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Abstract 
In this paper, we propose a new hybrid neural network including Data Envelopment 

Analysis(DEA) and Radial Basis Function Network (RBFN) for binary classification 

problems. In the supervised learning phase of the neural network, the additive model is used 
to learn the classification function and Gaussian Radial Basis Function (GRBF) is used in the 

unsupervised learning phase of the neural network. Compared with the existing RBFN-DEA 

model for solving classification problems, the proposed model has low CPU time and can be 

applied to solve classification problems with negative data.  
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1. Introduction 

Classification, a branch of artificial 
intelligence, is a scientific discipline in 

Machine Learning [1]. Classification 

normally refers to a supervised procedure. 
Classification is a procedure that learns to 

classify new instances based on learning 

from a training set of instances that have 

been properly labeled with the correct 
classes. All binary classification 

algorithms learn a classification function 

of the form 𝑓: 𝑅𝑛 → {0,1}. This function is 
then applied to new instances and its value 

represents the class to which the instance 

is classified, so, classification algorithms 

differ in the form of learning function. The 
common classification algorithms include 

Fisher Linear Discriminant [2,3],  

k-Nearest Neighbors [4-7], Decision Trees 
[8], Neural Networks [9], Naive Bayes 

[10,11], Support Vector Machine (SVM) 

[12], AdaBoost [13]. 

Another algorithm for solving 
classification problems is Data 

Envelopment Analysis [14]. DEA 

developed by Charnes et al. is a 
nonparametric methodology for 

evaluating the performance of a group of 

Decision Making Units (DMUs) which use 
multiple inputs to produce multiple 

outputs. DEA successfully divides them 

into two categories; efficient DMUs and 

inefficient DMUs, so DEA can be used to 
solve binary classification problems [15].  

The DEA models so far used to solve 

binary classification problems are CCR 
and BCC models. For solving 

classification problems with the  BCC 

model, DMUs must have a monotonicity 

property and inputs should be non-
negative. Some classification problems 

include negative data does not satisfy in 

monotonicity property, in this case, DEA 
can not apply for solving this problems 

itself, so Pendharkar (2011) for solving 

these drawbacks used radial basic function 
neural network (RBFN) and proposed a 

hybrid RBFN-DEA neural network for 

solving binary classification problems 

[16]. For more information abaut DEA-
NN model, see [17-25].  

In this paper, we combine additive the 

model in DEA with RBFN and introduce a 

new model for solving binary 
classification problems.  

The proposed model has a lower  

CPU-time and more accuracy with respect 
to the RBFN-DEA model, furthermore our 

model can be applied to solving linear 

separable classification problems with 

negative data, in this problem, we do not 
need to apply RBFN to generate positive 

data. This paper is divided into five 

sections. In the next section preliminary 
information is introduced to facilitate later 

discussions. In section III, we present the 

proposed model and describe its 
properties. In section IV, illustrative 

examples are discussed. In section V, we 

present the results of these research. 

 

2. Background 
In this section, we introduce the related 

definitions and the additive model for later 
discussion in the next section. 

Definition1: Monotonicity property: 

If a DMU has a higher value of attributes 
then it belongs to a certain class with a 

higher probability and vice versa [26]. 

Theorem 1. Cover’s Theorem: 

“A complex pattern-classification problem 
cast in a high-dimensional space 

nonlinearly is more likely to be linearly 

separable than in a low-dimensional 
space” [26, 27]. 

Definition 2: Basis Functions and Feature 

Space: 

Let 𝑋 = {𝑥1, . . . , 𝑥𝑛} be a set of n vectors 
in m-dimensional space, each of which is 

assigned to be one of two classes, A and B. 

Define a function 𝜙(𝑥) as  

𝜙(𝑥) = [𝜙1(𝑥), . . . , 𝜑𝑟(𝑥)], that 

𝜙𝑖(𝑥): 𝑅𝑚 → 𝑅𝑟(𝑖 = 1, . . . , 𝑚) is called 

basic functions and the space spanned by a 

set of basis functions {𝜙𝑖}𝑖=1
𝑟  is called 

feature space. 

A dichotomy {A, B} of X is said to be 𝜙-

separable if there exists 𝑤 ∈ 𝑅𝑟  such that  

http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Training_set
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{
𝑤𝑡𝜙(𝑥) > 0     𝑖𝑓  𝑥 ∈ A

𝑤𝑡𝜙(𝑥) < 0     𝑖𝑓  𝑥 ∈ B
} 

The separating surface is given by 

𝑤𝑡𝜙(𝑥) = 0. 
In this paper, we use the following basic 

function called radial basic function [19]: 

𝜙𝑖 (𝑥) = exp
−∥𝑥−𝜇𝑖∥

2𝜎2        𝑖 = 1, . . . , 𝑟  

Where 𝜎 =
𝑑𝑚𝑎𝑥

2𝑟
, that 𝑑𝑚𝑎𝑥 is the 

maximum distance between chosen  

𝜇𝑖(𝑖 = 1, . . . , 𝑟) and maximum of r can be 

equal to 5. 𝜇𝑖  (𝑖 = 1, . . . , 𝑟) can be 

initialized randomly by vectors in X or 

determined using cluster analysis 
approaches [27, 28]. 

Definition 3: Radial Basis Function 

Networks (RBFNs): 
RBFNs have three layers. The hidden layer 

applies a nonlinear transformation from 

the input space to the hidden space. The 

hidden units use radial basis functions. The 
output layer applies a linear transformation 

from the hidden space to the output space 

[29, 30]. RBFNs have two parts for 
learning, In part I, from the input layer to 

the hidden layer use unsupervised learning 

and in part II, from the hidden layer to the 
output layer use supervised learning. 

RBFNs can be used for pattern 

classification [31], function approximation 

and control [32, 33]. 
Definition 4: Additive model in DEA: 

Suppose that there are 𝑛 Decision Making 

Units (𝐷𝑀𝑈𝑠) to be evaluated in terms of 

 𝑚 inputs and 𝑠 outputs. Let  

𝑥𝑖𝑗 (𝑖 = 1, . . . , 𝑚) and 𝑦𝑟𝑗  (𝑟 = 1, . . . , 𝑠) 

be the input and output values of 

𝐷𝑀𝑈𝑗 (𝑗 = 1, . . . , 𝑛). There are several 

types of additive models, from which we 

select the following form in terms of 

𝐷𝑀𝑈𝑝 (𝑝 = 1, . . . , 𝑛) :                 (1) 

𝑀𝑎𝑥    𝑧 = ∑𝑚
𝑖=1 𝑆𝑖

+ + ∑𝑠
𝑟=1 𝑆𝑟

−  
𝑆. 𝑡.    ∑𝑛

𝑗=1 𝜆𝑗𝑥𝑖𝑗 + 𝑆𝑖
+ = 𝑥𝑖𝑝 , 𝑖 = 1, . . . , 𝑚  

∑𝑛
𝑗=1 𝜆𝑗𝑦𝑟𝑗 − 𝑆𝑟

− = 𝑦𝑟𝑝 , 𝑟 = 1, . . . , 𝑠  

∑𝑛
𝑗=1 𝜆 = 1  

𝜆 ≥ 0  

𝑆𝑖
+ ≥ 0     𝑖 = 1, . . . , 𝑚  

𝑆𝑟
− ≥ 0     𝑟 = 1, . . . , 𝑠  

 

(𝑥𝑝, 𝑦𝑝) is evaluated DMU [14]. 

 

3. RBFN-ADD neural network 
The RBFN-DEA model of Pendharkar 

(2011) motivates us to propose a new 

model to solve binary classification 

problems [16]. The proposed RBFN-ADD 
model has two parts, in part I, input data 

using Gaussian Radial Basis Function 

(GRBF)are transferred to high-
dimensional space (feature space) that in 

this space can be linear separable with high 

probability by cover’s theorem [26, 27]. 
Using GRBF, negative data convert to 

non-negative data in the feature space [16]. 

 

 
 

 

 
 

 

 

 

 

 

 

 

Fig.1: RBFNs structure. 



Kashanifar and Farahnak / IJDEA Vol.10, No.4, (2023), 43-56 

 

46 

 

 
Fig.2:RBFN-ADDmodel structure. 

 

 
Fig.3: 3(a) Behavior of linear programming (3) in the training part of RBFN-ADD model to generate 

class 1 frontier. 3(b) Behavior of linear programming (2) in training part of RBFN-ADD model to 

generate class 0 frontier. 

In the DEA part, we can use additive 

model. We apply the following models to 

develop a classification hyperplane for 
class 0 and class1:  

𝑀𝑎𝑥   𝑧 = ∑𝑚
𝑖=1 𝑆𝑖

−                                 (2) 
𝑠. 𝑡.    ∑𝑛

𝑗=1 𝜆𝑗𝑥𝑖𝑗 + 𝑆𝑖
− = 𝑥𝑖𝑝 , 𝑖 = 1, . . . , 𝑚  

∑𝑛
𝑗=1 𝜆𝑗 = 1  

𝜆𝑗 ≥ 0 ,    𝑗 = 1, . . . , 𝑛  

𝑆𝑖
− ≥ 0  , 𝑖 = 1, . . . , 𝑚  

 

𝑀𝑎𝑥  𝑧 = ∑𝑚
𝑖=1 𝑆𝑖

+                                (3) 
𝑠. 𝑡.    ∑𝑛

𝑗=1 𝜆𝑗𝑥𝑖𝑗 − 𝑆𝑖
+ = 𝑥𝑖𝑝 , 𝑖 = 1, . . . , 𝑚  

∑𝑛
𝑗=1 𝜆𝑗 = 1  

𝜆𝑗 ≥ 0     𝑗 = 1, . . . , 𝑛  

𝑆𝑖
+ ≥ 0   𝑖 = 1, . . . , 𝑚  

where 𝑥𝑗 ∈ 𝑅𝑚  (𝑗 = 1, . . . , 𝑛) are training 

data.Suppose the training data set consists 

of n DMUs that k DMUs belong to class 0 
and the rest belongs to class 1. We use 

model (2) to generate the class 0 frontier 

and model (3) to generate the class 1 

frontier in the training part of our model. 
Since data have a monotonicity property, 

suppose data far from the origin belongs to 

class 0 and data close to the origin belongs 
to class 1. To determine which class is 

closer to theory gin in feature space, the 

Euclidean norm of the average vector in 

each class can be calculated in the 

3(a) 3(b) 
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procedure for solving classification 
problems with minimum error for 

identifying test data belonging  to class0 is 

the below form:   

 For training data use only the cases 

from class  0.  

 Using the linear programming (2) 

determine the efficient set of cases 

from the class 0, 𝐴∗, so determine the 

class 0 frontier.  

 Take a unit from the test data, training 

data units from the efficient set 𝐴∗ and 

solve the linear programming (4). 

 If model (4) has a feasible solution then 

test data belongs to class 0 otherwise it 
belongs to class 1.  

Figure 3(b) shows the classification 

hyperplane obtained by members of the 

efficient set𝐴∗. 

𝑀𝑖𝑛   𝑧0 = ∑𝑚
𝑖=1 𝑆𝑖

−                              (4) 
𝑠. 𝑡.     ∑𝑗∈𝐴∗ 𝜆𝑗𝑥𝑖𝑗 + 𝑆𝑖

− = 𝑥𝑖
𝑡𝑒𝑠𝑡 , 𝑖 = 1, . . . , m  

           ∑𝑗∈𝐴∗ 𝜆𝑗 = 1  

              𝜆𝑗 ≥ 0      𝑗 ∈ 𝐴∗  

              𝑆𝑖
− ≥ 0    𝑖 = 1, . . . , m  

 

 

4. Numerical examples 
In order to demonstrate the effectiveness 

and efficiency of the proposed model, in 

this section, we discuss the results 

obtained from the proposed model and 
RBFN-DEA model through two examples. 

Criteria NT0, NT1 and NNA RBFN-DEA 

model is found in Pendharkar (2011). 
Example 1. In this example, we compare 

the performance of the additive model and 

RBFN-DEA model [16] with negative and 
nonnegative values. We generate our 

training and test data sets using three 

normal distributions with means of -1, -5 

and -8. The standard deviations for 
distribution with means -5 and -8 are equal 

to one and with mean -1 equal to 2. The 

examples that were generated from normal 
distributions with means of -5 and -8 were 

labeled as belonging to class 1, and the 

examples that were generated from a 
normal distribution with a mean of -1 were 

labeled as belonging to class 0.  

 

 
 

 
Fig.4: Behavior of linear programming programs (4) and (5). 
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Table.1: A training data set and Testing data set in example 1. 

  No  

 

 Class  

 

 Training data set   Testing data set  

Attribute1  Attribute2  Attribute1  Attribute2  

 1   1   -4.7103   -4.3597   -4.5005   -4.2237  

 2   1   -5.3769   -7.0505   -3.7048   -5.4585  

 3   1   -3.2888   -5.9843   -5.4779   -5.1087  

 4   1   -4.0685   -4.7478   -4.1814   -5.4877  

 5   1   -6.4098   -5.708   -5.254   -5.4015  

 6   1   -4.488   -5.5647   -5.8325   -2.8829  

 7   1   -3.7755   -5.4872   -7.0353   -5.4414  

 8   1   -4.3283   -4.9362   -5.4744   -4.1605  

 9   1   -4.6692   -5.1205   -6.2172   -2.6892  

 10   1   -3.4518   -6.2368   -4.8427   -4.8349  

 11   0   -1.4164   3.144   -1.8805   0.3128  

 12   0   -1.9457   -0.3928   0.6626   0.9091  

 13   0   -1.0674   -0.1396   -0.7842   -1.2974  

 14   0   -2.0278   -1.9569   -2.6745   -2.4704  

 15   0   -0.6361   0.2279   -2.0132   -1.3974  

 16   0   -4.4317   -1.1481   -0.2282   -0.7301  

 17   0   1.4957   -2.0156   -1.0938   -4.537  

 18   0   -2.1321   0.844   0.3055   -1.5289  

 19   0   -4.0836   -1.2838   -0.642   -0.9577  

 20   0   -1.0343   -0.0087   1.0751   -0.283  

 21   1   -9.5943   -7.8686   -6.2367   -8.7376  

 22   1   -9.8711   -9.1471   -5.9822   -8.567  

 23   1   -9.0726   -8.6674   -9.2913   -6.8093  

 24   1   -8.1561   -7.7639   -9.5852   -7.8546  

 25   1   -6.6442   -7.898   -9.4142   -8.5579  

 26   1   -9.4063   -9.1122   -7.6845   -9.5352  

 27   1   -8.7654   -9.1373   -11.3198   -8.6381  

 28   1   -7.293   -9.2545   -6.4947   -8.405  

 29   1   -9.0533   -9.2209   -7.1127   -7.721  

 30   1   -7.387   -8.7511   -6.1414   -7.7317  

 

Table.2: Training data set and Testing data set after use of RBF in example 1. 

N

o 

 

 

Clas

s 

 

Training data set Testing data set 

Attribu

te1 

Attribut

e 

2 

Attribu

te3 

Attribu

te4 

Attribu

te5 

Attribu

te 

1 

Attribu

te 

2 

Attribu

te 

3 

Attribu

te 

4 

Attribut

e 

5 

1 1 0.3087 0.667 0.2653 0.7351 0.6019 0.1485 0.6639 0.4778 0.713 0.5441 

2 1 0.0948 0.3134 0.566 0.336 0.93 0.1397 0.5716 0.4246 0.8013 0.6511 

3 1 0.2406 0.5734 0.2555 0.4918 0.6276 0.2602 0.4747 0.3092 0.5684 0.7026 

4 1 0.3195 0.6885 0.2464 0.6875 0.5963 0.1721 0.5383 0.3848 0.7396 0.6923 

5 1 0.1175 0.3538 0.5469 0.4583 0.8594 0.2551 0.4644 0.3056 0.5935 0.7372 

6 1 0.2207 0.5513 0.3436 0.5614 0.7297 0.1608 0.6155 0.4124 0.4829 0.3928 

7 1 0.2651 0.616 0.2712 0.5743 0.645 0.4379 0.3007 0.1716 0.3521 0.7302 

8 1 0.2841 0.6425 0.2807 0.6581 0.6431 0.2087 0.5673 0.3786 0.572 0.5663 

9 1 0.2463 0.5884 0.3246 0.6248 0.6958 0.1694 0.5718 0.3734 0.4243 0.3679 
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10 1 0.2117 0.5298 0.2843 0.4591 0.6674 0.1958 0.5639 0.3889 0.6645 0.644 

11 0 0.7524 0.4386 0.0014 0.4342 0.0095 0.0075 0.9185 0.913 0.4977 0.063 

12 0 0.9365 0.9263 0.0181 0.8458 0.0865 0.0011 0.6972 0.8608 0.3882 0.0208 

13 0 0.99 0.8764 0.0104 0.7226 0.0578 0.0085 0.957 0.9961 0.7363 0.0994 

14 0 0.811 1 0.0412 0.8641 0.1707 0.0384 0.9551 0.8307 0.8223 0.249 

15 0 1 0.811 0.0067 0.6424 0.0412 0.018 1 0.9418 0.734 0.1436 

16 0 0.6011 0.818 0.0671 0.9957 0.2069 0.0047 0.9004 0.9936 0.6437 0.0651 

17 0 0.7415 0.6786 0.0061 0.3721 0.0429 0.0299 0.734 0.6865 1 0.3135 

18 0 0.9215 0.7825 0.0095 0.7708 0.0487 0.0047 0.8557 0.9652 0.7275 0.0762 

19 0 0.6424 0.8641 0.0647 1 0.2079 0.0067 0.9418 1 0.6865 0.0823 

20 0 0.9933 0.8613 0.0095 0.711 0.0536 0.0016 0.7323 0.9063 0.5174 0.0326 

21 1 0.0105 0.0562 0.9359 0.1 0.762 0.4738 0.1258 0.0704 0.2796 0.9973 

22 1 0.0045 0.0292 0.9792 0.051 0.6881 0.4389 0.1436 0.0823 0.3135 1 

23 1 0.0092 0.052 0.9905 0.0838 0.8166 0.8061 0.0928 0.0428 0.1235 0.6665 

24 1 0.0233 0.108 0.9126 0.1606 0.9306 0.9006 0.0571 0.0251 0.0905 0.6772 

25 1 0.0412 0.1707 0.7899 0.2079 1 0.9002 0.0467 0.0204 0.0848 0.7115 

26 1 0.0059 0.0369 0.9957 0.0609 0.7526 0.6668 0.0582 0.0284 0.1384 0.8951 

27 1 0.0082 0.0484 0.9972 0.0735 0.8282 1 0.018 0.0067 0.0299 0.4389 

28 1 0.0151 0.0798 0.9077 0.0997 0.9318 0.5094 0.1354 0.0748 0.2793 0.9917 

29 1 0.0067 0.0412 1 0.0647 0.7899 0.5852 0.1485 0.0795 0.2618 0.944 

30 1 0.0194 0.0965 0.9107 0.1247 0.9608 0.4499 0.1916 0.1108 0.3565 0.9793 

 
Table.3: comparing the performance of the proposed model and RFN-DEA model in terms 

of NT0, NT1 and NNA in the example1. 

  No  

 

 Class  

 

RBFN-ADD model   RBFN-DEA model  

 NT0   NT1   NNA  NTIIEM  NTIEM   

NNA  

 1   1   1   0   1   1   0   1  

 2   1   1   1   1   1   0   1  

 3   1   1   1   1   1   0   1  

 4   1   1   1   1   1   0   0  

 5   1   1   1   1   1   0   0  

 6   1   1   0   0   1   0   1  

 7   1   1   1   1   1   0   1  

 8   1   1   0   0   1   1   1  

 9   1   1   0   1   1   1   1  

 10   1   1   1   1   1   0   1  

 11   0   0   0   0   1   0   0  

 12   0   0   0   0   1   0   0  

 13   0   0   0   0   1   0   1  

 14   0   1   0   1   1   0   0  

 15   0   0   0   0   1   0   1  

 16   0   0   0   0   1   0   1  

 17   0   1   0   0   1   0   1  

 18   0   0   0   0   1   0   0  

 19   0   0   0   0   1   0   1  

 20   0   0   0   0   1   0   0  

 21   1   1   1   1   1   0   0  

 22   1   1   1   1   1   0   0  
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Table4.: Comparing the performance of the proposed model and the Pendharkar model in 

terms of CPU time in example 1. 
 

 

 
 

 

 
 

Fig.5: Behavior of NT0 and NT1 in example 1. 

 

Example 2. In this example, we compare 
the performance of the proposed model 

and the RBFN-DEA model [16] using data 

converted by RBF. We generate our 
training and test data sets using three 

normal distributions with means of 1, 0 

and -1. The standard deviations for all the 
distributions are considered equal to one. 

The examples that were generated from 
normal distributions with means of 1 and -

1 were labeled as belonging to class 1, and 

the examples that were generated from a 
normal distribution with a mean of 0 were 

labeled as belonging to class 0.  

 
 

 23   1   1   1   1   1   0   0  

 24   1   1   1   1   1   0   1  

 25   1   1   1   1   1   0   0  

 26   1   1   1   1   1   0   0  

 27   1   1   1   1   1   0   1  

 28   1   1   1   1   1   0   1  

 29   1   1   1   1   1   0   1  

 30   1   1   1   1   1   0   1  

 -  Result   93%   86%   90%   66%   40%   60%  

Model  CPU time  

RBFN-ADD  1.031250  

RBFN-DEA  6.625000  
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Table.5: Training data set and Testing data set in example 2. 
  No  

 

 Class  

 

 Training data set   Testing data set  

Attribute1  Attribute2  Attribute1   Attribute2  

 1   1   -0.3346   0.8579   3.584   1.2426  

 2   1   1.2393   1.3487   0.7811   0.3243  

 3   1   1.0545   1.8025   1.1598   3.3752  

 4   1   2.0268   1.6545   -0.26   -0.9992  

 5   1   1.4598   2.4093   2.0197   2.594  

 6   1   2.6394   1.5504   -0.9164   2.0155  

 7   1   -0.5144   0.9438   1.2827   0.6769  

 8   1   0.8262   1.3032   0.0963   1.5636  

 9   1   0.6107   0.7013   1.4808   2.352  

 10   1   1.5579   0.0616   -0.9528   1.845  

 11   0   0.6399   -1.3433   -0.1572   1.6539  

 12   0   1.0121   -1.2212   -1.0263   -0.0353  

 13   0   -0.6382   -0.4795   0.4599   0.3926  

 14   0   -0.2699   -0.5724   -0.5598   -0.2012  

 15   0   0.9175   -0.0485   0.8145   -1.3405  

 16   0   0.7324   1.421   -0.5583   -0.2888  

 17   0   -0.9144   1.1108   -1.6351   -0.0835  

 18   0   0.1638   0.6545   0.6964   -0.5615  

 19   0   -0.1301   -0.3713   0.3668   0.1142  

 20   0   0.0309   -0.971   0.2383   -0.3099  

 21   1   -1.9996   -3.442   -0.3388   -0.3671  

 22   1   -1.6587   -1.5397   -1.3173   -2.3894  

 23   1   -0.4759   -1.4906   1.1673   -1.3443  

 24   1   0.6849   0.5113   -0.6708   -0.5433  

 25   1   -1.3515   -1.5649   -1.1455   0.5424  

 26   1   -1.8397   -1.7603   -0.4769   -1.7101  

 27   1   0.0011   -3.1554   -1.3849   -1.535  

 28   1   0.179   -2.2486   -0.1344   -1.5353  

 29   1   -1.3078   -1.953   -1.6754   -0.3577  

 30   1   -0.5804   -1.0938   -0.1527   -2.832  

 

Table.6: Training data set and Testing data set after use of RBF in example 2. 
 No  

 

Class  

 

 Training data set   Testing data set  

Attribute1  Attribute2  Attribute3  Attribute1  Attribute2  Attribute3  

 1   1   0.1149   0.9068   0.3568   0.0022   0.0001   0.0187  

 2   1   0.0142   0.3173   0.6506   0.5174   0.1485   0.3938  

 3   1   0.0081   0.3448   0.448   0.0067   0.0019   0.0008  

 4   1   0.0027   0.1122   0.5096   0.7938   0.4201   0.5041  

 5   1   0.0015   0.1669   0.2593   0.0101   0.0015   0.0058  

 6   1   0.0011   0.0435   0.4369   0.2016   0.2094   0.007  

 7   1   0.1102   0.9551   0.2893   0.2662   0.0557   0.272  

 8   1   0.0246   0.4725   0.6018   0.3243   0.163   0.0473  

 9   1   0.0726   0.5435   0.7266   0.0336   0.007   0.0126  

 10   1   0.0498   0.1714   1   0.2518   0.2646   0.0095  

 11   0   0.3612   0.1271   0.5023   0.3183   0.1915   0.0329  
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 12   0   0.2353   0.1068   0.6218   0.9251   0.8882   0.1258  

 13   0   0.5271   0.5289   0.2863   0.6425   0.2308   0.3271  

 14   0   0.4822   0.4519   0.4005   1   0.6896   0.2559  

 15   0   0.1228   0.3169   0.9019   0.3633   0.09   0.9612  

 16   0   0.0224   0.5033   0.5388   0.9976   0.6827   0.2725  

 17   0   0.097   1   0.1714   0.6896   1   0.0498  

 18   0   0.1117   0.7152   0.5706   0.5812   0.1654   0.7671  

 19   0   0.3865   0.5028   0.476   0.7376   0.2765   0.415  

 20   0   0.5097   0.2785   0.4357   0.8137   0.3226   0.5411  

 21   1   0.5173   0.0047   0.0023   0.976   0.5715   0.3592  

 22   1   0.9307   0.1568   0.0426   0.182   0.1788   0.0994  

 23   1   0.8013   0.1824   0.2018   0.2559   0.0498   1  

 24   1   0.0858   0.4901   0.79   0.9597   0.6959   0.2788  

 25   1   0.9634   0.1658   0.0661   0.7523   0.8183   0.059  

 26   1   0.9247   0.1081   0.0264   0.4841   0.2817   0.406  

 27   1   0.4619   0.0095   0.044   0.4577   0.5019   0.1248  

 28   1   0.5701   0.0473   0.1704   0.5364   0.2503   0.577  

 29   1   1   0.097   0.0498   0.6682   0.9759   0.0563  

 30   1   0.7336   0.2965   0.2359   0.1053   0.0451   0.2846  

 
Table.7: Comparing the performance of the proposed model and RBFN-DEA model in 

terms of NT0, NT1 and NNA in example 2.  
  No  

 

 Class  

 

RBFN-ADD model  RBFN-DEA model  

 NT0  NT1   NNA  NTIIEM  NTIEM   NNA  

 1   1   1   1   1   1   1   1  

 2   1   1   1   1   1   1   1  

 3   1   1   1   1   1   1   1  

 4   1   0   0   0   0   0   0  

 5   1   1   1   1   1   1   1  

 6   1   1   1   1   1   1   1  

 7   1   1   1   1   1   1   1  

 8   1   1   1   1   1   1   1  

 9   1   1   1   1   1   1   1  

 10   1   1   1   1   1   1   1  

 11   0   1   1   1   1   1   1  

 12   0   1   0   0   1   0   0  

 13   0   1   1   1   1   1   1  

 14   0   0   0   0   0   0   0  

 15   0   1   0   0   1   0   1  

 16   0   0   0   0   0   0   0  

 17   0   1   0   0   1   0   1  

 18   0   0   0   0   0   0   0  

 19   0   1   0   0   1   0   0  

 20   0   0   0   0   0   0   0  

 21   1   0   0   0   0   0   0  

 22   1   1   1   1   1   1   1  

 23   1   1   0   0   1   0   0  
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 24   1   0   0   0   0   0   0  

 25   1   1   0   0   1   0   0  

 26   1   1   1   1   1   1   1  

 27   1   1   1   1   1   1   1  

 28   1   0   0   0   0   0   0  

 29   1   1   0   0   1   0   0  

 30   1   1   1   1   1   1   1  

 -  Result   66%   70%   70%   66%   70%   60%  

 

Table.8: Comparing the performance of the proposed model and the Pendharkar model in 
terms of CPU time in example 2. 

Model CPU time  

RBFN-ADD  1.125000  

RBFN-DEA  4.171875  

 

5. Conclusion 
In this paper, we have presented a novel 

RBFN-ADD neural network for solving 

binary classification problems. We use the 
additive model in the DEA section for the 

RBFN-ADD model and proposed new 

criteria for NNA in the RBFN-ADD 

model. We compare the performance of 
the proposed model and the RBFN-DEA 

model in terms of accuracy and CPU time. 

Numerical results show RBFN-ADD 
model has well performance with respect 

to RBFN-DEA model, furthermore 

proposed model can solve binary 
classification problems with negative 

value. 
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