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ABSTRACT 

In this paper, the numerical solution methods of one- particale, one – dimensional  time- independent 
Schrodinger equation are presented that allows one to obtain accurate bound state eigen values and 
eigen functions for an arbitrary potential energy function V(x). These methods included the FEM 
(Finite Element Method), Cooly, Numerov and others. Here we considered the Numerov method in 
more details. For this purpose, we first reformulated the Shrodinger equation using dimensionless 
variables, the estimating the initial and final values of the reduced variable xr and the value of 
intervals sr, and finally making use of Q-Basic or Spread Sheet computer programs to numerically 
solved the equation. For each case, we drew the eigen functions versus the related reduced variable 
for the corresponding energies. The harmonic oscillator, the Morse potential, and the H-atom radial 
Schrodinger equation, … were the examples considered for the method. The paper ended with a 
comparison of the result obtained by the numerical solutions with those obtained via the analytical 
solutions. The agreement between the results obtained by analytical solution method and numerical 
solution for some Potential functions harmonic oscillator̕ Morse was represents the top Numerov 
method for numerical solution Schrodinger equation with different potentials energy.   
 
Keywords: Independent-of-time Schrödinger equation; Numerical solution; Analytical solution; 
Numero method; Spreadsheet 

 
INTRODUCTION
Assuming nucleuses and electrons as point 
masses and regardless of relativity 

interactions, molecular Hamiltonian was as 
follows: 
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1where α And βrefer to nucleuses, and i 

and j were indications of electrons, and the 
first term in the relationship (1) was kinetic 
energy operator of nucleuses. The second 
term was kinetic energy operator of 
electrons. The third term refer to repulsive 
                                                 
*Corresponding author: zohreh_Yousefian@yahoo.com  

potential energy, in which rαβ was the 
distance between the nucleuses α and β  
with Zβ , Zαas their atomic numbers. The 
fourth term was gravitational potential 
energy between electrons and nucleuses, in 
which riα was the distance between the 
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electron “i” and the nucleus α. Finally, the 
last term refer to repulsive potentials 
between electrons, where rij was the 
distance between the electrons “i” and “j”. 
Zero level of potential energy for the 
equation 1 was according to a 
configuration in which all electric charges 
(electrons and nucleuses) are located in an 
infinite distance from each other.  

For instance, consider the molecule H2. 
Assume α and β as two protons, 1 and 2 as 
two electrons, and mp as mass of the 
proton. Molecular Hamiltonian of H2 was 
as follows: 
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Wave and energy functions of a 

molecule are found by solving Schrödinger 
equation, where qαand qi are electronic 
and atomic coordinates, respectively.  
                                                    

 )q,q(E)q,q(Ĥ ii αα ψψ =                      (3)   
 

Molecular Hamiltonian (equ.1) was so 
complicated that one didnot solve it 
analytically. Fortunately there were a 
simple estimation with a high degree of 
accuracy, which was based on the fact that 
nucleuses were much heavier than 
electrons: ma >>me. Therefore, electrons 
moved much faster than nucleuses, and it 
was possible to consider the nucleuses 
immobile during electronic moves.          

Classically, change in nucleus 
configuration was ignored during an 
electronic move cycle. Consequently, we 
omited nucleus kinetic energy terms from 
the equation (1) by considering nucleus 
immobile in order to obtain the 

Schrödinger equation for electronic 
movement: 
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where Pure electronic Hamiltonian Hel 

was: 
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Electronic Hamiltonian included nucleus 

repulsion that was equal to Hel + VNN. 
The nucleus repulsion term “VNN” was 
equal to:  
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The estimation for separating nucleus 
and electronic movements was called 
Bowrn-Openhaimer estimation. Based on 
this estimation, molecular Schrödinger 
equation was decomposed into two 
equations: an equation which describes 
electronics movement, and another 
equation that describes nucleus movement. 

It was possible to solve the one-
dimensional Schrödinger equation by using 
different potential energy functions with 
several methods. Also, it was easily 
possible to solve the Shrodinger equation 
for simpler potential energies such as 
particle in a box, and harmonic oscillator, 
using analytical method. But analytical 
method was not able to solve more 
complicated potential functions. So, there 
had been some efforts to solve the 
Schrödinger equation using other methods. 
In the recent years, numerical solutions 
have been used in order to solve the 
Schrödinger equation in Quantum 
Mechanics. In general, methods such as 
Euler, Rung Kutta, Heun and Colli-
Numero can be used for solving an 
equation in a numerical manner. In the 
present study, Numero method had been 
thoroughly described. Using Numero 
method, it was possible to solve the 
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Schrödinger equation numerically by using 
different potential functions. It was worth 
noting that the Schrödinger equation can 
be solved by Numero method using Taylor 
series as follows: 
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  where: 
]E2)x(V2[mG 2 −= −h  ,  nxxs −=     (8)   

   
In order to numerically solve the 

Schrödinger equation using the above 
equations, first, we should write the 
equation in terms of the following 
dimensionless variables   : 

2
1r

B
−

=
ψψ , 

B
xxr = , 

A
EEr =                 (9)  

Then, we guess a certain value for 
Eguess. For this purpose, we should start 
with a point that was completely located 
within the left side classic forbidden 
region, plot changes in wave function ψr 
versus xr, using computer softwares such 
as Q-Basic and Spread Sheet, and find 
eigenvalue of the considered potential 
function in several electronic conditions, 
and compare it with the values obtained 
from analytical solution of Schrödinger 
equation. In the present research, the 
authors had tried to present how to use the 
Numerov method in numerical solution 
using different potential functions after 
introducing various methods for 
numerically solving the Schrödinger 
equation, and to compare the results 
obtained from numerical solutions to those 
of analytical solutions.  
 
CALCULATION METHOD 
There were a lot of numerical methods 
such as Euler, Rung Kutta, Heun’s 
Method, Finite Element Method, Numerov 
method, and Colli Method to solve an 

equation. Among them, Colli and 
Numerov methods were discussed in 
detail.  
 

Numerov Method 
For so many of Potential Energy functions 
V(x), it was not possible to solve the one-
dimensional and one-particle Schrödinger 
equation exactly. In this section, a 
numerical method was presented in order 
to solve the one-dimensional and one-
particle Schrödinger equation in a 
computer-based manner. Using this 
method, it was possible to find eigenvalues 
and special functions for an arbitrary 
potential function V(x). The method, 
named Numerov, was developed by a 
Russian scientist in the 1920s.  

Consider Taylor expansion of the 
function f(x) around the point x=a. 
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Considering the point x=a as xn (i.e. xn = 

a) and the x-a distance as s (i.e. S≡ x-a = x- 
xn so that x = xn + s), a new equation was 
obtained. Replacing s with –s in the last 
equation and adding the two equations 
together, we had: 
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(11)         
where terms including ݏ଺ and higher 

powers of s were overlooked. In order to 
numerically solve the Schrödinger 
equation, we divided the x coordinate into 
some small intervals, each equal to s in 
length (fig. 1). Thus, the points xn – s, xn, 
and xn + s were the end points of adjacent 
intervals. Considering the following 
changes: 

 

)(,)(,)( 11 sxffxffsxff nnnnnn +≡≡−≡ +−

 (12) 
The equation (12) was transformed into: 
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4)(2
11 12
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Replacing f with the wave function ψ in 
the equation (13), we had: 
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Indexes n-1, n, and n+1 did not show 
several states, but indicated values of a 
certain wave function ψ and its derivatives 
in the points located on the coordinate x 
having the distance s from each other. The 
n index means functions were evaluated at 
the point xn [equation (12)].  

 
ψψ ]E2)x(V2[m 2 −=′′ −h  

ψψ G=′′                                             (15)    
 

]2)(2[2 ExVmG −= −h                      (16) 
 

Value of 4)( siv
nψ  was obtained by 

replacing f with ψ ′′ in the equation (13), 

multiplying the obtained equation by ݏଶ, 
and finally ignoring the term ݏ଺. 
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Putting the equation (15) in (17), we had: 
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Solving this equation for 

1n+
ψ , the final 

result is: 
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Using the equation (19) and having 

n
ψ

and 
1−n

ψ  (ψ values at the two points xn and 
xn-1) 

1+n
ψ (the value of ψat the point xn + 

s) can be calculated.  
 

 
Fig. 1. V versus X for a one-particle and a one-dimensional system. 

 
In order to solve the Schrödinger 

equation using the equation (13), first, we 
should guess a value for the energy 
eigenvalue (Eguess). We started with a 

point that was located exactly within the 
left side classic forbidden region (in the 
fig. 1). At this point, the value of ψ was 
too small, and  we  estimated  the  ψ  to  be  
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zero at this point.     
We also choosed the point xmax within 

the left side classic forbidden region, and 
make it necessary to meet the equation ψ 
(xmax)=0. We choosed a small value for 
the distance s between the consecutive 
points, and choosed a small number like 
0.0001 for ψ at the point xo+s: ψ1 ≡ψ(x1) 
≡ ψ( xo s ) = 0.0001. After determining the 
values of ψ1 and ψ o, values of G are 
calculated using Eguess. Then, using the 
equation (19), value of ψ2 ≡ψ(x2) ≡ψ(x1 s ), 
ψ3, and ψ4 were obtained by considering 
n=1, n=2, and n=3, respectively. This 
procedure continued until we had reached 
xmax.   

If Eguess was not equal to or near to an 
eigenvalue, ψ was not integrable squarely, 
and |ψ( xmax )| would been very large. If it 
was proved that |ψ( xmax ) | was not close to 

zero, we started with xo again, and begin 
the process guessing a new value for 
Eguess. The process continue as long as 
we found a value for Eguess that make  
ψ(xmax) get very close to zero. Then, 
Eguess was necessarily equal to an 
eigenvalue. Fundamental approach for 
determining eigenvalues was to count 
number of nodes at ψ resulted from 
Eguess. Remember that in a one-
dimensional problem, number of internal 
nodes for the first motivated state was 
equal to 1,… Assume that E1, E2, E3, … 
refer to basic state energy, firs motivated 
state, second motivated state, … If ψ guess 
did not included any nodes between  
xo and xmax, Eguess was equal to or less 
than E1; If ψguess included an internal  
node, ψguess was between E1 and E2 (fig. 
2). 

 

 
 

Fig. 2. Number of nodes in Numerov method in the form of a function of Energy Eguess. 
 
One-dimensional Schrödinger equation 
in terms of dimensionless variables 
Numerov method made it necessary to 
guess some values for E. How much were 
magnitude order of these guesses: J1510− , 

J2010− , In order to answer this question, 
we firstly wrote the Schrödinger equation 
in terms of dimensionless variables. 
 
Simple Harmonic Oscillator   
Harmonic oscillator had the term  
V= 2

2
1 kx , and Schrödinger equation had 

three constants including k, m, and h for 
harmonic oscillator. We named 
dimensionless reduced energy “Er, and 

reduced x parameter “xr”. These 
parameters were defined as follows: 

B
xx

A
EE rr == ,                                     (20) 

 

where A was a constant that was a 
combination of k, m, and h, hading energy 
dimensions, and B was a combination of 
these constants with length dimension. 
Energy had dimensions of mass × (length)2 
(time)2 as written in the following: 

22TML]E[ −=                                     (21) 
 
where Bracket was an indication of the 
dimensions M, L, and T as dimensions of 
mass, length, and time, respectively.  
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The equation indicated that k had the 
dimensions energy × length-2. From the 
equation (21), we obtain 2][ −= MTk . The 
constant h had the dimension time × 
energy. So, 

122 TML][,MT]k[,M]m[ −− === h   (22) 
 

Dimensions of A and Bin the equation 
(20) were energy and length, respectively: 
 

L]B[,TML]A[ 22 == −                 (23) 
 

Assumed that A= makbhc. We specify the 
powers a,b , and c so that dimensions of A 
was equal to ML2T-2. Now, 
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So, we had: 
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Solving these equations, we had:  
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Assumed that B= mdkehf. Then 
equations (22) and (23) were obtained: 
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Considering equations (20), (25), and 
(26), we had: 
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Using 2
1

2
1

2 vmk π=  to omit the constant 
k from equation (27) and remembering the 

h

mva π2=  definition, we obtained other 

terms for reduced energy and reduced 
parameter: 
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Since |ψ(x)|2 was a probability parameter 
and probability parameters were 
dimensionless, normal ψx should had the 
dimensions length-1/2. Therefore, we 
defined reduced wave function ψr. 
Considering the equation (23), dimension 
of B was length, so dimension of B-1/2 was 
length-1/2. So, 

2
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B
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Considering the equations (20) and (29), 
and the equation ׬ หψ หଶஶ

ିஶ ݔ݀ ൌ 1 .the 
function ψr was correctly applied to the 

equation ׬ ฬψ
r

ฬ
ଶஶ

ିஶ ݔ݀ ൌ 1. So, we 

rewrote Schrödinger equation in terms of 
the reduced variables xr, ψr, and Er. So we 
had  
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Because 
ௗ௫ r

ௗ௫
ൌ  ଵ. Putting theିܤ

equations (20) and (29) in Schrödinger 
equation for harmonic oscillator, we 
obtained: 
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Dividing the sides by B-1/2 and replacing 
the equations (25) and (26) for A and B, 
we had: 
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So, reducing Schrödinger equation for 
harmonic oscillator in form of the equation 
(33), which included dimensionless 
quantities only, we expected the minimum 
of energy eigenvalue to be of the 
magnitude order of 1.  
Now, we could used the Numerov method 
for the equation (33). Consequently, 
ܵ rୀୗ

୆ൗ . 
 
Mourse Function 
This potential function was in the form of 
ܸ ൌ  ௘ሺଵି௘షೌೣሻ, and the correspondingܦ
Schrödinger equation has the constants a, 
m, and h. In this case: 

221 amA h−= , 1−= aB                          (35)  
 

and reduced Schrödinger equation would 
been: 

r
x

rerrrr EeDGG r 2)1(, 2
, −−==′′ −ψψ   (36)  

 
Choosing xr,o, xr,max, and sr  
In order to solve the independent-of-time 
Schrödinger equation by different potential 
functions, it was necessary to determine 
initial and final values of xr, and the 
distance sr between adjacent points. So, we 
determined these points for harmonic 
oscillator. Assumed that the goal was to 
find all eigenvalues and special functions 
of harmonic oscillator with ܧ r ൑ 5. 
Because of this, we started solving from 

the right side of unallowable classic 
region. First, we determined unallowable 
classic regions for Er = 5. Border between 
allowable and unallowable regions were 
positions in which Er = EV. Using the 
equation (27), reduced potential energy Vr 
was obtained as follows: 
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So the equation Er = EV was transformed 

into 5 ൌ ଵ
ଶ

ܺ r
ଶ , and the allowable classic 

region for Er = 5 would been ܺ r െሺ10ሻ
భ
మ ൌ

െ3.16 to +3.16. For Er < 5, the allowable 
classic region would been smaller. There 
for, we would like to find the answered at a 
point in which wave function ψ was too 
small, and at another point which was 
completely located at the left side of the 
unallowable classic region.    

Left unallowable classic region for  
Er = 5 ends at xr = -3.16. an acceptable 
choice was to start calculations from xr = -
5. Since V was symmetric, we should 
finished the answer at xr = 5. For more 
accuracy, it was necessary to choose, at 
least, 100 points. So, we choosed sr = 0.1 
in order to gain 100 points. 

 
Computer Softwares for solving one-
dimensional Schrödinger equation by 
Numerov method 
There were several computer softwares for 
solving one-dimensional Schrödinger 
equation by Numero method. Among them 
were Q-Basic, Maple5, Matlab, 
Mathematica, Derive, MathCad, Theorist, 
and spreadsheet. In this research, the 
Spreadsheet software had been used. 
Application procedure of the software 
Spreadsheet for harmonic oscillator was 
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explained in chapter 4 of the book 
“Luain’s Quantum Chemistry”. 
 
Colli method  
In Numerov method, there was no 
appropriate method for correcting errors in 
eigenvalues. On the other hand, sometimes 
when value of E was exactly equal to a 
certain eigenvalue, numeric value of ψ 
enters the non-classical region. Colli 
method had obviated the two noted 
problem. Introduced by Colli, the method 
was integration of Numerov method 
(N.M.I), along with a formula correcting 
eigenvalues, which had been developed 
based on second-order repetition change 
presented by Lowdin. 

Form of this equation was as follows: 

0)r()]r(UE[
dr
d

2

2

=−+ ψψ                 (37) 
 

where ψ was special radial function 
multiplied by r, and U(r) was effective 
potential energy.  

)(])1([)( 2
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ba ++
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J and Λ were rotational quantum number 
and angular momentum, respectively, and 
௕ݖ௔ݖ ൗݎ  was repulsive colonic energy 
between nucleuses, and Eelec (r) was 
electronic energy obtained for each r 
distance between nucleuses. 

For using the equation (37), it was 
necessary to make energy and length 
dimensionless. When we measured length 
at Boor radius, a0 = 0.529172 A and unit of 
energy was equal to ௛ேబ

଼గమ஼௔బ 
మ ఓಲ

 , where N0 

was Avogadro numbr, and ߤ஺ was reduced 
mass whose numerical value was equal to 
଺଴.ଶଵଽ଼

ఓಲ
 .  

 

RESULTS AND DISCUSSION 
In this study, first one-dimensional 
Schrödinger equation for simple harmonic 
oscillator and Morse functions had been 

solved by analytical method, and Numerov 
numerical method, respectively, and then 
the results were compared to each other. At 
the next step, numerical solution of other 
functions were also investigated.  
 
Analytical Solutions to one-dimensional 
harmonic oscillator function 
The independent-of-time Schrödinger 
equation for one-dimensional harmonic 
oscillator was as follows: 

ψψψ Ekx
2
1

dx
d

m2
2

2

22

=+−
h                    (39)  

 
where k was force constant and was related 
to vibrational frequencies according to 
ܸ ൌ ଵ

ଶగ
ሺ ௞

௠
ሻ

భ
మ. Solution of the equation (39) 

had been described in detail in so many of 
Quantum Chemistry books, and we 
discussed only results obtained from 
solutions to the equation. Those solutions 
to the equation (39) which were squarely 
integrable exist only for E values 
according to the following: 
 

,...3,2,1,0vh)
2
1v(E =+= ν            (40)  

 

It could been shown that well-behavior 
solutions for the equation (39) was in form 
of multiplying exp ሺെܽ ௫మ

ଶ
ሻ by a 

polynomial of x from the order v, with 
α ؠ 2πv ୫

h
. Figure. 3. show explicit 

forms of some wave function lower than 
ψ0, ψ1 and ψ3. Increase in quantum number 
causes increased in number of nodes. 
Harmonic oscillator wave functions 
consistent with x→±∞ reduced to zero 
exponentially. However, it should be noted 
that even for very large value of x that 
wave function and probability density were 
not equal to zero; there was a high 
probability of finding particle at high 
values of x. For a classic harmonic 
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oscillator with the energyቀݒ ൅ ଵ
ଶ
ቁ  the ,ݒ݄

equation ܧ ൌ  ଵ
ଶ

 ଶ results inܣ݇

ቀݒ ൅ ଵ
ଶ
ቁ ݒ݄ ൌ ଵ

ଶ
ݒand ቂሺ2 ܣ݇ ൅ 1ሻ ௛௩

௞
ቃ

భ
మ . 

A classic oscillator is restricted to move 
within the range –A  x  +A. 

 
Fig. 3. Wave functions for four states lower than harmonic oscillator. 

 
Analytical Solutions to Morse function 
For Morse potential energy at J = 0, we 
had: 

EPPeeDD
dr

pd
ee rrarra =−++− −−−− ]}2[{

2
)()(2

2

22

µ
h

                                                             (41)   
By replacing y with ݁ି௔ሺ௥ି௥೐ሻ, we had: 

)
dy

pd
y
1

dy
pd(ay

dr
pd,

dy
dpa

dr
dp

2

2

2

2
2

2

2

+=−=

                                                             (42) 
 

and the equation (41) is transformed 
into: 

0)2(1)1(
2 222

22

=+−
−

++− pD
y
D

y
ED

ady
dp

ydy
pd

µ
h

                                                           (43)  
 

By writing the solutions in form of 

ܲሺݕሻ ൌ  ݁ି೥
మ  ݖ

್
మ  ܨሺݖሻ, where and 

 

 ܾ ൌ ଶ
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 ඥ2ܦߤ ௬
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ܾ ൌ ଶ

௔ h
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b
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z
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dpy
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+−+=
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−

−−

β

β

  

(44) 
 

and the equation (39) was transformed 
into: 

0
z
F]

2
)1b(

2
[

dz
dF)1

z
1b(

dz
Fd
2

2

=
+

−+−
+

+
β

 
 

 (45)  
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Using divergent differential equations 
related Diverging, equation (45) was 
transformed into: 

0L]
z

1l[L)1
z

1l2(L =
−−

+′−
+

+′′ λ
   (46)  

when the equation λl 1 = n was true, 
equation (46) had well-behavior solutions, 
where n was a true and positive number. 
Equations (45) and (46) would been the 
same if: 

So solutions to the equation (45) did not 
exist if: 

2
1,121 +

=+=+
βλlb  and  

n
2

)1b(
2

=
+

−
β

    or   

n)1)ED(2
a
2(

2
1

a
D2

=+−− µ
µ

hh
 

 
  where: 
 

ee
2

e
n x)

2
1n()

2
1n(

hc
E ωω +−+=             (47)  

)
2

a(
hc
1x,

2
D

hc
a2 22

eee µ
ω

µ
ω hh

==
 

                                                            (48)   
Equation (47) was exact for equation 

(45) if 0 ൑ ݖ ൑ ∞ and if F(z) reaches z=0 
and ݖ ൌ ∞. Actually ݎ ൒ 0, and y and z 
would never been equal to zero. Equation 
(47) was a good estimation for molecules.  

 
Numerical Solution of one-dimensional 
Schrödinger equation using Numerov 
method and drawing wave function 
curve versus xr.  
 
Numerical Calculations for simple 
harmonic oscillator 
In order to numerically solved Schrödinger 
equation for harmonic oscillator using 
Numerov method and to drawing wave 
function curve versus xr, we should make 
the considered equation dimensionless, and 

then solved the equation by using 
Numerov method. discussed procedure of 
making the considered equations 
dimensionless in detail.  

For harmonic oscillator, using the values 
xr,0=-5  ، xr,max=5, and sr=0.1 and the 
relationship ሺ28ሻܩ௥ ൌ ௥ݔ

ଶ െ  ௥, oneܧ2 
could calculate the values of rψ  and xr At 
several Er s in an excel sheet, and then 
drew curves of wave function ߰௥ versus 
 .௥ݔ

For example, fig. 4-a, 4-b, and 4-c 
showed curves of wave function versus ݔ௥ 
for harmonic oscillator at Er= 0, basic 
state, which did not have any node, and 
fourth stimulated state of Er= 4.499996, 
which had 4 nodes, respectively. 
 
Numerical Calculations for fourth-
ordered disharmonic oscillator 
In order to drew curve of wave function ߰௥ 
versus ݔ௥ for fourth-ordered disharmonic 
oscillator which had the potential energy of 
ܸ ൌ ௥ୀଶ௫ೝܩ ସ, we hadݔܽ

రିଶாమ, 
௥,଴ݔ ൌ െ2.5, and ݔ௥,௠௔௫ ൌ െ2.5. We also had 
the terms rψ  related to fourth-ordered 
disharmonic oscillator by using the 
relationship (19). 

So, importing the above information into 
an excel sheet, we could investigate, for 
instance, the base state Er= 0.668 with  
Sr= 0.01, which did not have any nodes 
(Fig. 5-a), the first stimulated state Er= 2.3 
with Sr= 0.05, which had two nodes (Fig. 
5-b), and the fourth stimulated state  
Er= 10.244 with Sr= 0. 1, which had four 
nodes (Fig. 5-c), and drew curves of wave 
function ߰௥ versus ݔ௥ for the states 
remarked. 

 

Numerical Calculations for Morse 
Oscillator 
Morse oscillator had ܸ ൌ ௘ ሺ1ܦ െ ݁ି௔௫ሻଶ . 
Consequently, we had ܩ௥ ൌ ௘,௥ ሺ1ܦ2 െ
݁ି௫ೝሻଶ െ ௘,௥ܦ ௥ in whichܧ2 ൌ  ஽೐

ሺ ೓మ

ೌమ
೘ൗ

ሻ
. Also 
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we had the exact term ߰ of Morse 
oscillator by using the relationship (19). It 
was possible to drew curve of wave 
function ߰ versus ݔ௥ in an excel sheet by 
importing the distance between ݔ௥,଴ ൌ െ1.44 
and ݔ௥,௠௔௫ ൌ െ1.5. Here we had 
investigated curve of wave function ߰ for 
basic state versus ݔ௥ Er=8.5154 and 
sr=0.01, which did not have any nodes 
(Fig. 6-a), the first stimulated state with 
Er=24.80628 and sr=0.01, which had one 
node (Fig. 6-b), the second stimulated state 
with Er=40.36258 and sr=0.01, which had 
two nodes (Fig. 6-c), and the fifth 
stimulated state with Er=80.54747 and 
sr=0.01, which had five nodes (fig. 6-d).  
 
Numerical Solution to Radial Equation 
related to movement of particle in 
central force field 
For instance, we consider radial equation 
of Hydrogen atom with potential function 

of ܸ ൌ  െ ௘మሖ

௥
. We had ܩ௥ ൌ ௟ሺ௟ାଵሻ

௥ೝ
మ െ ଶ

௥ೝ
െ

 ௥  (relationship (37) and also the exactܧ2 
term of ߰ for the system.  

Importing the aforementioned data into 
an Excel sheet, we drew the considered 
curves; for instance, distance between 
௥,଴ݎ ൌ 0 to ݎ௥,௠௔௫ ൌ 10 with Er=-0.4998 and 
sr= 0.025, which did not have any nodes 
and was related to the orbital 1s (Fig. 7-a), 
distance between ݎ௥,଴ ൌ 0 to ݎ௥,௠௔௫ ൌ 25 
with Er=-0.1246 and sr= 0.01, which had 
one node and was related to the orbital 2S 
(Fig.7-b), and distance between ݎ௥,଴ ൌ 0 to 
rr, max=40 with Er=-0.05526 and sr= 0.01, 
which had two nodes and was related to 
the orbital 3s (Fig. 7-c).  

Since in the relationship for Gr value of rr 
is put in denominator value, then value of 
Gr was meaningless. Consequently, value 
of ݎ௥,଴ was considered as a very small value 
close to zero like -0.0001.  

 

Numerical Solution to the equation 
related to angular momentum 
First, we drew the wave function of yr 
versus ߠ for the equation with angular 
momentum at the distance between 
௥,଴ݎ ൌ 0.1 and ݎ௥,௠௔௫ ൌ 3.03 with sr= 0.01.  
It should been noted that we had 
௥ܩ ൌ  ቂെ݈ሺ݈ ൅ 1ሻ െ ଵ

ଶ
െ ଵ

ସ
 cot ݃ଶ ߠ ൅

௠మ

௦௜௡మఏ
ቃ, |݉| ൌ 2, and J=3 (Fig. 8).  

 
Numerical Solution to Schrödinger 
equation with potential energy function 
of ࢂሺࢄሻ ൌ ࢇࢂି 

૚ା࢞ࢋ ⁄ࢇ   
This equation had three constants 
including m, h, and a. So, the constants A 
and B would been as follows: 

aB
a

A == ,
. 2

2

µ
h                               (49)  

Also ൌ ௅
௅௡ሺିଶሻ

, and finally reduced 
Schrödinger equation was equal to: 

rr2 G ψψ =″ , ⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛

+
−= rx

0
r E2

e1
v2G

r
γ , 

h

2Bµγ =                                             (50) 

 
Importing the values ݔ௥,௠௔௫ ൌ ௥,଴ݔ ,2 ൌ െ2  

as well as the relationship (50) and the 
term of ߰ related to this equation and using 
the relationship (19). For instance, Fig. 9-a. 
showed the curve of ߰௥ versus xr at the 
third stimulated state with Er=1.2 and 
sr=0.05, which had three nodes. Also Fig. 
9-b. showed the curve of ߰௥ versus xr at 
the fourth stimulated state with Er=3.8 and 
sr=0.1, which had four nodes. 

 
Numerical Solution to Schrödinger 
equation with potential energy function 

of 
122

)(
32 xxxV −=   
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We had sr=0.1, ݔ௥,௠௔௫ ൌ ௥,଴ݔ ,4 ൌ െ3.5 
and ܩ௥ ൌ ቂݔଶ െ  ௫య

଺
െ  ௥ቃ. Importing theܧ2

above data into an Excel sheet, we drew 
the considered curves; for instance, the 
basic state with Er=0.489625did not have 
any nodes (Fig. 10-a), the first stimulated 
state with Er=1.425 had one node (Fig. 10-
b), and the second stimulated state with 
Er=2.3125 had two nodes (Fig. 10-c).  
 
Numerical Solution to Schrödinger 
equation with potential energy function 
of V(x)=x2-0.1x3  
We had sr=0.1, ݔ௥,௠௔௫ ൌ ௥,଴ݔ ,3 ൌ െ3 and 
௥ܩ ൌ ሺ2ݔଶ െ ଷݔ0.2 െ  ௥ሻ. Importing theܧ2
above data into an Excel sheet, we drew, 
for instance, curve of the basic state with 
Er=0.7035, which did not have any nodes 
(Fig. 11).  
 
Comparison between numerical and 
analytical solutions of Schrödinger 
equation with several potential energies 
The independent-of-time Schrödinger 
equation for one-dimensional harmonic 
oscillator was as follows:  
 

ψψ Ekx
2
1

dx
d

m2
2

2

22

=+−
h                      (51)  

 
where k was force constant, and was in 
relation to vibrational frequency according 
to the relationship ൌ ଵ

ଶగ
ሺ ௞

௠
ሻ

భ
మ. Analytically 

solving this equation, allowable energies of 
the harmonic oscillator was as follows: 
 

)
2
1v(hE += ν , v= 0,1,2,3,…              (52) 

 
For instance, value of E was equal to 0.5 

h, 1.5 h, and 4.5 h at the basic state, the 
first stimulated state, and the fourth 
stimulated state, respectively.  

In the numerical solution to Schrödinger 
equation for harmonic oscillator by 

Numerov method, first classical 
unallowable regions should be determined, 
then dimensionless reduced variables 
including ܧ௥ ൌ ா

஺
 and ݔ௥ ൌ ௫

஻
 were used. 

The parameters A and B were 
multiplication of power-having constants 
h , µ and k, and were calculated from the 

following relationship h.k.mA 2
1

2
1

−
=  , 

2
1

4
1

4
1

.k.mB h
−−

= . 
Using the above equations, we had 

߰௥ ൌ ట

஻
భ
మ

 , ௥ܧ ൌ ா
௛௏

 , ݔ
௥ୀ௔

భ
మ௫

  (relationships 

(28) and (29), and the differential equation 
of ߰௥

ே was as following: 
rrrr

2
rr G)E2x( ψψψ ≡−=′′                    (53)  

  

By specifying classical unallowable 
regions, we numerically solved the 
equation so that the minimum possible 
value for ݔ௥ was equal to -5 and the 
maximum possible value for ݔ௥ was equal 
to 5. These values resulted in different 
values for ܧ௥ at several states. At the basic 
state the value of ܧ௥ was 0.499995, at  
the first stimulated state we had  
௥ܧ ൌ 1.499995, and at the fourth 
stimulated state, the value of ܧ௥ was equal 
to 9.499995.  

Comparing these values with those 
obtained from the analytical method 
indicates that the values calculated from 
analytical and numerical solutions using 
Numerov method for Schrödinger equation 
for simple harmonic oscillator were very 
close to each other.  

So, we compare the analytical solution 
with numerical one to Schrödinger 
equation with Morse potential energy: 

 
2)rr(a

ee ]e1[D)r(U)r(U e−−−+=         (54)  
 

where: 
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2
1

e
e )

D2
(2a µπν= , 1e cm38297

hc
D −= ,

12.4403 −= cm
c

eν ,
o

e A71.0r =  
 

We used dimensionless reduced 
variables including ܧ௥ ൌ ா

஺
  and ݔ௥ ൌ ௫

஻
 in 

Numerov method. A and B were 
multiplications of power-having constants 
h , µ and k. In this case, we have 
ܣ ൌ h

ଶ ୟమ

µ
 and ܤ ൌ ܽିଵ.  

Putting 
a
xx r= , r

2
2 EaE

µ
h= ،

)a(

DD 2
2

e
r,e

µ
h

=  and 2
1

rr B)x(S)x(S
−

= ،

r
2
1

SaBS ′′=′′
−

. 
 

The differential equation of S(x) was 
obtained.  

)(
)(]2)1(2[)( 2

,

rrr

rrr
x

rerr

xSG
xSEeDxS r

≡

−−=′′ −

 (55) 

 
We choosed the distance between 

௥,଴ݔ ൌ െ1.44 and ݔܽ݉,ݎݔ ൌ 1.5 as classical 
allowable region. Then we found several 
values for ܧ௥ at lower levels using 
Spreedsheet computer software. 

For instance, values of ܧ௥ was equal to 
8.5154, 24.86628, 40.36258, and 80.54747 
at the basic state, the first stimulated state, 
the second stimulated state, and the fifth 
stimulated state, respectively.  

Applying ܧ௥ ൌ ܧ ⁄ܣ , lower levels were 
equal to 2169.9 ܿ݉ିଵ= ா

௛௖
 , 63.2001ܿ݉ିଵ, 

10216.9ܿ݉ିଵ and 20388.8 ܿ݉ିଵ. So, we 
solved Schrödinger equation for Morse 
function analytically, eigenvalues for 
lower levels were equal to: 

 
20389.02ܿ݉ିଵ ,              10216.9ܿ݉ିଵ, 

6320.03ܿ݉ିଵ, 2169.9ܿ݉ିଵ. The 
consistency between the values obtained 
from analytical solution for Morse function 
and those obtained from Numerov method 
in numerical solution was very good.  
 

 

 
Fig. 4-a. Curve of changes in wave function “ ” versus xr for Er=0. 
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Fig. 4-b. Curve of changes in wave function “ ” at base state versus xr. 

 
 
 

 
Fig. 4-c. Curve of changes in wave function “ ” at fourth stimulated state versus xr. 
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Fig .5-a. Curve of changes in wave function “ ” at base state versus xr. 

 
 

 
Fig. 5-b. Curve of changes in wave function “ ” at firth stimulated state versus xr. 
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Fig. 5-c. Curve of changes in wave function “ ” at fourth stimulated state versus xr 

 
 
 

 
Fig. 6-a. Curve of changes in wave function “ ” at base state versus xr. 
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Fig. 6-b. Curve of changes in wave function “ ” at firth stimulated state versus xr. 

 
 
 

 
Fig. 6-c. Curve of changes in wave function “ ” at second stimulated state versus xr. 
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Fig. 6-d. Curve of changes in wave function “ ” at fifth stimulated state versus xr. 

 
 
 

 
Fig. 7-a. Curve of changes in radial function of the orbital 1s versus xr. 
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Fig. 7-b. Curve of changes in radial function of the orbital 2s versus xr. 

 
 
 

 
Fig. 7-c. Curve of changes in radial function of the orbital 3s versus xr. 
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Fig. 8. Curve of changes in wave function yr versus θ. 

 
 
 

 
Fig. 9-a. Curve of changes in wave function “ ” at third stimulated state versus xr. 
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Fig. 9-b. Curve of changes in wave function “ ” at fourth stimulated state versus xr. 

 
 
 

 
Fig. 10-a. Curve of changes in wave function “ ” at base state versus xr. 
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Fig. 10-b. Curve of changes in wave function “ ” at first stimulated state versus xr. 

 
 
 

Fig.10-c. Curve of changes in wave function “  at second stimulated state versus xr. 
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Fig. 11. Curve of changes in wave function “ ” at base state versus xr. 

 
CONCLUSION
Comparing analytical and numerical 
solutions to Schrödinger equation for 
simple harmonic oscillator and Morse 
functions, it was concluded that using 
Numerov method was an appropriate and 
acceptable approach to numerically solving 
Schrödinger equation. Considering the 
consistency between the results obtained 
from analytical and numerical solutions for 
aforementioned potential functions in 
Schrödinger equation, it was possible to 
use Numerov method so as to numerically 
solved Schrödinger equation with several 
potential functions such as disharmonic 
oscillator, radial equation related to 
movement of particle within central force 
field, equation related to angular 
momentum, etc. 
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