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ABSTRACT 
In this paper, one of the numerical solution method of one- particle, one dimensional  time- 
independent Schrodinger equation are presented that allows one to obtain accurate bound state eigen 
values and functions for an arbitrary potential energy function V(x).  
For each case, we draw eigen functions versus the related reduced variable for the corresponding 
energies. The paper ended with a comparison of the result obtained by the numerical solutions with 
those obtained via the analytical solutions. The agreement between the results obtained by analytical 
solution method and numerical solution is represents the top Numerov method for numerical solution 
Schrodinger equation with different potentials energy. 
 
Keywords: Time Independent Schrödinger equation; Numerical solution; Analytical solution; 
Numero method 

 
INTRODUCTION
1Assuming nucleuses and electrons as point 
masses and regardless of relativity 
interactions, molecular Hamiltonian is as 
follows: 
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Wave and energy functions of a molecule 
are found by solving Schrödinger equation, 
where qα and qi are electronic and atomic 
coordinates, respectively. 
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Molecular Hamiltonian (equ.1) is so 
complicated that one cannot solve it 
analytically. Fortunately there is a simple 
estimation with a high degree of accuracy, 
which is based on the fact that nucleuses 
are much heavier than electrons: ma >>me.
Therefore, electrons move much faster 
than nucleuses, and it is possible to 
consider the nucleuses immobile during 
electronic moves. Classically, change in 
nucleus configuration can be ignored 
during an electronic move cycle. 
Consequently, we omit nucleus kinetic 
energy terms from the equation (1) by 
considering nucleus immobile in order to 
obtain the Schrödinger equation for  
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electronic movement: 
e NN e e

ˆ(H V ) U+ ψ = ψ
1 1 1

 (3)

where: 
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It is possible to solve the one-
dimensional Schrödinger equation by using 
different potential energy functions with 
several methods. Also, it is easily possible 
to solve the Schrodinger equation for 
simpler potential energies such as particle 
in a box, and harmonic oscillator, using 
analytical method. But analytical method is 
not able to solve more complicated 
potential functions. So, there have been 
some efforts to solve the Schrödinger 
equation using other methods. In the recent 
years, numerical solutions have been used 
in order to solve the Schrödinger equation 
in Quantum Mechanics.  In general, 
methods such as Euler, Rung Kutta, Heun 
and Colli-Numero can be used for solving 
an equation in a numerical manner. In the 
present study, Numero method has been 
thoroughly described. Using Numero 
method, it is possible to solve the 
Schrödinger equation numerically by using 
different potential functions.  
 
CALCULATION METHOD 
It is worth noting that the Schrödinger 
equation can be solved by Numero method 
as follows: 
 

(6)

where: 
 

]E2)x(V2[mG 2 −= −h , nxxs −= (7)

In order to numerically solve the 
Schrödinger equation using the above 
equations, first, we should write the 
equation in terms of the following 
dimensionless variables: 
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Then, we guess a certain value for E
guess. For this purpose, we should start with 
a point that is completely located within 
the left side classic forbidden region, and 
plot changes in wave function y r versus 
x r, using computer soft wares such as Q-
Basic and Spread Sheet, and find 
eigenvalue of the considered potential 
function in several electronic conditions, 
and compare it with the values obtained 
from analytical solution of Schrödinger 
equation. In the present research, the 
authors have tried to present how to use the 
Numerov method in numerical solution 
using different potential functions after 
introducing various methods for 
numerically solving the Schrödinger 
equation, and to compare the results 
obtained from numerical solutions to those 
of analytical solutions.  

Using the equation (6) and having nψ
and n-1ψ (y values at the two points x n and 
xn-1), n+1ψ (the value of y at the point x n +
s) can be calculated.  

 
Fig. 1. V versus X for a one-particle and a one-

dimensional system. 
 

We start with a point that is located 
exactly within the left side classic 
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forbidden region (in the fig. 1). At this 
point, the value of y is too small, and we 
estimate the y to be zero at this point. 

( )00 x - 0ψ ψ= . We also choose the point x
max within the left side classic forbidden 
region, and make it necessary to meet the 
equation y(x max) = 0. We choose a small 
value for the distance s between the 
consecutive points, and choose a small 
number like 0.0001 for y at the point x o + s:
y, y(x1), y(xo+s) = 0.0001. After determining 
the values of y 1 and yo, values of G are 
calculated using E guess. Then, using the 
equation (6), value of y2, y3 and y4 are 
obtained by considering n=1, n=2, and n=3,
respectively. This procedure continues 
until we have reached x max.

If y guess does not include any nodes 
between xo and x max , E guess is equal to or 
less than E1; If y guess includes an internal 
node, y guess is between E1 and E2 (fig. 2). 
 

Fig. 2. Number of nodes in Numerov method in the 
form of a function of Energy Eguess.

There are several computer soft wares 
for solving one-dimensional Schrödinger 
equation by Numero method. Among them 
are Q-Basic, Maple5, Matlab, 
Mathematica, Derive, Mathcad, Theorist 
and spreadsheet. In this research, the 
Spreadsheet software has been used. 
Application procedure of the software 
Spreadsheet for harmonic oscillator is 
explained in the book “Levine’s Quantum 
Chemistry”. 
 
RESULTS AND DISCUSSION 
Analytical Solutions to one-dimensional 
harmonic oscillator function 
The independent-of-time Schrödinger 
equation for one-dimensional harmonic  
 

oscillator is as follows: 

ψψψ Ekx
2
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2

2

22

=+−
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Solution of the equation (9) has been 
described in detail in so many of Quantum 
Chemistry books and we discuss only 
results obtained from solutions to the 
equation. Those solutions to the equation 
(9) which are squarely integr able exist 
only for E values according to the 
following: 

,...3,2,1,0vh)
2
1v(E =+= ν (10)

It can be shown that well-behavior 
solutions for the equation (9) is in form of 

multiplying ( )2x
2exp -α by a polynomial 

of x from the order v, with πα = m
h2 v .

Figure. 3 shows explicit forms of some 
wave function lower than y0, y1, and y3.

Increase in quantum number causes 
increase in number of nodes. Harmonic 
oscillator wave functions consistent with x
reduce to zero exponentially.  
 

Fig. 3. Wave functions for four states lower than 
harmonic oscillator, 

 
Numerical Calculations for simple 
harmonic oscillator 
In order to numerically solve Schrödinger 
equation for harmonic oscillator using 
Numerov method and to drawing wave 
function curve versus xr, we should make 
the considered equation dimensionless, and 
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then solve the equation by using Numerov 
method.  

Harmonic oscillator has the term 1
2

= 2v kx

and Schrödinger equation has three 
constants including k, m, and h for 
harmonic oscillator. We name 
dimensionless reduced energy Er and 
reduced x parameter “xr”. These 
parameters are defined as follows: 

B
xx,

A
EE rr == (11)

Energy has dimensions of mass × 
(length)2(time)2 as written in the following: 
 

22TML]E[ −= (12)

where Bracket is an indication of the 
dimensions M, L and T as dimensions of 
mass, length, and time, respectively.  

The equation indicates that k have the 
dimensions energy × length-2. From the 
equation (12), we obtain [K]=MT-2 

The constant h has the dimension time × 
energy. So, 
[m] M , [k] MT , [ ] ML T− −= = =2 2 1h (13)

Dimensions of A and Bin the equation (11) 
are energy and length, respectively. 

L]B[,TML]A[ 22 == −
(14)

So, solving these equations, we have:  
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Since 2ψ(x) is a probability parameter and 
probability parameters are dimensionless, 
normal yx should have the dimensions 
length-1/2. So, 
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For harmonic oscillator, using the values 
xr,0=-5  ، xr, max=5 و and sr=0.1. One can 

calculate the values of rψ and xr At several 
Er s in an excel sheet, and then draw 

curves of wave function rψ versus xr
For example, figures 4-a, 4-b, and 4-c 

show curves of wave function versus xr for 
harmonic oscillator at Er = 0, basic state, 
which does not have any node, and fourth 
stimulated state of Er = 4.499996, which 
has 4 nodes, respectively. 
 
Numerical Solution to Schrödinger 
equation with potential energy function 

of )b
r
1(e)x(V ar −= −

This equation has three constants including 
m, h, and n. So, the constants A and B will 
be as follows: 
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Importing the values x r, max=3, xr,0=-3 as 
well as the relationship (21) and the term of 
ψ related to this equation and using the 
relationship (6), we can draw curves of 

wave function rψ versus xr. For instance, 
the first stimulated state with E r=2.21, s
r=0.01 which has one node (fig. 5-a), the 
second stimulated state with Er=5.05 and 
sr=0.01, which has two nodes (fig. 5-b). 
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Numerical Solution to Schrödinger 
equation with potential energy function 

of 2)rr(a

e
e )e
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r1(D)x(V e−−−=

This equation has three constants including 
m, h, and n. So, the constants A and B will 
be as follows: 
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Importing the values xr, max=1.5, xr,0=-1.5 
as well as the relationship (23) and the term 
of ψ related to this equation and using the 
relationship (6), we can draw curves of 

wave function rψ versus xr. For instance, 

figure 6-a shows the curve of rψ versus xr

at the second stimulated state with E
r=11.45, sr=0.01 which has two node, the 
third stimulated state with Er=18 and 
sr=0.01, which has three nodes (fig. 6-b). 
 
Numerical Solution to Schrödinger 
equation with potential energy function 

of )e1(D)x(V r2
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This equation has three constants including 
m, h, and n. So, the constants A and B will 
be as follows: 
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reduced Schrödinger equation will be 
equal to: 
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Importing the values xr,max=1.5 , xr,0=-1.5 as 
well as the relationship (25) and the term of 
ψ related to this equation and using the 
relationship (6), we can draw curves of 

wave function rψ versus xr. For instance, 

figure 7-a shows the curve of rψ versus xr

at the basic state with Er=21.1194, sr=0.01 
does not have any nodes, the first 
stimulated state with Er=24.2, sr=0.01 
which has one node (fig. 7-b), the second 
stimulated state with Er=26.77 and sr=0.01,
which has two nodes (fig. 7-c). 
 
Numerical Solution to Schrödinger 
equation with potential energy function 
of 24 x2x1)x(V −+=
Here we have xr,0=-2.5 ,x r, max=2.5, sr=0.01 
and )E2x4x22(G r

22
r −−+= . Importing 

the above data into an Excel sheet, we can 
draw the considered curves; for instance, 
the first stimulated state with Er =0.8696 
which has one node (fig. 8).   
 
Comparison between numerical and 
analytical solutions of Schrödinger 
equation with several potential energies 
The independent-of-time Schrödinger 
equation for one-dimensional harmonic 
oscillator is as follows:  

ψψ Ekx
2
1

dx
d

m2
2

2

22

=+−
h (26)

Analytically solving this equation, 
allowable energies of the harmonic 
oscillator will be as follows: 
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For instance, value of E will be equal to 
1
2

hν , 3
2

hν , and 9
2

hν at the basic state, the 

first stimulated state, and the fourth 
stimulated state, respectively.  

In the numerical solution to Schrödinger 
equation for harmonic oscillator by 
Numerov method, first classical 
unallowable regions should be determined, 
then dimensionless reduced variables 

including r
EE =
A

and r
XX =
B

are used. 

The parameters A and B are multiplication 
of power-having constants ħ ، µ and k, and 
are calculated from the following 
relationship: 
 

h.k.mA 2
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2
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4
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Using the above equations, we have 

 and 
the differential equation of 

r

Nψ will be 

r
2
rrrrr E2xG,G −≡=′′ ψψ

Now, by specifying classical unallowable 
regions, we can numerically solve the 
equation so that the minimum possible 
value for xr will be equal to -5 and the 
maximum possible value for xr will be 
equal to 5. These values result in different 
values for Er at several states. At the basic 
state the value of E is 0.499995, at the first 

stimulated state we have Er =1.499996, 
and at the fourth stimulated state, the value 
of Er is equal to 0.499995.  
Comparing these values with those 
obtained from the analytical method 
indicates that the values calculated from 
analytical and numerical solutions using 
Numerov method for Schrödinger equation 
for simple harmonic oscillator are very 
close to each other. 
 
CONCLUSION: 
We can numerically solve the of one- 
particle, one – dimensional time- 
independent Schrodinger equation for 
simple harmonic oscillator and different 
functions that allows one to obtain accurate 
bound state eigen values and eigen 
functions.  

Comparing analytical and numerical 
solutions to Schrödinger equation for 
simple harmonic oscillator and different 
functions, it can be concluded that using 
Numerov method is an appropriate and 
acceptable approach to numerically solving 
Schrödinger equation. Considering the 
consistency between the results obtained 
from analytical and numerical solutions for 
aforementioned potential functions in 
Schrödinger equation, it is possible to use 
Numerov method so as to numerically 
solve Schrödinger equation with several 
potential functions. 
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Fig. 4-a. Curve of changes in wave function “ ” versus xr for Er=0. 
 

Fig. 4-b. Curve of changes in wave function “ ” at base state versus xr.

Fig. 4-c. Curve of changes in wave function “ ” at fourth stimulated state versus xr
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Fig. 5-a. Curve of changes in wave function “ ” at firth stimulated state versus xr.

Fig. 5-b. Curve of changes in wave function “ ” at second stimulated state versus xr .

Fig. 6-a. Curve of changes in wave function “ ” at second stimulated state versus xr. 
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Fig. 6-b. Curve of changes in wave function “ ” at third stimulated state versus xr.

Fig. 7-a. Curve of changes in wave function “ ” at base state versus xr.

Fig. 7-b. Curve of changes in wave function “ ” at firth stimulated state versus xr.
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Fig. 7-c. Curve of changes in wave function “ ” at second stimulated state versus xr.

Fig. 8. Curve of changes in wave function “ ” at first stimulated state versus xr.
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