). It was 
developed by Charnes et al.[4]. The 
conventional DEA methods require 
accurate measurement of both the inputs 
and outputs. But in real-world problems 
the observed data are sometimes 
imprecise. However, for the first time, 
imprecise data envelopment analysis 
(IDEA) was introduced by Cooper et 
al.[5] and various fuzzy methods were 
prepared for dealing with it. A literature 
review on fuzzy DEA models with 
imprecise data can be found in [17]. 
Recently, Hatami-Marbini et al.[8] 
provided a taxonomy and a review of the 
fuzzy DEA methods. For more details we 
refer readers to it. Most of the Researches 
often expressed this problem with 
bounded intervals, fuzzy numbers and 
Statistical data, but our view of the 
ambiguity in the data focuses on fuzzy 
relations that have paid less attention to. 
We want to use imprecise data to increase 
the efficiency discrimination.Increasing 
the power of efficiency discrimination is 
one of the fundamental issues in data 
envelopment analysis. 
Shen et al.[11] used both the efficiency 
and the inefficiency frontiers to increase 
the discrimination capability of DEA 
models. When the number of inputs and 
outputs is high compared to the number 
of units, it is essentially important to 
increase the discrimination capability of 
models to split the units into efficient and 
inefficient ones (see [3]). Dyson et al. [7] 
propose that the number of units be at 
least 2 × |ܫ| × |ܱ|, which attain a reliable 
degree of efficiency discrimination. (i) 
Using weight restrictions, (ii) 
incorporation of expert opinion and value 
judgements into models to obtain 
interactive models, (iii) providing models 

based on common weights set such as 
cross-efficiency, (iv) and using the super-
efficiency method are approaches that are 
often used to enhance the discrimination 
ability of DEA models [1,2,6,14]. 
One way to increase the discrimination 
ability is to use the pessimistic view in the 
performance evaluation. A traditional and 
usual approach to move from the 
optimistic to the pessimistic view is to 
expand the production possibility set. By 
expanding the production possibility set, 
the distance between each unit can be 
increased from the efficiency frontier, and 
then a smaller number of units are located 
on the boundary. The most famous 
example of this is the comparison of 
performance scores under the CCR and 
BCC models. The corresponding 
production possibility sets of CCR and 
BCC models are represented by ௖ܶ and ௩ܶ 
respectively. We know that set ௩ܶ is a 
subset ௖ܶ and efficient units in the CCR 
model are efficient units of the BCC 
model, but the converse is not true. 
In DEA, the production possibility set 
(PPS) is formed from observed input-
output data based on some assumptions: 
convexity, monotonicity, inclusion of 
observations, constant returns to scale and 
minimum extrapolation. We believe that 
the monotonicity assumption should be 
replaced by a fuzzy monotonicity 
assumption. The basic reason for this idea 
is to envelop those points which are 
placed in the vicinity and outside the PPS, 
because of the impreciseness or 
vagueness of input-output data. We 
incorporate the fuzzy monotonicity 
assumption by fuzzy relations in PPS. 
Also we use the tolerance approach which 
was proposed by Sengupta [10] for the 
first time. At first, we obtain a non 
symmetric fuzzy LP model and then, a 
parametric LP model is constructed by 
applying the Verdegay’s approach [15]. 
The proposed method and Sengupta-
method both incorporate uncertainty into 
the DEA models by defining tolerance 



IJDEA Vol.4, No.2, (2016).737-749  
S. Shahghobadi, et al. / IJDEA Vol.7, No.4, (2019), 59-68 

 

61 
 

levels on constraint violations. Sengupta 
[10] introduced fuzziness in the objective 
function and the constraints of the 
conventional DEA model but did not 
provide an application roadmap of his 
proposed framework [12]. In this study, 
we propose a useful practical method to 
pick tolerance vectors. We apply the 
proposed method for a case study to rank 
national universities of Iran. It is shown 
that although almost all the DMUs were 
efficient by classic DEA model, they rank 
completely by the proposed method . 
The rest of the paper is organized as 
follows: In section 2, we will have some 
basic ideas and definitions and section 3 
contains the proposed model. Section 4 
includes two examples and finally, the 
paper ends with a conclusion in section 5. 
 
2. Definitions 
A production plan is a specific 
combination of inputs and outputs such as 
(xത, yത) where ݕത can be produced by 
consuming ̅ݔ which may be possible or 
impossible. The set of all possible 
production plane called production 
possibility set (PPS), here it is denoted by 
T. Some commonly assumed properties of 
T are as follows: 
Convexity: If (x, y) ∈T and (x′, y′) ∈T, 
then ߣ(x, y) + (1 − ,′x)(ߣ y′) ∈T for any 
ߣ ∈ [0,1]. 
Monotonicity: If (x, y) ∈T, x′ ≥ x and 
y′ ≤ y, then (x′, y′) ∈T. 
Inclusion of observations: Each observed 
DMU (x௝ , y௝) ∈T. 
Constant returns to scale (CRS): If 
(x, y) ∈T, then (ߣx, (yߣ ∈T for anyߣ ≥ 0. 
Minimum extrapolation: T is the 
intersection of all sets satisfying the 
above assumptions. 
Suppose that there are ݊ DMUs where 
each DMU consumes different amount of 
݉ inputs to produce different amount of ݏ 
outputs. Let x௝ ∈ ௠ and y௝܀ ∈  ௦ show܀
the input and output vectors 

corresponding to DMU	௝ , respectively. A 
virtual DMU is given by (x(ߣ), y(ߣ)) 
where: 
x(ߣ) = ∑ 	௡

௝ୀଵ ,௝x௝ߣ Y(ߣ) = ∑ 	௡
௝ୀଵ ,௝y௝ߣ

ߣ ∈ S  
 
S is a technology set. The PPS with the 
CRS assumption for ൛(x௝ , y௝)ൟ௝ୀଵ

௡
 is: 

T = ቄ(x, y)|	x ≥ x(ߣ), y ≤ y(ߣ), ߣ ∈ S =

൛ߣ ∈ :௡܀ ௝ߣ ≥ 0, ∀݆ൟቅ  
 
The CCR model for evaluating (x௢, y௢) is 
as follows: 
௢ߠ = Min				ߠ  
ܵ. ,x୭ߠ)				ݐ y୭) ∈ T  
 
ߙ Let A be a fuzzy set in X and .(cut-ߙ) ∈ 
[0, 1]. The ߙ-cut of the fuzzy set A is the 
crisp set A	ఈ given by A	ఈ = {ݔ ∈
ܺ: (ݔ)୅ߤ ≥   .{ߙ
(Binary fuzzy relation). A binary fuzzy 
relation ܀(X,Y) on X× Y is defined as 
,x))}=(X,Y)܀ y), ,x)܀ߤ y)): (x, y) ∈ X ×
Y} where ܀ߤ : X × Y⟶ [0, 1] is a grade 
of membership function. If X = Y then 
 is called a binary fuzzy relation (X,X)܀
on X.  
 
3. Basics Idea and the Proposed Model 
In general, a production plan is possible if 
it dominates a virtual DMU based on a 
preference order i.e. (X, Y) is possible 
whenever provided the following 
constraints hold for at least one ߣ in S.  
X ≥ X(ߣ)		and		Y ≤ Y(ߣ)                      (1) 
 
So, the possibility of (x, y) depends to the 
observed input-output data indirectly. The 
observed values of the input and output 
data in real-world problems are 
sometimes imprecise. Therefor, it may 
not be reasonable to require that the 
constraints define in terms of a crisp 
preference order. For dealing this issue, 
Sengupta proposed to express each  
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constraint ݅ of by a fuzzy constraint. 
(Fuzzy Monotonicity). If (x, y) ∈T, 
x′ ⪰ x and  y ⪰ y′, then (x′, y′) ∈T. 
Where ⪰ is a fuzzy relation and called “ 
fuzzy grater than or equal to".  
(Fuzzy greater than or equal to). Let 
ܻ ⊆ ,ଵݕ ା be a set and܀ ଶݕ ∈ ܻ. The 
fuzzy relation ⪰ on ܻ is defined with 
membership function ߤ⪰ as follows where 
 ,is the maximum acceptable tolerance ߚ
as determined by the decision maker.  

,ݖ)⪯ߤ (ݕ = ቐ
1, ݖ	 ≥ 	;ݕ		
1 + ௭ି௬

ఉ
, ݕ	 − 		ߚ ≤ ݖ		 ≤ 	;ݕ		

0, 		ݖ	 ≤ ݕ		 − .		ߚ
 (2) 

 
For ߙ ∈ ,ݖ)⪯ߤ ,[0,1] (ݕ ≥  if and only if ߙ
ݖ ≥ ݕ − (1 −  The proof of the .ߚ(ߙ
proposition is easy and so is omitted. 
(Fuzzy Pareto order)[shahghobadi] Let 
X = ,ଵݔ) ,ଶݔ . . . ,  ,(௡ݔ
Y = ,ଵݕ) ,ଶݕ . . . , (௡ݕ ∈  .௡ା܀
In Fuzzy parto preference, X ⪰ Y if and 
only if ݔ௜ ⪰ ݅ ௜ forݕ = 1,2, . . . , ݊. If ߤ⪰௜ 
denotes the membership function of 
௜ݔ ⪰ ݅ ௜ forݕ = 1,2, . . . , ݊, then ߤ(X, Y) =
Min௜	ߤ⪰௜(ݔ௜ ,  ,௜). Based on this definitionݕ
we proposed the fuzzy parato on the PPS 
input-output system: 
(x, y) ⪰ (w, z) ⟺ w ⪰ x	, y ⪰ z 
(x, y), (w, z) ∈ T.  
Considering fuzzy Monotonicity with the 
technology set S, the PPS for ൛(X௝ , Y௝)ൟ௝ୀଵ

௡
 

is: T෩ = {(x, y)|	x ⪰ x(ߣ), y ⪯ y(ߣ), ߣ ∈ S}  
Let I, O denote the indices sets of inputs 
and outputs, respectively. 
(The degree of feasibility). We define the 
degree of feasibility for any (x, y) ∈ T as 
follows: 
,x)ߤ y) =
supఒ∈ୗmin{min୍	ߤ௜(ݔ௜ , X௜(ߣ)),min୓	ߤ௥(Y௥(ߣ),   {(௥ݕ
 
(x, y) ∈ P෩ with the grade of membership 
,x)ߤ y). Obviously, (x, y) ∈ P෩ when the 
minimum value, in the above expression, 
will be positive at least for a ߣ ∈ S. 
Height [ ෨ܲ]=P .   
Proof. First, suppose that (x, y) ∈ P෩ and 
,x)ߤ y) = 1. Regarding definition 6 there 

is a ߣ ∈ S such that the constraints 
x ⪰ X(ߣ), y ⪯ Y(ߣ) are hold precisely, i.e 
X ≥ X(ߣ), Y ≤ Y(ߣ). Then, (X, Y) ∈ P. 
Conversely, suppose that (x, y) ∈ P, so 
there is a ̅ߣ ∈ S where x ≥ X(ߣ), y ≤
Y(ߣ). Hence D(̅ߣ) = ,X)ߤ ,1 Y) = 1 and 
finally (x, y) ∈ P෩ .  
We define P෩ఈ  for ߙ ∈ [0,1] as follows:  
P෨ఈ = {(X, Y)| ௜ݔ௜൫ߤ , X௜(ߣ)൯ ≥ ,ߙ ݅ ∈ I,

,(ߣ)௥(Y௥ߤ (௥ݕ ≥ ,ߙ ݎ ∈ O, }  (3) 

For each ߙ ∈ [0,1], P෩ఈ ⊆ P෩ఈ, where P෩ఈ is 
an ߙ −cut of ෨ܲ .   
Proof. It is a direct result of the definition 
6.  
Let ߙ ∈ [0,1]. If S is compact, then 
P෩ఈ = P෩ఈ . 
Proof. Assume that (X, Y) ∈ P෩ఈ. Hence, 
supఒ∈ୗD(ߣ) ≥  We have from .ߙ
mathematical analysis that D(ߣ) is 
continues. In addition, S is compact, then 
there is a ߣ∗ ∈ S such that D(ߣ∗) ≥  .ߙ
Regarding ??, (X, Y) ∈ P෩ఈ . This together 
Lemma complete the proof.  
By selecting P෩ఈ ߙ , ∈ [0,1], as the PPS, 
the CCR model will be transformed to the 
following model that we call it ߙ −CCR 
model: 
(୮,୯)ߠ
௢ (ߙ) = minߠ  
ܵ. ,x୭ߠ)				ݐ y୭) ∈ P෩ఈ  
ߣ ∈ S  
 
From Proposition 1 we have the following 
DEA model which its optimal solution is 
called ߙ − efficiency score.  
௢(୮,୯)ߠ (ߙ) = minߠ

ܵ. ݐ
∑ 	௡
௝ୀଵ ௝x௝ߣ − (1− ܘ(ߙ ≤ θx୭

∑ 	௡
௝ୀଵ ௝y௝ߣ + (1− ܙ(ߙ ≥ y୭

ߣ ≥ 0

   (4) 

 

Where ܘ = ,ଵ݌) ,ଶ݌ . . . ,  ௠)் and݌
ܙ = ,ଵݍ) ,ଶݍ . . . ,  ௦)் are the constantݍ
vectors of tolerance for inputs and outputs 
constraints and ߙ ∈ [0,1].  
 
4. Procedure Ranking and Selecting 
Tolerance Vector  
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In this section, we introduce a procedure 
for complete ranking of all DMUs using 
proposed model. Our basic criteria for 
ranking of DMUs is only their efficiency 
scores. Since the efficiency score of a 
efficient unit is equal to 1 therefore, only 
inefficient DMUs are ranked. But in the 
proposed model when ߙ < 1 all DMUs 
are placed inside PPS and then scores of 
efficient DMUs can be distinguished from 
each other. For this reason the following 
numerical approach has been proposed: 
1. Select a fixed pair appropriate vectors 
(p, q).  
2. Compute ߠ(୮,୯)

௢  for arbitrary values (௝ߙ)
of ߙ௝ ∈ [0,1], ݆ = 1,2, . . . , ݇.  
3. Compute the ߩ(୮,୯)

௢  for ݋ ∈ J, where 

(୮,୯)ߩ
௢ =

∑ 	ೖ
ೕసభఈೕఏ(౦,౧)

೚ (ఈೕ)
∑ 	ೖ
ೕసభఈೕ

				for				݋ ∈ J.  

4. Rank all DMUs according to the 
obtained results of the Stage 3.  
You can choose ܘ ≥ 0 and ܙ ≥ 0 
according to the expert opinion, we 
propose the following approach. If ݔ௜ 
denote the ݅th input, assume that it is a 
stochastic variable which has normal 
distribution with the mean ഥ݉ (௜ݔ) =
∑ 	೘
೔సభ ௫೔ೕ
௠

 and the standard deviation 

(௜ݔ)ߪ = ට∑ 	೘
೔సభ (௫೔ೕି௠ഥ)
௠ିଵ

 for ݅ ∈ I. We have 
from stochastic?? that ഥ݉ (௜ݔ) − (௜ݔ)ߪ2 ≤
௜ݔ ≤ ഥ݉(ݔ௜) +  in 95 percent of (௜ݔ)ߪ2

times. So, we propose to choose ݌௜ such 
that in addition ∑ 	௡

௝ୀଵ ௜௝ݔ௝ߣ − (1 −
௜݌(ߙ ≥ ഥ݉(ݔ௜) −  for each (௜ݔ)ߪ2
ߙ ∈ [0,1], ∑ 	௡

௝ୀଵ ௜௝ݔ௝ߣ − (1 − ௜݌(ߙ ≥ 0. 
Then, we take  

௜݌ ≤

⎩
⎪
⎨

⎪
⎧
max{min

௝
{௜௝ݔ} − ഥ݉(ݔ௜) + ,(௜ݔ)ߪ2 0},

ഥ݉ (௜ݔ) − (௜ݔ)ߪ2 	≥
min
௝
,{௜௝ݔ}

ഥ݉ (௜ݔ) − (௜ݔ)ߪ2 		≤ 0

 (5) 

  
for ݅ ∈ I. Similarity, we take  
௥ݍ ≤ max{ ഥ݉(ݕ௥) + (௥ݕ)ߪ2 −
max
௝
,{௥௝ݕ} 0}                                          (6) 

 
for ݎ ∈ O where ഥ݉ (௥ݕ) =

∑ 	೘
ೝసభ௬ೝೕ
௦

 and 

(௥ݕ)ߪ = ට∑ 	ೞ
ೝసభ (௬ೝೕି௠ഥ(௬ೝ))

௦ିଵ
. 

 
5. Numerical Example 
In this section, we provide two numerical 
examples to illustrate advantages and 
application of the proposed method. As 
mentioned earlier, the tolerance vectors 
p, q could be selected according to the 
expert opinion. However, we select them 
regarding to the data dispersion according 
to the proposed method.  A simple 
numerical example with 8 DMUs that 
consume tow inputs to produce one 
output is given below. The data are 
displayed in Table 1. 

 
 

Table 1: Data for 8 DMUs 
DMU Input1 Input2 Output 

A 2 9 1 
B 2 6 1 
C 3 4 1 
D 4 3 1 
E 5 4 1 
F 7 2 1 
G 7 3 1 
H 8 2 1 
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Using proposed approach for selecting 
tolerance vector we have (݌ଵ, ,ଶ݌ (ଵݍ =
(2,2,0). Table 2 shows the ߙ −CCR 
efficiency scores for ߙ = 1,0.9,0.8,0.7, 
and 0.6 . Also the ranking results of all 
DMUs, and ߩ௢ are given in this table. In 
addition, in Table 2 we clearly see the 
difference between the components of 
each columns which leads to complete 
ranking of DMUs. 
In this example, 33 national university in 
Iran were placed under investigation 
during 2011-2012. Each university with 9 
inputs and 5 outputs in this evaluation are 
considered. Inputs and outputs are as 
follows: 
Inputs: faculty member’s I	ଵ, accepted 
students I	ଶ, grade of students I	ଷ, 
physical space per capita I	ସ, welfare 

services space per capita I	ହ, The current 
budget for education I	଺, scientific 
research I	଻, dedicated revenue I	଼, 
average rank of entrance exam I	ଽ. 
Outputs: index of graduates O	ଵ, index of 
papers O	ଶ, index of books O	ଷ, MS 
access pass O	ସ, the mean of passing 
grade O	ହ.The names of these universities 
are: Urmia, Isfahan, Alzahra, Boali sina, 
Tabriz, Tehran, Razi, Sh.Balochestan, 
Sh.Bahonar, Sh.Behshti, Sh.Chamran, 
Shiraz, Ferdosi, Gilan, Mazandaran, 
Yazd, Arak, Ilam, Birjand, E.Khomaini, 
Persion Gulf, Zabul, Zanjan, Semnan, 
Shahrod, Qom, Kashan, Kordestan, 
Lorstan, M.Ardebili, Valie asr, 
Hormozgan, Yasouj, respectively marked 
with 1 to 33. The data of these 
universities displayed in Table 3. 

 

 
 

Table 3: Input and output data of 33 national university of Iran
 I1 I2 I3 I4 I5 I6 I7 I8 I9 O1 O2 O3 O4 O5 

DMU1 0.10 0.27 0.73 0.59 0.40 0.23 0.38 0.20 2.57 0.38 0.13 0.05 0.260.91
DMU2 0.26 0.41 0.74 0.45 0.66 0.35 0.36 0.25 4.76 0.43 0.42 0.33 0.450.90
DMU3 0.13 0.28 0.39 0.25 0.30 0.22 0.25 0.20 2.68 0.24 0.13 0.03 0.181.00
DMU4 0.12 0.30 0.54 0.68 0.37 0.22 0.44 0.18 3.82 0.26 0.12 0.13 0.260.91
DMU5 0.16 0.43 0.61 0.75 0.65 0.43 1.00 0.44 7.05 0.42 0.18 0.05 0.530.92
DMU6 1.00 1.00 0.97 0.82 0.48 1.00 0.93 1.00 18.1 1.00 1.00 1.00 1.000.93
DMU7 0.08 0.25 0.60 0.58 0.42 0.23 0.36 0.16 2.45 0.29 0.09 0.14 0.260.89
DMU8 0.07 0.43 0.98 0.22 0.62 0.40 0.38 0.21 4.24 0.24 0.04 0.05 0.220.92
DMU9 0.17 0.54 0.73 0.68 0.56 0.27 0.53 0.27 5.27 0.47 0.17 0.05 0.360.91
DMU10 0.19 0.33 0.40 0.42 0.23 0.49 0.40 0.43 5.12 0.42 0.23 0.28 0.400.95
DMU11 0.20 0.30 0.60 0.22 0.43 0.42 0.34 0.27 5.49 0.39 0.09 0.09 0.370.93
DMU12 0.20 0.40 0.54 0.89 0.63 0.59 0.47 0.37 6.70 0.44 0.69 0.05 0.490.93
DMU13 0.20 0.49 0.92 0.72 0.46 0.47 0.57 0.38 5.90 0.60 0.27 0.22 0.610.94

Table 2 :The obtained results for example 1 
 ranking-ߙ efficiency-ߙ 

DMU 0 1= ߙ	ߙ ߙ	0 9.= ߙ	80.= ߙ	70.= ߙ	ை 1ߩ 6.= ߙ	10= ߙ	90.= ߙ	0 8.= ߙ	70.=  ைߩ6.=
A 1 0.9000 0.8000 0.7000 0.6000 0.8250 11 95 96 96 97 6 
B 1 0.9400 0.8800 0.8200 0.7600 0.8950 11 33 33 33 33 3 
C 1 0.9400 0.8857 0.8286 0.7714 0.9000 11 11 11 11 11 1 
D 1 0.9400 0.8857 0.8286 0.7714 0.9000 11 11 11 11 11 1 
E .7778 0.7300 0.6889 0.6444 0.6000 0.7000 18 68 68 68 67 8 
F 1 0.9400 0.8769 0.8154 0.7538 0.8923 11 14 14 14 14 4 
G .8125 0.7600 0.7125 0.6625 0.6125 0.7250 17 17 17 17 16 7 
H 1 0.9000 0.8143 0.7571 0.7000 0.8529 11 25 25 25 25 5 
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DMU14 0.16 0.19 0.41 0.48 0.51 0.21 0.41 0.20 3.42 0.34 0.08 0.09 0.310.92
DMU15 0.10 0.36 1.00 0.39 0.59 0.30 0.53 0.25 4.98 0.40 0.08 0.05 0.350.93
DMU16 0.13 0.23 0.41 1.00 0.49 0.19 0.17 0.16 2.98 0.31 0.07 0.06 0.290.93
DMU17 0.03 0.14 0.32 0.51 0.28 0.11 0.24 0.10 1.80 0.10 0.02 0.01 0.140.95
DMU18 0.04 0.14 0.31 0.21 0.39 0.11 0.23 0.08 1.70 0.04 0.01 0.02 0.050.90
DMU19 0.06 0.20 0.29 0.56 0.51 0.11 0.29 0.10 2.16 0.24 0.03 0.01 0.130.94
DMU20 0.08 0.18 0.36 0.44 0.39 0.11 0.14 0.09 4.34 0.12 0.05 0.02 0.120.91
DMU21 0.05 0.11 0.20 0.69 0.49 0.10 0.21 0.08 1.76 0.07 0.02 0.01 0.080.93
DMU22 0.11 0.27 0.85 0.21 0.23 0.16 0.11 0.15 2.45 0.32 0.01 0.01 0.090.93
DMU23 0.08 0.20 0.37 0.58 0.44 0.15 0.23 0.13 2.84 0.18 0.04 0.02 0.140.91
DMU24 0.04 0.16 0.28 0.36 0.41 0.14 0.21 0.09 3.69 0.12 0.03 0.05 0.090.90
DMU25 0.02 0.13 0.27 0.97 1.00 0.12 0.26 0.10 2.37 0.06 0.07 0.01 0.060.96
DMU26 0.07 0.14 0.25 0.55 0.53 0.08 0.17 0.08 1.89 0.09 0.01 0.04 0.060.95
DMU27 0.06 0.14 0.27 0.41 0.17 0.11 0.09 0.12 3.55 0.14 0.06 0.03 0.170.93
DMU28 0.08 0.17 0.28 0.62 0.51 0.11 0.20 0.09 2.54 0.33 0.04 0.04 0.130.88
DMU29 0.06 0.23 0.58 0.30 0.25 0.12 0.14 0.08 1.73 0.15 0.03 0.03 0.110.93
DMU30 0.06 0.19 0.32 0.61 0.63 0.09 0.20 0.07 1.88 0.28 0.05 0.06 0.100.95
DMU31 0.04 0.03 0.26 0.42 0.34 0.10 0.11 0.07 1.05 0.06 0.01 0.03 0.070.92
DMU32 0.28 0.08 0.22 0.47 0.66 0.08 0.10 0.05 1.00 0.08 0.01 0.07 0.040.95
DMU33 0.03 0.11 0.22 0.47 0.34 0.08 0.09 0.05 1.12 0.08 0.03 0.01 0.050.91

 
The results are computed by MATLAB 
software and displayed in Table 4. Using 
proposed approach for selecting tolerance 
vector we have (݌ଵ, . . . , ,ଽ݌ ,ଵݍ . . . , (ହݍ =. 
(0.024, 0.028, 0.198, 0.208, 0.174, 0.079,	 
0.085, 0.045, 1, 0, 0, 0, 0, 0) Due to the 

large number of inputs and outputs, about 
89 percent of the DMUs, are efficient 
using by CCR model. But, all DMUs 
have ranked completely by the proposed 
procedure. 

Table 4: The obtained results for example 2 
 ranking-ߙ efficiency-ߙ 

DMU 0 1= ߙ	ߙ ߙ	0 9.= ߙ	0 8.= ߙ	0 7.= ߙ	ை 1ߩ 6.= ߙ	0 1= ߙ	0 9.= ߙ	0 8.= ߙ	0 7.=  ைߩ 6.=
DMU1 1 0.985 0.970 0.955 0.940 0.974 11 99 99 99 99 9 
DMU2 1 0.993 0.986 0.979 0.972 0.988 11 33 33 33 33 3 
DMU3 1 0.970 0.940 0.910 0.880 0.947 11 18 18 18 18 18 
DMU4 0.950 0.914 0.879 0.845 0.814 0.889 331 330 229 227 225 29 
DMU5 1 0.991 0.982 0.972 0.963 0.984 11 66 66 66 66 6 
DMU6 1 0.997 0.995 0.992 0.989 0.995 11 11 11 11 11 1 
DMU7 1 0.983 0.967 0.950 0.933 0.971 11 111 111 111 111 11 
DMU8 1 0.964 0.927 0.891 0.855 0.937 11 220 220 220 220 20 
DMU9 1 0.976 0.951 0.927 0.903 0.958 11 115 115 115 115 15 

DMU10 1 0.991 0.982 0.973 0.963 0.984 11 55 55 55 55 5 
DMU11 1 0.984 0.968 0.951 0.935 0.972 11 110 110 110 110 10 
DMU12 1 0.993 0.986 0.979 0.972 0.988 11 22 22 22 22 2 
DMU13 1 0.992 0.984 0.977 0.969 0.986 11 44 44 44 44 4 
DMU14 1 0.985 0.970 0.955 0.940 0.974 11 88 88 88 88 8 
DMU15 1 0.985 0.970 0.955 0.941 0.974 11 77 77 77 77 7 
DMU16 1 0.983 0.965 0.948 0.931 0.970 11 113 113 113 113 13 
DMU17 1 0.964 0.928 0.892 0.856 0.937 11 119 119 119 119 19 
DMU18 1 0.946 0.892 0.837 0.783 0.905 11 228 228 229 229 28 
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6. Conclusion 
In this study, we investigated the the 
classical DEA model under fuzzy 
Monotonicity assumption. A parametric 
DEA model was obtained and used to 
evaluate relative efficiency of DMUs. It 
was seen that the obtained efficiency 
scores were very variety. We con 
conclude that if the observed units are 
interior points of PPS, then their 
efficiency scores will be dispersed, and it 
is important in ranking point of view. The 
proposed method was applied for a case 
study to rank national universities of Iran. 
It is shown that although almost all the 
DMUs were efficient by classic DEA 
model, they are completely ranked by the 
proposed method. How to choose the 
tolerance vector could be the subject for 
future researches. 

 
  

DMU19 1 0.961 0.922 0.883 0.844 0.932 11 221 221 221 221 21 
DMU20 .906 .852 .807 .764 .722 .822 32 32 32 31 31 
DMU21 .932 .865 .797 .730 .882 1 29 30 30 30 0 
DMU22 .974 .947 .921 .895 .954 1 16 16 16 16 6 
DMU23 .803 .766 .730 .695 .660 .740 33 33 33 33 33 3 
DMU24 .953 .906 .859 .812 .918 1 25 25 25 26 5 
DMU25 .956 .912 .867 .823 .923 1 24 24 24 24 4 
DMU26 .997 .908 .830 .759 .691 .856 30 31 31 32 32 1 
DMU27 .971 .942 .913 .883 .949 1 17 17 17 17 7 
DMU28 .983 .966 .949 .932 .970 1 12 12 12 12 2 
DMU29 .957 .913 .870 .826 .924 1 13 13 13 13 3 
DMU30 .978 .956 .935 .913 .962 1 14 14 14 14 4 
DMU31 .947 .894 .842 .789 .908 1 27 27 28 28 7 
DMU32 .960 .920 .880 .840 .930 1 22 22 22 22 2 
DMU33 .949 .897 .846 .795 .910 1 26 26 26 27 6 
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