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ABSTRACT 
In this paper, an adaptive neuro fuzzy sliding mode based genetic algorithm (ANFSGA) control 
system is proposed for a pH neutralization system.  In pH reactors, determination and control of pH is 
a common problem concerning chemical-based industrial processes due to the non-linearity observed 
in the titration curve. An ANFSGA control system is designed to overcome the complexity of precise 
control of pH. In the proposed control system the genetic algorithm is employed to do the crossover 
and mutation operation in adaptive neuro fuzzy inference system (ANFIS) mechanism. In this way, 
on-line learning ability is employed to deal with external disturbance by adjusting the control 
parameters.  The control objective is to drive the system state to the original equilibrium point or to 
track the set point. 
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INTRODUCTION
1The pH process is widely used in various 
areas such as the neutralization of 
industrial wastewater, biochemical and 
electrochemical processes, the paper and 
pulp industry, maintenance of the desired 
pH level at various chemical reactions, 
production of pharmaceuticals and 
biological processes, coagulation and 
precipitation processes and many other 
areas. 

The control of pH is one of the most 
difficult challenges in the process industry 
because it shows a strong nonlinear 
behavior due to the nonlinear 
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characteristics resulted from the feed 
components or total ion concentrations. 
The main dynamics of such a process are 
determined by predictable variations due to 
the effect of the nonlinearities in the 
control loop and are most often handled by 
using an adaptive control approach. 
Various control techniques used in 
controlling the pH processes are reported 
in the literature in the last years. Thus, [1] 
proposed on-line recursive least-squares 
method to control the pH process. [2] 
developed model reference adaptive 
controller base for pH process and a fuzzy  
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and neural network controller to improve 
the system response. [3] presented a 
linearization technique for using a PID 
control system for a mixing tank. Model 
algorithmic control (MAC) strategy has 
been proposed by [4] for a pH 
neutralization process. This control system 
is extended to nonlinear processes using 
Hammerstein model that consists of a 
static nonlinear polynomial function 
followed in series by a linear impulse 
response dynamic element. [5] developed a 
fuzzy control and sliding mode control in 
PH neutralization process. [6] investigated 
a feedback PID-like fuzzy controller 
scheme for pH control to deal with 
instability problems near the equivalence 
point in neutralization processes. [7] 
presented a Takagi–Sugeno fuzzy recurrent 
neural network (T–S FRNN) to model a 
pH neutralization process. [8] proposed a 
pH neutralization process and a 
methylcyclohexane (MCH) distillation 
column from Aspen Dynamic Module to 
demonstrate the effectiveness of a fuzzy 
partial least squares (DFPLS) modeling 
method and control system.  

In control field, variable structure 
control (VSC) with sliding mode, which is 
commonly known as sliding mode control 
(SMC), is a nonlinear control strategy that 
is well known for its robustness 
characteristics. Many methods based on 
sliding mode have been developed to 
control the dynamic systems, in particular, 
[9] developed decoupled adaptive neuro-
fuzzy (DANF) sliding mode control 
system methods for the chaos control 
problem in a system without precise 
system model information. [10] 
investigated a double-inductance double-
capacitance (LLCC) resonant driving 
circuit and a sliding-mode fuzzy-neural-
network control (SMFNNC) system for the 
motion control of an LPCM. [11] 
developed artificial intelligence control 
system for underwater vehicle. [17] 

presented an adaptive and fuzzy neural 
network sliding-mode controllers for 
motor-quick-return servomechanism.   
A total sliding-mode-based genetic 
algorithm control system for a linear 
piezoelectric ceramic motor driven by a 
newly designed hybrid resonant inverter 
discussed by [12]. 

This paper proposed an ANFSGA 
control system to control a pH 
Neutralization Process problem.       

THE REACTION INVARIANT 
MODEL 
In this section a simplified schematic 
diagram of the UCSB bench-scale pH 
neutralization system is shown in Fig. 1. 
This process consists of an aid stream ����,
buffer stream ���� and base stream ����
that are mixed in tank 1. Prior to mixing, 
the acid stream enters tank 2 which 
introduces additional flow dynamics. The 
acid and base flow rates are regulated with 
flow control valves, while the buffer flow 
rate is controlled manually with a 
rotameter. The tank level ��� and effluent 
pH are measured variables. Because the 
pH probe is located downstream from tank 
1, a time delay ��� is introduced in the pH 
measurement.  Dilute acid and base 
streams are employed for safety and 
environmental reasons. In present work, 
the pH is controlled by manipulating the 
base flow rate and the acid and also the 
buffer flow rates are considered to be 
unmeasured disturbances. Using 
conservation equations and equilibrium 
relations, the dynamic model of the pH 
neutralization system is derived and 
demonstrated in Fig. 1. This model also 
includes valve and transmitter dynamics as 
well as hydraulic relationships for the tank 
outlet flows. Modeling assumptions 
include perfect mixing, constant density, 
and complete solubility of the ions 
involved. The model is presented in the 
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following and more details can be found in 
[20]: 
 
	�
�� ↔ 	
�� � 	� (1)                                                                                      

	
�� ↔ 
��� � 	� (2)                                                                                     

	�� ↔ �	 � 	� (3)                                                                                     

The equilibrium constants can be 
presented as following: 
��� � �����������

������� (4)                                                                                       

��� � ����������
������� (5)                                                                                         

�� � �	����	� (6)                                                                                      
 

The chemical equilibrium is modeled by 
defining two reaction invariants for each 
inlet stream ��	!	�1, 4��:

%�& � �	��& ' ��	�& ' �	
���& ' 2�
����� (7) 
%)& � �	�
���& � �	
���& � �
����� (8) 
 

The invariant %� is a charge related 
quantity, while %) represent the 
concentration of the 
��� ion. Unlike pH, 
these invariants are conserved quantities. 
The pH can be determined from %� and 
%) using the following relations: 

 

%)
*+,
�-���

�*+,*+�
�-���

��*+,
�-���

*+,*+�
�-���

� %� � ./
���� ' �	�� � 0 (9)                                                                                  

1	 � '234��	��� (10)                                                                                                         

The dynamic model of the 
neutralization is derived as following in 
which a mass balance on tank 2 yields 

 
5�

67�
68 � �� ' ��9 (11)                                                                                             

 
where the parameters �� and 5� are level 
and cross-sectional area of tank 2, 
respectively. ��9 is the exit flow rate and 
can be presented as following: 
 
��9 � 
:���;.= (12)                                                                           

where 
:� is a constant valve coefficient. 
An overall mass balance on tank 1 yields: 

 
5�

67,
68 � ��9 � �� � �� ' �> (13)  

 
In the above equation 5� is the cross-

sectional area of tank 1. The exit flow rate 
�> is modeled as: 

 
�> � 
:>��� � ?�@ (14) 
 
where 
:> is a constant valve coefficient, A
is a constant valve exponent, and ? is the 
vertical distance between the bottom of 
tank 1 and the outlet for �>. By combining 
mass balances on each of the ionic species 
in the system, the following differential 
equations for the effluent reaction 
invariants �%�> � %)>� can be derived: 

 
5���

6B+C
68 � ��9�%�� ' %�>� � ���%�� '

%�>� � ���%�� ' %�>� (15) 
 
5���

6BDC
68 � ��9�%)� ' %)>� �

���%)� ' %)>� � ���%�� ' %)>� (16) 
 

The pH and level transmitters are 
modeled as first order transfer functions 
with unity gain and time constants EF� 
and E7, respectively. The desired flow 
rates �� and �� serve as set points for 
cascade flow control loops with sampling 
period ∆HI � 1	J which are modeled as 
first-order transfer functions with unity 
gain and time constant E:. The sampling 
period for pH measurement and control is 
∆H � 15	J. Nominal model parameters and 
operating conditions are given in Table 1. 
 
Control system 
In this section an adaptive neuro fuzzy 
sliding mode based genetic algorithm 
(ANFSGA) control system is proposed for 
a pH neutralization system as a set point 
tracking problem. To achieve the control 
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objective, a tracking error e(t)=	LMF ' L ,
can be defined. LMF and L are desired pH 
set point and current pH in tanker 1, 
respectively. To design the proposed 
control system a sliding surface can be 
introduced as  

N�H� � OP PHQ � RS� T U�E�PE8
; (17)                                                                                           

 
where R is a positive constant. Note that, 
since the function N�H� � 0 when  H � 0,
there is no reaching phase as in the sliding-
mode control [15,16].  

To simplifying, the dynamics of tank 2 
are neglected. Therefore, a nonlinear state 
–space model of the process can be 
obtained by defining the state variables, 
disturbance, input and output as: 

 
V ≜ �%�> %)> ���X, P ≜ ��, Y� ≜
��, L ≜ 1	 (18) 
 
where Y� is the actual value of the base 
flow rate which differs from the base flow 
rate calculated by the controller  YI due to 
the valve dynamics. Using these 
definitions, the process model has the 
form: 
VZ � [�V� � 4�V�Y� � 1�V�P (19) 
\�V, L� � 0 (20)                                                                                                                     
where 
[�V� � ] ^,

_,`�
�%�� ' V�� ^,

_,`�
�%)� ' V�� �

_,
��� ' 
:>��� � ?�@�aX

4�V� � ] �
_,`�

�%�� ' V�� �
_,`�

�%)� ' V�� �
_,

aX
(22)                                                                  

1�V� � ] �
_,`�

�%�� ' V�� �
_,`�

�%)� ' V�� �
_,

aX
(23)                                                                    

\�V, L� � V� � 10b�> ' 10b � V�
���c�;d�e*�

���;e*,�d��;d�e*� (24) 

The valve dynamics are modeled by a 
first-order differential equation with unity 
gain and time constant E::
YZ � � ' �

fg
Y� � �

fg
YI (25)

The nonlinear controller design is based 
on a modified in-put-output linearization 
approach which accounts for the implicit 
output equation in (24). Taking the time 

derivative of (24) using (19) and 
rearranging yields: 

 
LZ � '\b��V, L�\`�L��[�V� � 4�V�Y� � 1�V�P� (26)        

where  

\`�L� � ]1 ���c�;d�e*�
���;e*,�d��;d�e*� 0aX

(27)

\b�V, L� � �2A10� h10b�> � 10b �
V�

�;e*,�d��;d�e*��>i�;e*,�dji�;d�e*�j
i���;e*,�d��;d�e*�j� k (28)                     

 
Because \b��V, L�\`�L�4�V� l 0 for all 

V and L of interest, the model has relative 
degree m � 1 and standard input-output 
linearization techniques can be applied to 
(26). 
 
Adaptive Neuro-Fuzzy Sliding Mode 
The architecture diagram of neuro - fuzzy 
inference mechanism is depicted in Fig. 2. 
The adaptive neuro-fuzzy sliding mode 
controller is composed of a neuro-fuzzy 
network with on-line learning algorithm. 
Let nopqr � �N�H�, NZ�H�� and sqrpqr �
Y� be the input and output variables to the 
adaptive neuro-fuzzy sliding mode system, 
respectively. 
 
Description of Adaptive Neuro-Fuzzy 
In the proposed controller, the four layers 
NN is used (Fig. 2). Layers I–IV represents 
the inputs to the network, the membership 
functions, the fuzzy rule base and the 
outputs of the network, respectively. 
 
Layer I: input layer 
Inputs and outputs of nodes in this layer 
are represented as 

 
AUH�� � N�H�, L�� � [���AUH��� � AUH�� � N�H�, (29) 

AUH�� � NZ�H�, L�� � [���AUH��� � AUH�� � NZ�H�, (30)
where L�� and L�� are outputs of the input 
layer. In this layer, the weights are unity 
and fixed. 
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Layer II: membership layer 
In this layer, each node performs a fuzzy 
set and the Gaussian function is adopted as 
a membership function 

AUH�,tuu � ' �`,,vww x,,vww ��

�y,,vww �� , L�,tuu �
[�,tuu zAUH�,tuu { � exp	�AUH�,tuu � (31)                                                  

AUH�,�uu � ' �`�,�ww x�,�ww ��

�y�,�ww �� , L�,�uu �
[�,�uu zAUH�,�uu { � exp	�AUH�,�uu � (32)                                        

where ��,tuu , ��,�uu  and ��,tuu  , ��,�uu  are the 
mean and the standard deviation of the 
Gaussian function, respectively. The 
variables V�,tuu  and V�,�uu  are the outputs of 
layer I. 
 
Layer III: rule layer 
This layer includes the rule base used in 
the fuzzy logic control. Each node in this 
layer multiplies the input signals and 
outputs the result of product 

 
AUHt�uuu � zV�,tuuu c V�,�uuu {,			Lt�uuu �
[t�uuuzAUHt�uuu{ � AUHt�uuu (33)                                                        

here V�,tuuu and V�,�uuu  are the outputs of layer 
II. The values of link weights between the 
membership layer and rule base layer are 
unity. 
 
Layer IV: output layer 
This layer represents the inference and 
defuzzification which are used in the fuzzy 
logic system. For defuzzification, the 
center of area method is used, Therefore, 
the following form can be obtained: 

 
�& � ∑ ∑ %t�u�Lt�uuu,�t �& � ∑ ∑ Lt�uuu,�t
AUH;u�

& � ��
)�

, L;u�
& � [;u�zAUH;u�

&{ � ��
)�

(34) 

where Lt�uuu is the output of the rule layer, �&
and �& are the numerator and the 
denominator of the function used in the 
center of area method according to the 

each degrees and %t�u� is the center of the 
output membership functions used in the 
fuzzy logic system, respectively. The aim 
of the learning algorithm is to adjust the 
weights of %t�u�, ��,tuu , ��,�uu  and ��,tuu ,
��,�uu .finally, L;u� is the output of proposed 
inference system. 

The on-line learning algorithm is a 
gradient descent search algorithm in the 
space of network parameters. The 
Lyapunov function is chosen as �

� N��H�.
The aim is to minimize the derivative of 
Lyapunov function respect to time or 
N�H�NZ�H�.

On-line learning algorithm 
The error expression for the input of Layer 
IV can be expressed as follow: 

�;u�
& � ' ���8��Z�8�

�b�w�
�

�b�w�
�

�@98�w� � ��N�H�, (35)

where �� is the learning rate for %t�u�.
Therefore, the changing of %t�u� is written 
as 

%Zt�u� � ' ���8��Z�8�
�@98�w�

�

�@98�w�
�

���
���

� Bv�w� �
�
)�

�;u�
&Lt�uuu (36) 

 
Since the weights in the rule layer are 

unified, only the approximated error term 
needs to be calculated and propagated by 
the following equation: 

 

�t�uuu
& � ' ���8��Z�8�

�@98�w�
�

�@98�w�
�

�b,,vwww
�b,,vwww

�@98v�www
�

�
�
)�

�;u�
&�%t�u� ' �L;u�

&� (37)

The error received from Layer III is 
computed as 

��,tuu
& � ∑ ��' ���8��Z�8�

�@98v�www
�

� �@98v�www
�

�b,,vww
�b,,vww

�
�@98,,vww

�
� ��

∑ �t�uuu
&� Lt�uuu

& (38) 
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��,�uu
& � ∑ ��' ���8��Z�8�

�@98v�www
�

� �@98v�www
�

�b�,�ww
�b�,�ww

�
�@98�,�ww

�
� �t

∑ �t�uuu
&t Lt�uuu

& (39) 

The update laws of ��,tuu  , ��,�uu  and ��,tuu  , 
��,�uu  also can be obtained by the gradient 
decent search algorithm, it means: 

 

�Z �,tuu
& � ' ���8��Z�8�

�@98,,vww
�

�@98,,vww
�

�x,,vww
�

�

����,tuu
&

��`,,vww x,,vww
��

�y,,vww
��� (40)                                          

�Z �,�uu
& � ' ���8��Z�8�

�@98�,�ww
�

�@98�,�ww
�

�x�,�ww
�

�

����,�uu
&

��`�,�ww x�,�ww
��

�y�,�ww
��� (41)                                          

�Z�,tuu
& � ' ���8��Z�8�

�@98,,vww
�

�@98,,vww
�

�y,,vww
�

�

�>��,tuu
&

��`,,vww x,,vww
���

�y,,vww
��� (42)                                            

�Z�,�uu
& � ' ���8��Z�8�

�@98�,�ww
�

�@98�,�ww
�

�x�,�ww
�

�

�=��,�uu
&

��`�,�ww x�,�ww
���

�y�,�ww
��� (43)                                          

where ��, ��, �>, and �= are the learning-
rate parameters of the mean and the 
standard deviation of the Gaussian 
functions. 
 
Adaptive neuro fuzzy sliding mode genetic 
algorithm (ANFSGA) control system 
In this section a control law based genetic 
algorithm is proposed for a pH 
neutralization system. The proposed 
control system is included the sliding mode 
control concept and the neuro fuzzy 
sliding-mode-based evolutionary 
procedure. In order to achieve the control  
object, the evolutionary spirit of GA is 
embedded. The neuro fuzzy approach is 
used to further ensure the correct 

evolutionary direction and decide the 
appropriate evolutionary step. In this 
section, the control law is made as the 
chromosome in GA with floating point 
coding. This process, which is a real one, 
is to be replaced by the adaptive neuro 
fuzzy sliding mode crossover method. An 
adaptive neuro fuzzy sliding mode 
mutation is employed just after selecting 
the chromosomes. The first step after 
creating a generation is to calculate the 
fitness function of each member in the 
population. If the evolutionary direction is 
correct, the fittest control action can be 
obtained. In order to achieve the correct 
evolutionary direction and to ensure the 
stable system dynamic, the concept of the 
sliding mode control system is embedded 
in the genetic operators to form the 
direction-based operators with the adaptive 
neuro fuzzy sliding mode evolutionary 
procedure.  

Now, a fitness function is defined as an 
exponentially term by the following form 
[12]: 

 
����N� � UV1�'� c �N�H�� � NZ�H���� ∈ �0,1� (44) 
 
where � is a positive constant , N is the 
sliding surface and NZ is the first derivative 
of N which is defined as Eq. (17). The next 
step after evaluation is creating a new 
population from the current generation. 
The selection operation determines which 
chromosome is participated to producing 
offspring for the next generation. Initially 
the population selected randomly, which is 
mean that several control actions are 
randomly selected from operational region 
�Y�x&@, Y�x�`�. After comparing the 
fitness values of all the individuals, the 
best one is regarded to as the elite. If the 
fitness value of the new control action is 
higher than the all previous ones, it will 
become the new elite. 
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Crossover operation is used to reshape 
in GA system, which can produce 
offspring by charging the features of 
parent. In this study, sliding surface is 
combined with crossover operation by the 
following form: 

 
Y��_,@9� � Y��_,��6 � �� c N � �� c NZ, (45) 

where Y��_,@9� is the generated offspring, 
Y��_,��6 is the selected elitist chromosome 
of the last generation, �� and �� are the 
positive tuning parameters of N and NZ,
respectively. Here, the important problem 
is selecting the tuning parameters. The 
small tuning step may be not satisfied the 
stability conditions, therefore an adaptive 
neuro fuzzy sliding mode system is used to 
produce the tuning coefficients. 
In this section the adaptive neuro fuzzy 
sliding mode mechanism of previous 
section is considered to produce  �� and 
��. Let �A1YH � ����N� for both adaptive 
neuro fuzzy sliding mode mechanisms and 
3YH1YH� � �� and 3YH1YH� � ��. For two 
systems different mean and the standard 
deviation of the Gaussian function is used.  
To avoid the problem of local optimization 
an adaptive neuro fuzzy sliding mode 
mechanism is used to mutation operation. 
Traditional mutation methods are not 
useful to produce better offspring in an on-
line learning ability view point. Therefore, 
the stability of system may be destroyed. If 
the control action cannot let the system 
dynamic stay on the sliding surface after 
fuzzy sliding mode crossover, the mutation 
operation will further compel the system 
dynamic to close the sliding surface by 
using the fuzzy sliding mode inference 
mechanism.  

The offspring after mutation operation 
can be expressed as 

 
Y∆��_,@9� � Y��_,@9� � �x, (46) 

where �x is the adjustment of mutation 
operation. Y∆��_,@9� is the offspring after 
mutation operation which is produced by 
the adaptive neuro fuzzy sliding mode 
inference mechanism. In this situation the 
input to adaptive neuro fuzzy sliding mode 
system is sliding surface or �A1YH � N�H�.
If the fitness value is lower than a specified 
value ������, the mutation occurs. On the 
other hand, if the fitness value is higher 
than the specified value, the mutation idles. 
The main process of proposed GA-based 
controller is represented by the following 
pseudo code: 
 
Step 1: Select the size of population [N] 
and the fitness function [FIT(S)]. 
Step 2: Generate the initial population. 
Step 3: Evaluate the fitness value via (44) 
and sort the sequence to choose the elite 
Y��_,��6.
Step 4: Adaptive neuro fuzzy sliding mode 
crossover operation to generate Y��_,@9� 
via (45). 
Step 5: Comparing the fitness value with 
the specified value ������, if it is not 
lower, then go to step 7, else follow the 
chart. 
Step 6: Adaptive neuro fuzzy sliding mode 
mutation operation to generate the 
Y∆��_,@9� via (46). 
Step 7: Output control action. 
Step 8: Program complete? If yes then the 
end, if no go to step 3. 
 

It is noted that in the proposed 
controller, for the crossover and mutation 
operations equations 29-34 is used. The 
adaptive laws and the on-line learning 
algorithm are used of equations 35- 43. 
The chattering phenomenon is a particular 
problem in the control algorithms.  The 
chattering problem can result in degenerate 
control accuracy and destroy the stability 
of system. To find the smooth control 
action and reduce chattering phenomena, 
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the following soft limit switching function  
[�� is presented as  

 
[���N� � ��8��

����8�� tanhzN�H�{. (47) 

Fig. 1. The UCSB pH neutralization system. 
 

Fig. 2. Schematic diagram of the neuro-fuzzy 
network. 
 

Fig. 3. Simulated ANFSGA control system for 
set point changes in pH neutralization process. 

Fig. 4. Simulated for set point changes in pH 
neutralization process. 

Fig. 5. Simulated results for set point changes 
in pH neutralization process.

Fig. 6. Simulated for set point changes in pH 
neutralization process. 

Fig. 7. Simulated ANFSGA control system for 
set point changes in pH neutralization process. 
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Simulation results 
The simulation results are demonstrated in 
Figs (3- 8). Three cases are considered in 
this section as the following: 

 
Case 1: The nominal buffer flow rate  
P � 0.55 �2 J⁄ .
Case 2: The periodic buffer flow rate with 
a high amplitude  P � 2.5	sin	�0.1	H� �2 J⁄ .
Case 3: The periodic buffer flow rate with 
a high frequency  
P � 0.5	sin	�1	H� �2 J⁄ �2 J⁄ .

The controller is initialized with the 
values of the reaction invariants shown in 
Table 1. 

The effectiveness of the proposed 
control system are depicted in Figs 3 and 4 
for the pH set point tracking problem in 
case 1. In the proposed control system, the 
control parameters in crossover operation 
to produce �� are �� � 0.0001, �� � �� �
�> � �= � 0.0001 and to produce �� are 
�� � 0.00005, �� � �� � �> � �= �
0.0001. In the mutation operation the 
control parameters of ANFSGA control 
system are �� � 0.0003, �� � �� � �> �
�= � 0.0002. The sliding surface 
parameter is selected as R � 1.2. The 
threshold value to active the mutation 
operation is applied as ���� � 0.1 and the 
parameter fitness value	� � '16.3 is used. 
It can be regarded that the associated fuzzy 
sets with Gaussian function for each input 
signal are divided into NE (negative), ZE 
(zero) and PO (positive). Moreover, the 
means of the Gaussian functions are set at -
0.5, 0, 0.5 and the standard deviations of 
the Gaussian functions are set at 0.3 for the 
NE, ZE and PO neurons. 

The reasonable region only make the 
system to use Y� of interval �Y�x&@ �
'10, 	Y�x�` � 20� and then by crossover 
and mutation algorithm, the values near to 
20 and -10 are produced, moreover 
stability of the system is kept in this 

operation. Therefore, the reasonable region 
can be set by designer to have a desired 
response in this method without tuning the 
control parameters. 

 

Fig. 8. Simulated for set point changes in pH 
neutralization process. 
 

Fig. 9. Simulated ANFSGA control system for 
set point changes in pH neutralization process. 
 

Fig. 10. Simulated for set point changes in pH 
neutralization process. 
 

To show the performance of the 
proposed control system a PID controller is 
employed as a comparison. the smooth 
control action and fast converging in Figs 
5 and 6 show that the response of the 
proposed control system is much superior 
than the PID controller. Simulation results 
for the pH neutralization process for set 
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point changes are demonstrated in Figs 7-8 
and 9-10 for cases 2 and 3, respectively. 
Simulation shows that the proposed control 

system is stable to control the pH in the set 
point tracking problem under the different. 

 
Table 1. Operating Conditions for the pH System 

Nominal Condition 

|q�| � 0.003 M HNO�|q�| � 0.03 M NaHCO�|q�| � 0.003	M	NaOH, 0.0005	MNaHCO�
A� � 207	cm�
A� � 42	cm�

n � 0.607 
z � 11.5	cm 

K¶� � 4.47 c 10· 
K¶� � 5.62 c 10�� 
K¸ � 1.00 c 10�> 

q� � 16.6	 ml s⁄
q�º � 16.6 ml s⁄
q� � 0.55 ml s⁄

q� � 015.6 ml s⁄
q> � 32.8 ml s⁄
h� � 14.0 cm

h� � 3.0 cm
W¶� � 3.00 c 10�M

W¶� � '0.03	M 
W¶� � '3.05 c 10�M
W¶> � 4.32 c 10>M

W½� � 0M 
W½� � 0.03	M 

W½� � 5.00 c 10=M
W½> � 5.28 c 10>M

τ¿À � 15	s 
τÁ � 15	s 
∆tÂ � 1	s 
τÃ � 6.0	s 
∆t � 15 s
pH � 7.0

CONCLUSION  
Buffer tanks are primarily installed to 
smoothen disturbances that cannot be 
handled easily by the control system. The 
nonlinear behavior exhibited by the pH 
process was controlled using the proposed 
nonlinear intelligent control system. In this 
paper a ANFSGA control system as the 
intelligent control methods have been 
successfully designed and effectively 
employed for a pH neutralization process. 
No constrained conditions and prior 
knowledge of the controlled system is used 
in the design process for the proposed 
controller and the ANFSGA control 
system is not need to any information of 
the neutralization process 
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