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ABSTRACT

In this paper, the numerical solution methods of one- particale, one — dimensional time- independent
Schrodinger equation are presented that allows one to obtain accurate bound state eigen values and
eigen functions for an arbitrary potential energy function V(x). These methods included the FEM
(Finite Element Method), Cooly, Numerov and others. Here we considered the Numerov method in
more details. For this purpose, we first reformulated the Shrodinger equation using dimensionless
variables, the estimating the initial and final values of the reduced variable xr and the value of
intervals sr, and finally making use of Q-Basic or Spread Sheet computer programs to numerically
solved the equation. For each case, we drew the eigen functions versus the related reduced variable
for the corresponding energies. The harmonic oscillator, the Morse potential, and the H-atom radial
Schrodinger equation, ... were the examples considered for the method. The paper ended with a
comparison of the result obtained by the numerical solutions with those obtained via the analytical
solutions. The agreement between the results obtained by analytical solution method and numerical
solution for some Potential functions harmonic oscillator Morse was represents the top Numerov
method for numerical solution Schrodinger equation with different potentials energy.

Keywords: Independent-of-time Schrdédinger equation; Numerical solution; Analytical solution;
Numero method; Spreadsheet

INTRODUCTION
Assuming nucleuses and electrons as point interactions, molecular Hamiltonian was as
masses and regardless of relativity follows:
2 12 2
Aoy v yvie Yyt yy ey e )
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where o And Prefer to nucleuses, and i potential energy, in which raf3 was the
and ] were indications of electrons, and the distance between the nucleuses o and 3
first term in the relationship (1) was kinetic with ZB , Zaas their atomic numbers. The
energy operator of nucleuses. The second fourth term was gravitational potential
term was kinetic energy operator of energy between electrons and nucleuses, in
electrons. The third term refer to repulsive which rio. was the distance between the
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electron “1” and the nucleus a. Finally, the
last term refer to repulsive potentials
between electrons, where rij was the
distance between the electrons “I”” and “j”.
Zero level of potential energy for the
equation 1 was according to a
configuration in which all electric charges
(electrons and nucleuses) are located in an
infinite distance from each other.

For instance, consider the molecule H2.
Assume o and 3 as two protons, 1 and 2 as
two electrons, and mp as mass of the
proton. Molecular Hamiltonian of H, was
as follows:

—hK? v

H = 2 % A
B 1
2m, 2m, 2m,
h2 ) e/2 er2 er2
Vi e @
me raﬂ rla rlﬂ
erz er2 e!2
e rzﬁ P
Wave and energy functions of a

molecule are found by solving Schrodinger
equation, where (oand Qi are electronic
and atomic coordinates, respectively.

3)

Molecular Hamiltonian (equ.1) was so
complicated that one didnot solve it
analytically. Fortunately there were a
simple estimation with a high degree of
accuracy, which was based on the fact that
nucleuses were much heavier than
electrons: ma >>me. Therefore, electrons
moved much faster than nucleuses, and it
was possible to consider the nucleuses
immobile during electronic moves.

Classically, change in  nucleus
configuration was ignored during an
electronic move cycle. Consequently, we
omited nucleus kinetic energy terms from
the equation (1) by considering nucleus
immobile in order to obtain the

Hy(g,.9,)=Ew(q,.4,)
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Schrodinger  equation  for  electronic
movement:
(H el +VNN )wel = U l//el (4)

where Pure electronic Hamiltonian He
was:

2
A gp TS

12 12
2EYE ()
e TN
Electronic Hamiltonian included nucleus
repulsion that was equal to Hel + VNN.
The nucleus repulsion term “VNN” was
equal to:

V=22

a pra 7

The estimation for separating nucleus
and electronic movements was called
Bowrn-Openhaimer estimation. Based on
this estimation, molecular Schrédinger
equation was decomposed into two
equations: an equation which describes
electronics movement, and another
equation that describes nucleus movement.
It was possible to solve the one-
dimensional Schrodinger equation by using
different potential energy functions with
several methods. Also, it was easily
possible to solve the Shrodinger equation
for simpler potential energies such as
particle in a box, and harmonic oscillator,
using analytical method. But analytical
method was not able to solve more
complicated potential functions. So, there
had been some efforts to solve the
Schrodinger equation using other methods.
In the recent years, numerical solutions
have been used in order to solve the
Schrédinger  equation in  Quantum
Mechanics. In general, methods such as
Euler, Rung Kutta, Heun and Colli-
Numero can be used for solving an
equation in a numerical manner. In the
present study, Numero method had been
thoroughly described. Using Numero
method, it was possible to solve the

(6)
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Schrédinger equation numerically by using
different potential functions. It was worth
noting that the Schrddinger equation can
be solved by Numero method using Taylor
series as follows:

82 2
2Wn —¥na + 5Gnl//n z + Gn—ll//n—l E
l//n+1 ~ sz (7)
1+ Gn+1 1A
12

where:
G=mh?[2V(X)-2E], s=x-X, (8)

In order to numerically solve the
Schrédinger equation using the above

equations, first, we should write the
equation in terms of the following
dimensionless variables
74 X E
= , X, =—, E, =— 9
Ve=—"1 B A ©)
B 2

Then, we guess a certain value for
Eguess. For this purpose, we should start
with a point that was completely located
within the left side classic forbidden
region, plot changes in wave function yr
versus Xr, using computer softwares such
as Q-Basic and Spread Sheet, and find
eigenvalue of the considered potential
function in several electronic conditions,
and compare it with the values obtained
from analytical solution of Schrédinger
equation. In the present research, the
authors had tried to present how to use the
Numerov method in numerical solution
using different potential functions after
introducing  various  methods  for
numerically solving the Schrédinger
equation, and to compare the results
obtained from numerical solutions to those
of analytical solutions.

CALCULATION METHOD

There were a lot of numerical methods
such as FEuler, Rung Kutta, Heun’s
Method, Finite Element Method, Numerov
method, and Colli Method to solve an

233

equation. Among them, Colli and
Numerov methods were discussed in
detail.

Numerov Method

For so many of Potential Energy functions
V(X), it was not possible to solve the one-
dimensional and one-particle Schrédinger
equation exactly. In this section, a
numerical method was presented in order
to solve the one-dimensional and one-
particle  Schrédinger equation in a
computer-based manner. Using this
method, it was possible to find eigenvalues
and special functions for an arbitrary
potential function V(x). The method,
named Numerov, was developed by a
Russian scientist in the 1920s.

Consider Taylor expansion

function f(x) around the point x=a.

of the

f(x)=f(a)+ f’(a)(x—a)+% f"@)x—a) +...
(10)

Considering the point x=a as xn (i.e. Xxn =
a) and the x-a distance as S (i.e. S=x-a = x-
xn so that X = xn + s), a new equation was
obtained. Replacing s with —s in the last
equation and adding the two equations
together, we had:

f(x,+s)+ f(x —s)=2f(x )+ f"(x,)s’
1 .
_f(lv) X S4
T (Xy)
(11)

where terms including s® and higher
powers of s were overlooked. In order to
numerically solve the  Schrédinger
equation, we divided the x coordinate into
some small intervals, each equal to s in
length (fig. 1). Thus, the points xn — s, xn,
and xn + s were the end points of adjacent

intervals. Considering the following

changes:

fn—l = f(xn _S)a fn = f(xn)’ fn+1 = f(xn +S)
(12)

The equation (12) was transformed into:
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f o~—f +2f +f’s° +é f™s* (13)
Replacing f with the wave function y in

the equation (13), we had:
y oAy +2p + l//:Sz +1—:|'21//(ni")s4 (14)

Indexes n-1, n, and nt+1 did not show
several states, but indicated values of a
certain wave function y and its derivatives
in the points located on the coordinate x
having the distance s from each other. The
n index means functions were evaluated at
the point xn [equation (12)].

w"=mh?[2V(x)-2E ]y

y"=Gy (15)

G =mA~[2V(X)—2E] (16)

Value of y™s* was obtained by

replacing f with v "' in the equation (13),

multiplying the obtained equation by s2,
and finally ignoring the term s®.

(iV)a4 " 2 " 2 "a2
Va S ~_l//nJrls +l//n—ls _ZWns

(17)

Putting the equation (15) in (17), we had:
Wnﬂ ~ _l/ln—l + 2’l//n + GanSZ +

1 2 2 2 (18)
E[Gn-v-ll//n-v-ls +anll//n—ls _2Gnl//ns]

Solving this equation for y , the final

result is:
s’ s’
2y —w +5Gy —+G v —
- n n-1 n n 6 n-1 n-1 12
Wnﬂ ~ SZ
1-G >
n+l 12
(19)

Using the equation (19) and having v
and v (yvalues at the two points xn and
xn-1) y  (the value of yat the point xn +

s) can be calculated.

Vv
\
: I
classically !
s reena o S P >
[ owed -
h \ Egucss
______ s laisicgllyﬁ : : classically
forbidden . " forbidden
l L 1 | L 1 | | I L ! ——
Xo X X2 = — X max
| s ]
| 1
Fig. 1. V versus X for a one-particle and a one-dimensional system.
In order to solve the Schrodinger point that was located exactly within the

equation using the equation (13), first, we
should guess a value for the energy
eigenvalue (Eguess). We started with a
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left side classic forbidden region (in the
fig. 1). At this point, the value of y was
too small, and we estimated the y to be
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zero at this point. zero, we started with X0 again, and begin

We also choosed the point Xmax within the process guessing a new value for
the left side classic forbidden region, and Eguess. The process continue as long as
make it necessary to meet the equation y we found a value for Eguess that make
(xmax)=0. We choosed a small value for Y(Xmax) get very close to zero. Then,
the distance s between the consecutive Eguess was necessarily equal to an
points, and choosed a small number like eigenvalue. Fundamental approach for
0.0001 for y at the point x0+s: y1 =y(x1) determining eigenvalues was to count
=y( X0 s ) =0.0001. After determining the number of nodes at y resulted from
values of yl and yo, values of G are Eguess. Remember that in a one-
calculated using Eguess. Then, using the dimensional problem, number of internal

nodes for the first motivated state was
equal to 1,... Assume that E1, E2, E3, ...
refer to basic state energy, firs motivated

equation (19), value of y, =y(X2) =y(X1 S ),
y3, and 4 were obtained by considering
n=1, n=2, and n=3, respectively. This

procedure continued until we had reached state, second motivated state, ... If Wguess
Xonax. did not included any nodes between
If Eguess was not equal to or near to an X0 and xmax, Eguess was equal to or less

eigenvalue, y was not integrable squarely, than El; If wguess included an internal
and |y( Xmax )| would been very large. If it node, Wguess was between El and E2 (fig.

was proved that [y( Xmax ) | was not close to 2).
number of 0 | 1 | 2 ] 3 1 4

interior nodes :1' :: =: ::
| | I |
1 | | >
I ] | : Egueu
I | | [

E, E, E; E,

Fig. 2. Number of nodes in Numerov method in the form of a function of Energy Eguess.
One-dimensional Schrddinger equation reduced x parameter “Xr”. These
in terms of dimensionless variables parameters were defined as follows:
Numerov method made it necessary to E_ E_ X 20
guess some values for E. How much were T _Z’XV B (20)

magnitude order of these guesses: 107°J ,
10 J , In order to answer this question,
we firstly wrote the Schrodinger equation
in terms of dimensionless variables.

where A was a constant that was a
combination of k, m, and h, hading energy
dimensions, and B was a combination of
these constants with length dimension.

Simple Harmonic Oscillator Energy had dimensions of mass (length)®
Harmonic oscillator had the term (time)~ as written in the following:

V:%kx >, and Schrddinger equation had [E]=MLT™ (21)
three constants including k, m, and h for where Bracket was an indication of the
harmonic oscillator. We named dimensions M, L, and T as dimensions of
dimensionless reduced energy “Er, and mass, length, and time, respectively.
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The equation indicated that k had the
dimensions energy x length® From the
equation (21), we obtain [k]=MT . The
constant h had the dimension time X
energy. So,

[m]=M ,[k]=MT? , [A]=MLT" (22)

Dimensions of A and Bin the equation
(20) were energy and length, respectively:

[A]=ML’T? , [B]=L (23)

Assumed that A= m*k®h°. We specify the
powers a,b , and c so that dimensions of A
was equal to ML*T ™. Now,

[A]=[m?k"A° )= M2 (MT 2> (MLET )° (24)
=M a+b+c L2c-|- —2b—

So, we had:
a+b+c=1,2c=2 , -2b-c=-2

Solving these equations, we had:
a:_l_kxz, b:l,CZl
2 2

So,

1 1

A=m 2k?h (25)
Assumed that B= m%°h! Then
equations (22) and (23) were obtained:
[B]=[mk°A"]=M(MT 2)*(MLT )" =
M d+e+f L2fT72eff — L
d+e+f=0,2f=1, -2e—f=0

=t : e=—1L : d=—1
2 4 4
1ot
B=m *k “h2 (26)
Considering equations (20), (25), and
(26), we had:
E X
E=—r i X =77 (27)
m 2k2#h m “k 4h2

1 1
Using k2 =272vm? to omit the constant
k from equation (27) and remembering the

m .. .
a= 272\/; definition, we obtained other

terms for reduced energy and reduced
parameter:

1
E = E , =a?X (28)
hv
Since_|w(X)|* was a probability parameter
and  probability = parameters  were
dimensionless, normal yy should had the
dimensions length™?.  Therefore, we
defined reduced wave function yr.
Considering the equation (23), dimension
of B was length, so dimension of B> was
length™. So,
v, =~ (29)
B 2
Considering the equations (20) and (29),
and the equation f_ooool W |2 dx =1 .the

function yr was correctly applied to the

. co
equation [___

t//|dx=1. So, we

rewrote Schrodinger equation in terms of

the reduced variables x;, yr, and E,. So we
had

a2y d L dy
y_d g, g2 9% _g
o dx ‘” dx dx

dy,
! (dx )dx dx,

-B 2 r Bzd"jf (30)
dx dx dx dx

24 dy, o
dx dx. dx

r

dx 1 .
Because - = B™*.  Putting the
equations (20) and (29) in Schrodinger
equation for harmonic oscillator, we

obtained:

S92 v 1 1

——B — - kX B’B 2 AE B 2
2m dX 2 WI’ r l/ll‘
(31)

r
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Dividing the sides by B and replacing

the equations (25) and (26) for A and B,
we had:

2
L 2k2h‘d‘”f+ kx? mzm//r
2m er 2 (32)
11
— m 2K2hE. .,
d’y 2
C_(x2 ~2E, W, (33)
:Grl//r > Gr = Xr2 _2Er (34)

So, reducing Schrodinger equation for
harmonic oscillator in form of the equation
(33), which included dimensionless
quantities only, we expected the minimum
of energy -eigenvalue to be of the
magnitude order of 1.

Now, we could used the Numerov method
for the equation (33). Consequently,

Sr=S/B.

Mourse Function
This potential function was in the form of
V = Dg(y—e-axy, and the corresponding
Schrodinger equation has the constants a,
m, and h. In this case:
A=m'n*a*, B=a"' (35)

and reduced Schrédinger equation would
been:

:Grlr//r ’ Gr :De,r(l_eixr)z_zEr (36)
Choosing Xr.o, Xr,max, and S¢
In order to solve the independent-of-time
Schrodinger equation by different potential
functions, it was necessary to determine
initial and final values of X, and the
distance s, between adjacent points. So, we
determined these points for harmonic
oscillator. Assumed that the goal was to
find all eigenvalues and special functions
of harmonic oscillator with E, <5.

Because of this, we started solving from
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the right side of unallowable classic
region. First, we determined unallowable
classic regions for E, = 5. Border between
allowable and unallowable regions were
positions in which E, = Ey. Using the
equation (27), reduced potential energy V;
was obtained as follows:

1 1 1

1 1>, = -
k¥ —k2x’m2k 27
oL T i !
m2k*  m2k*h m 2k
(37)

So the equation E, = Ey was transformed
into 5= %X 2 and the allowable classic

1
region for E; = 5 would been X, —(10)z =
—3.16 to +3.16. For Er < 5, the allowable
classic region would been smaller. There
for, we would like to find the answered at a
point in which wave function y was too
small, and at another point which was
completely located at the left side of the
unallowable classic region.

Left wunallowable classic region for
Er = 5 ends at x, = -3.16. an acceptable
choice was to start calculations from x, = -
5. Since V was symmetric, we should
finished the answer at x, = 5. For more
accuracy, it was necessary to choose, at
least, 100 points. So, we choosed s; = 0.1
in order to gain 100 points.

Computer Softwares for solving one-
dimensional Schrodinger equation by
Numerov method

There were several computer softwares for
solving  one-dimensional  Schrdédinger
equation by Numero method. Among them
were Q-Basic, Maples, Matlab,
Mathematica, Derive, MathCad, Theorist,
and spreadsheet. In this research, the
Spreadsheet software had been used.
Application procedure of the software
Spreadsheet for harmonic oscillator was
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explained in chapter 4 of the book
“Luain’s Quantum Chemistry”.

Colli method

In Numerov method, there was no
appropriate method for correcting errors in
eigenvalues. On the other hand, sometimes
when value of E was exactly equal to a
certain eigenvalue, numeric value of y
enters the non-classical region. Colli
method had obviated the two noted
problem. Introduced by Colli, the method
was integration of Numerov method
(N.M.I), along with a formula correcting
eigenvalues, which had been developed
based on second-order repetition change
presented by Lowdin.

Form of this equation was as follows:

d2

e+ [E-U(N)Iw(r)=0
dr
where y was special radial function
multiplied by r, and U(r) was effective
potential energy.
[J(J+1)—A’]

r2

(37)

B (N (38)

U(r)=

J and A were rotational quantum number
and angular momentum, respectively, and

Zazb/r was repulsive colonic energy
between nucleuses, and Eelec (r) was
electronic energy obtained for each r
distance between nucleuses.

For using the equation (37), it was
necessary to make energy and length
dimensionless. When we measured length
at Boor radius, ap = 0.529172 A and unit of

hN,
8m2Cal pua
was Avogadro numbr, and pu4 was reduced

mass whose numerical value was equal to
60.2198

ua

RESULTS AND DISCUSSION

In this study, first one-dimensional
Schrodinger equation for simple harmonic
oscillator and Morse functions had been

energy was equal to , where Ny
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solved by analytical method, and Numerov
numerical method, respectively, and then
the results were compared to each other. At
the next step, numerical solution of other
functions were also investigated.

Analytical Solutions to one-dimensional
harmonic oscillator function

The independent-of-time  Schrédinger
equation for one-dimensional harmonic
oscillator was as follows:

ndy 1, .,
LG Y =
2m dx®> 2 A

(39)

where k was force constant and was related
to vibrational frequencies according to

1
V= % (%)5. Solution of the equation (39)
had been described in detail in so many of
Quantum Chemistry books, and we
discussed only results obtained from

solutions to the equation. Those solutions
to the equation (39) which were squarely

integrable exist only for E values
according to the following:

1
E:(v+§)hv v=0123,... (40)

It could been shown that well-behavior
solutions for the equation (39) was in form

2
of multiplying exp (—a x?) by a
polynomial of x from the order v, with

a = 2mv=. Figure. 3. show explicit

forms of some wave function lower than
Yo, W and y3_ Increase in quantum number
causes increased in number of nodes.
Harmonic  oscillator wave functions
consistent with Xx—*ow reduced to zero
exponentially. However, it should be noted
that even for very large value of x that
wave function and probability density were
not equal to zero; there was a high
probability of finding particle at high
values of x. For a classic harmonic
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oscillator with the energy(v +%) hv, the

equation E = %kA2 results in
1
L _1 hvlz
(v+3)hv =2kAand |2 + 1)

U2

A classic oscillator is restricted to move
within the range —A = x < +A.

(b)v=1

\/

(c)v=2

(d)v=3

Fig. 3. Wave functions for four states lower than harmonic oscillator.

Analytical Solutions to Morse function

For Morse potential energy at J = 0, we
had:

2 2
AP oy e

—2e* " IP =EP
2u dr? I

(41)
By replacing y with e ~¢(""e) | we had:
d d d? d 1 d?
ar dy dr dy y dy?
(42)
and the equation (41) is transformed
int0'
d’p 1 dp D-E 2D

- +
Zu(dy ydy az( y?

)

+D)p=0

(43)
By writing the solutions in form of

z b
P(y) = e 2 zz F(z), where and
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b= 2uD —=B
ah WD ~ =By
b= _h \2u(D — E), we had:
a
oz b
y dy pe [ 2(22 Z)]
d p 22 sz b . dF
22—+ (=—1)—
=/fe {dzz+(z )dzJr
b2 b b
_ b b L
[42 27 2z ] j

(44)

and the equation (39) was transformed
into:

dF (u ) [,B (b;l)]F 0
z
(45)
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Using divergent differential equations
related Diverging, equation (45) was
transformed into:

RN CAREN I Eon

Z' LL=0 we)
when the equation Al 1 =n was true,
equation (46) had well-behavior solutions,
where n was a true and positive number.
Equations (45) and (46) would been the
same if:

So solutions to the equation (45) did not
exist if:

b+l=21+1, z:ﬂz” and
ﬁ——(b+1)=n or
2 2
2D 12 5iD-E)+1)=n
ah 2 ah H
where:
E 1 1,
—=(n+=-)w, - ("N+=) o.X 47
hC ( 2) e ( 2) e’'e ( )
2ah | D 1 a’h®
Wy =—_ |7~— wexe:_( )
hc \2u hc 2u
(48)

Equation (47) was exact for equation
(45) if 0 < z < o0 and if F(z) reaches z=0
and z = oo, Actually r >0, and y and z
would never been equal to zero. Equation
(47) was a good estimation for molecules.

Numerical Solution of one-dimensional
Schrodinger equation using Numerov
method and drawing wave function
curve Vversus X
Numerical Calculations for
harmonic oscillator

In order to numerically solved Schrédinger
equation for harmonic oscillator using
Numerov method and to drawing wave
function curve versus x;, we should make
the considered equation dimensionless, and

simple
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then solved the equation by using
Numerov method. discussed procedure of
making  the  considered equations
dimensionless in detail.

For harmonic oscillator, using the values
Xr0=-5¢ Xrmax=5, and S=0.1 and the
relationship  (28)G, = x2 — 2E,, one
could calculate the values of y, and X, At
several E; s in an excel sheet, and then
drew curves of wave function 1, versus
Xy
For example, fig. 4-a, 4-b, and 4-c
showed curves of wave function versus x,
for harmonic oscillator at E= 0, basic
state, which did not have any node, and
fourth stimulated state of E~= 4.499996,
which had 4 nodes, respectively.

Numerical Calculations for fourth-
ordered disharmonic oscillator

In order to drew curve of wave function 1,
versus x, for fourth-ordered disharmonic
oscillator which had the potential energy of
V=ax* — we had  Gropt_yg,»
Xro = —2.5, and x; g, = —2.5. We also had
the terms y, related to fourth-ordered

disharmonic  oscillator the
relationship (19).

So, importing the above information into
an excel sheet, we could investigate, for
instance, the base state E.= 0.668 with
S;= 0.01, which did not have any nodes
(Fig. 5-a), the first stimulated state E,= 2.3
with S,= 0.05, which had two nodes (Fig.
5-b), and the fourth stimulated state
E= 10.244 with S= 0. 1, which had four
nodes (Fig. 5-c), and drew curves of wave
function v, versus x, for the states
remarked.

by using

Numerical Calculations for Morse
Oscillator

Morse oscillator had V = D, (1 — e™%%)? .
Consequently, we had G, =2D,, (1—
e™)2 — 2E, in which D, = —s—. Also

)
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we had the exact term Y of Morse
oscillator by using the relationship (19). It
was possible to drew curve of wave
function ¥ versus x, in an excel sheet by
importing the distance between x, , = —1.44
and X, =—15. Here we had
investigated curve of wave function ¢ for
basic state versus x, E=8.5154 and
s~0.01, which did not have any nodes
(Fig. 6-a), the first stimulated state with
E=24.80628 and s,=0.01, which had one
node (Fig. 6-b), the second stimulated state
with E=40.36258 and s=0.01, which had
two nodes (Fig. 6-¢), and the fifth
stimulated state with E,~=80.54747 and
s—0.01, which had five nodes (fig. 6-d).

Numerical Solution to Radial Equation
related to movement of particle in
central force field

For instance, we consider radial equation
of Hydrogen atom with potential function

of V= ——. We had G, —l(Hl) TE—

2E, (relatlonshlp (37) and also the exact
term of i for the system.

Importing the aforementioned data into
an Excel sheet, we drew the considered
curves; for instance, distance between
Tro = 0 0 T gy = 10 with E~=-0.4998 and

= 0.025, which did not have any nodes
and was related to the orbital 1s (Fig. 7-a),
distance between 7, =0 t0 7 gy = 25
with E=-0.1246 and s,= 0.01, which had
one node and was related to the orbital 2S
(Fig.7-b), and distance between r,, = 0to
Tr, max—40 with E;=-0.05526 and s= 0.01,
which had two nodes and was related to
the orbital 3s (Fig. 7-c).

Since in the relationship for G, value of 1,
is put in denominator value, then value of
G; was meaningless. Consequently, value
of ., was considered as a very small value
close to zero like -0.0001.
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Numerical Solution to the equation
related to angular momentum

First, we drew the wave function of y;
versus 6 for the equation with angular
momentum at the distance between
7ro0 = 0.1 and 75 0, = 3.03 with s= 0.01.
It should been noted that we had

G, = [—l(l+1)—l—lcotg29+
" Iml = 2, and 1=3 (Fig. 8).

sinZ29)’

Numerical Solution to Schrodinger

equation with potential energy function
—Va

of V(X) = m

This equation had three constants

including m, h, and a. So, the constants A
and B would been as follows:

hZ
ua
Also = m,

Schrédinger equation was equal to:

v, =Gy, G, = {27( % j—2Er]

1+e*
(50)

A= B=a

(49)

2 >

and finally reduced

B’
h

7/:

Importing the values x, ;4 = 2, %, = =2
as well as the relationship (50) and the
term of y related to this equation and using
the relationship (19). For instance, Fig. 9-a.
showed the curve of ¥, versus X, at the
third stimulated state with E~1.2 and
5=0.05, which had three nodes. Also Fig.
9-b. showed the curve of ¥, versus X, at
the fourth stimulated state with E,=3.8 and
$=0.1, which had four nodes.

Numerical Solution to Schrodinger
equation with potential energy function
x> X
of V(X)=—-—
() 2 12
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We had $=0.1, X ax =4, X0 = —3.5
3
and G, = [xz - %— ZEr]. Importing the

above data into an Excel sheet, we drew
the considered curves; for instance, the
basic state with E=0.489625did not have
any nodes (Fig. 10-a), the first stimulated
state with E,=1.425 had one node (Fig. 10-
b), and the second stimulated state with
E(=2.3125 had two nodes (Fig. 10-c).

Numerical Solution to Schrodinger
equation with 3potential energy function
of V(x)=x°-0.1x

We had $=0.1, X max = 3, X0 = —3 and
G, = (2x? — 0.2x3 — 2E,). Importing the
above data into an Excel sheet, we drew,
for instance, curve of the basic state with
E(=0.7035, which did not have any nodes
(Fig. 11).

Comparison between numerical and
analytical solutions of Schrédinger
equation with several potential energies
The independent-of-time  Schrdédinger
equation for one-dimensional harmonic
oscillator was as follows:

ndiw 1, ,
-—— +=—kx"=E 51

2m dx* 2 v G1)
where k was force constant, and was in
relation to vibrational frequency according

1
to the relationship = % (%)5. Analytically

solving this equation, allowable energies of
the harmonic oscillator was as follows:

E=hv(v+%),v: 0.123,.. (52)

For instance, value of E was equal to 0.5
h, 1.5 h, and 4.5 h at the basic state, the
first stimulated state, and the fourth
stimulated state, respectively.

In the numerical solution to Schrodinger
equation for harmonic oscillator by
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Numerov method, first classical
unallowable regions should be determined,
then dimensionless reduced variables

: : E
including E, = " and x, =§ were used.
The parameters A and B  were
multiplication of power-having constants

#i,p and k, and were calculated from the
1 1

following relationship A=m 2k2a
1 1 1

B=m*k *h2.

Using the above equations, we had

¥ g £

r = B% b = hv ,xrza%x
(28) and (29), and the differential equation
of Y was as following:

(relationships

v =(x —2E )y, =Gy, (53)
By specifying classical unallowable
regions, we numerically solved the

equation so that the minimum possible
value for x, was equal to -5 and the
maximum possible value for x,. was equal
to 5. These values resulted in different
values for E, at several states. At the basic
state the value of E, was 0.499995, at
the first stimulated state we had
E, = 1499995, and at the fourth
stimulated state, the value of E, was equal
t0 9.499995.

Comparing these values with those
obtained from the analytical method
indicates that the values calculated from
analytical and numerical solutions using
Numerov method for Schrédinger equation
for simple harmonic oscillator were very
close to each other.

So, we compare the analytical solution
with numerical one to Schrodinger
equation with Morse potential energy:

U(r)=U(r,)+D,[1-e %2

where:

(54)
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D

1
a=2rv,(-2)2, —& =38297cm™,
2D, hc

Ye —4403.2cm™ 1, =0.71A
C

We
. : . E x .
variables including E, = " and x, = 5 in

used dimensionless reduced

Numerov method. A and B were
multiplications of power-having constants
fi,p and k. In this case, we have

2
A= hZ%andB=a‘1.

2
Putting X:ﬁ, E:hza—Es
a Y2
D 1
D., = ;2 and S(x)=S,(x,)B %«
(n* =)
Y7,
1
S"=B 2aS;.

The differential equation of S(x) was
obtained.

Sr”(xr) = [2De,r (1 —e )2 - 2Er]Sr(Xr)
=G,S,(x,)

(55)

V=0 5k

We choosed the distance between
Xro = —1.44 and x, ., = 1.5 as classical
allowable region. Then we found several
values for E, at lower levels using
Spreedsheet computer software.

For instance, values of E, was equal to
8.5154, 24.86628, 40.36258, and 80.54747
at the basic state, the first stimulated state,
the second stimulated state, and the fifth
stimulated state, respectively.

Applying E, = E /A, lower levels were
equal to 2169.9 cm™'==, 63.2001cm™",
10216.9cm™! and 20388.8 cm™*. So, we
solved Schrodinger equation for Morse
function analytically, eigenvalues for
lower levels were equal to:

20389.02cm™1, 10216.9cm™1,
6320.03cm™1, 2169.9cm™L. The
consistency between the values obtained
from analytical solution for Morse function
and those obtained from Numerov method
in numerical solution was very good.

12000000 -

10000000

S000000 H

S000000 H

4000000

2000000

Xy

Fig. 4-a. Curve of changes in wave function “%” versus xr for Er=0.
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= 0.5k~

Xr

Fig. 4-b. Curve of changes in wave function ¥+ at base state versus xr.

=05k

Xy

Fig. 4-c. Curve of changes in wave function ¥ at fourth stimulated state versus xr.
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V=ax?

X
Fig .5-a. Curve of changes in wave function “%'+” at base state versus xr.

V=ax

Xr
Fig. 5-b. Curve of changes in wave function ¥ at firth stimulated state versus xr.
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V=ax!

Xr
Fig. 5-c. Curve of changes in wave function “*'»” at fourth stimulated state versus xr

V =D, (l-e®)?

-2 -15 -1 -0.5 0 05 1 15 2

Xy

Fig. 6-a. Curve of changes in wave function “%'+ at base state versus xr.
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V =D, (I-e=)?

Xz
Fig. 6-b. Curve of changes in wave function ¥ at firth stimulated state versus xr.

V =D, (1-e=)?

Xr
Fig. 6-c. Curve of changes in wave function ¥ at second stimulated state versus xr.
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V=D, (l-e=)?

Xr
Fig. 6-d. Curve of changes in wave function “¥»” at fifth stimulated state versus xr.

ATOM-H

Xr
Fig. 7-a. Curve of changes in radial function of the orbital 1s versus xr.
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ATOM-H

Xz
Fig. 7-b. Curve of changes in radial function of the orbital 2s versus xr.

ATOM-H

Xr
Fig. 7-c. Curve of changes in radial function of the orbital 3s versus xr.
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ANGULAR MOMENTUM

Xp
Fig. 8. Curve of changes in wave function yr versus 0.

_Ifa
I1+e~

Vix)=

Xr
Fig. 9-a. Curve of changes in wave function “¥»” at third stimulated state versus xr.
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vix)=—Le

I1+e*

Xr
Fig. 9-b. Curve of changes in wave function ¥ at fourth stimulated state versus xr.

X

yoX _
2 12

-4 -3 -2 -1 1] 1 2 3 4 5
Xr
Fig. 10-a. Curve of changes in wave function “*+” at base state versus xr.
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3
X

12

poX_
2

Xr
Fig. 10-b. Curve of changes in wave function “*'+” at first stimulated state versus xr.

poX X
2

Xr
Fig.10-c. Curve of changes in wave function “%+ at second stimulated state versus x,.
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V=x-01x%
014 4

v,
-4 -3 -2 -1 0 1 2 3 4
Xr
Fig. 11. Curve of changes in wave function “%> at base state versus xr.
CONCLUSION
Comparing analytical and numerical [2] B. T. Sutcliffe, J. Chem. Soc. Faraday

solutions to Schrodinger equation for
simple harmonic oscillator and Morse
functions, it was concluded that using
Numerov method was an appropriate and
acceptable approach to numerically solving
Schrodinger equation. Considering the
consistency between the results obtained
from analytical and numerical solutions for
aforementioned potential functions in
Schrodinger equation, it was possible to
use Numerov method so as to numerically
solved Schrodinger equation with several
potential functions such as disharmonic
oscillator, radial equation related to
movement of particle within central force
field, equation related to angular
momentum, etc.
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