Journal of Physical & Theoretical Chemistry Islamic Azad University of Iran 3 (2) (2006) Science and Research Campus ISSN: 1735-2126

Quantum Chemistry Study & Evaluation of Basis Set Effects on Prediction of Amino Acids Properties:

M.Monajjemi^{1*}, M. Karimkhani^{1,3}, M. R. Gholami², A.Ziglari³, K.Zare^{1,4} and S.Afsharnezhad⁵

1. Department of Chemistry, Science and Research Campus, Islamic Azad University, P.O. Box: 14515-775, Tehran, Iran.

- 2. Department of Chemistry, Sharif University and Technology, Tehran, Iran.
- 3. Department of Chemistry, Tehran Central Branch, Islamic Azad University, Tehran, Iran.
- 4. Department of Chemistry, Shahid Beheshti University Evin, Tehran, Iran
- 5. Department of Biochemistry, Mashhad Azad university of Medical science, Mashhad, Iran.

ABSTRACT

The potential energy surface of gaseous glycine determined years ago in the ab initio B3LYP/6- $311++G^{**}$ calculations is composed of thirteen stable conformers. We performed the ab initio molecular orbital calculations as the starting point to carry out a force field and normal coordinate calculation on the most stable conformer of non-zwitterionic glycine [conformer (I)]. The calculations were carried out at different levels of theory using two methods, namely, the Hartree-Fock (HF) and the Möller-Plesset second order perturbation (MP2) method (including electron correlation), and using the Pople's basis sets, namely, STO-nG (n=2, 3 and 6), 3-21G, 6-21G, 6-31G, 6-311G and also cc-pVnZ to obtain HF limit. This different basis sets accompanied with the different combinations of diffuse and polarization functions were used. Each level of theory, with no symmetry restrictions, did fully optimization of neutral glycine. The atomic charge distributions were obtained using the Mulliken population analysis. The structural characteristics such as the total energies, the complete optimized geometrical parameters including bond lengths, normal and torsion angles, as well as dipole moments, rotational constants, atomic charge distributions, vibrational frequencies and IR intensities of the equilibrium conformation of glycine in gas phase were calculated at a wide range of the levels of theory -as mentioned above- and the results were compared together and with HF limit and the experimental data to examine the reliability of the applied basis sets and to introduce the most efficient ones. We also assayed how the strength of internal H-bonds depended on the variant parameters of basis set via the calculated atomic charges.

^{* .} corresponding author

Keywords: Glycine; Basis sets; Ab initio calculations; Geometry parameters; Atomic charges; IR spectrum; HF Limit .

INTRODUCTION

Amino acids are remarkable subjects for computational chemists because of their diversity of intramolecular interactions and conformationally molecule flexibility. Also they create considerable interest for the understanding of the chemistry of peptides and proteins [1]. The simplest amino acid, Glycine, as one of the most important biological compounds has been the most widely amino acids studied of the experimentally and theoretically. This has been confirmed by experimental studies that in the gas phase glycine exists in non-ionized form, NH₂-CH₂-COOH [2]. Internal rotation about the C-C, C-N, and C-O bonds results in several glycine conformers. During the past three decades, the conformational behavior of glycine especially in gas phase has been the subject of various experimental [2-9] and theoretical [10-22] studies. Crystallized glycine has been explored using X-ray diffraction since 1939 [3] as well as neutron diffraction [4] and spectroscopic techniques [5]. The determination of the spectral and structural characteristics of the conformers of glycine, as well as other natural amino acids, is of great interest because of their relation to the amino acid units in peptides and existence of gas phase glycine in interstellar spaces[23]. The molecular structure of the gaseous glycine were determined by Iijima et al in an electron diffraction study. Conformer I (figure 1) with having bifurcated

NH2···O=C H-bond was proven to be the most stable form in the gas phase.

The conformational behavior of glycine has also been the subject of very extensive theoretical studies. Császár predicted the existence of 13 stable conformers using highlevel correlated ab initio calculations [15]. This calculations have been consistent in predicting that the conformer **I** is the most stable form of glycine neutral molecule. This subject has been confirmed by other similar work [12-20]. However the stability order of this conformer depends on the level of theory and the basis set used in the calculations. Unfortunately, although it is used a chanceful basis set but the efficacy of basis set on calculations has stayed unknown.

M.Monajjemi .et al.

Vol. 3, No. 2, Summer 2006

The aim of the present study is try to recognition of the behaviors of structural characteristics of glycine respect to the changes of some variables existing in basis sets for the purpose of specifying the most adequate basis set in ab initio calculations to describe this simplest amino acid. Therefore, we determined various molecular properties including total energies, complete optimized geometrical parameters including bond lengths, normal and torsion angles, as well as dipole moments, rotational constants, atomic charge distributions, vibrational frequencies and IR intensities and of the neutral form of the most stable conformer of glycine in gas phase with quantum chemical calculations. For this purpose we applied a wide range of Pople's basis sets including STO-nG (n=2, 3 and 6), 3-21G, 6-21G, 6-31G, 6-311G augmented by polarization and diffuse functions and two different methods, i.e. the HF and MP2 as the electron uncorrelated and correlated method, respectively. The results were compared together and with the experimental data to understand how these properties depend on the basis sets applied in the calculations and consequently prescribe a suitable basis set for this purpose. In our forthcoming works we continue our studies about other amino acids to survey the dependence of their properties on specific basis sets.

Computational Details

The theoretical results presented in this work were obtained by means of the ab initio molecular orbital calculations as the starting point to carry out a force field and normal coordinate calculation for non-zwitterionic glycine.

The calculations were carried out at the different levels of theory using the methods, namely, the Hartree-Fock (HF) [24] as an electron uncorrelated method, the Möller-Plesset second order many body perturbation method (MP2) [25,26] as a method containing electron correlation and inconsiderably the Becke's three-parameter hybrid functional combined with gradient corrected functional of

Lee, Yang and Parr (B3LYP) [27]. The computations also have been performed using the different features of double (DZ) and triple zeta (TZ) qualities of Pople's basis sets, namely, STO-nG (n = 2, 3 and 6) [28], 3-21G [29,30], 6-21G [30], 6-31G [31] and 6-311G [32]. The mentioned basis sets have been chosen based on the difference between the number of primitives in minimal ones, splitting in valence layer and the number of primitives in core and valence layer. The Dunning's correlation consistent basis sets (ccpVnZ) [33] have also been applied to determine the HF limit of basis sets. This various basis sets were used with different combinations of diffuse [34] and polarization functions [35], as we presented in Table 1. Fully geometry optimization of structure I (the most stable conformer of neutral glycine) was performed using analytical energy gradients by each level of theory, with no symmetry restrictions. RMS of forces and distances for calculations didn't exceed 9.5*10⁻⁵ all Hartree/Bohr and 3*10⁻⁹ Å , respectively.

The atomic charge distributions were obtained using the Mulliken population analysis [36]. The IR spectral characteristics of this structure (I) were calculated by all mentioned above basis sets and two HF and MP2 methods. All calculations were carried out employing the program package GAUSSIAN98 [37].

Results and Discussion

The calculations were done with the HF and MP2 methods - where the former is electron uncorrelated, while the latter one is containing correlation effects - using the various basis sets including the STO-nG series (n=2,3 and 6) and the derivatives of Pople's double and triple zeta basis sets including 3-21G, 6-21G, 6-31G, and 6-311G. They were chosen based on the difference between the number of primitives in minimal ones, splitting in valence layer and the number of primitives in the core and valence layers. They were augmented with the different combinations of diffuse and polarization functions, as we listed in Table 1. The fully geometry optimization of the conformer I of glycine (figure 1) was performed using the analytical energy

J.Phys. & Theo.Chem.I.A.U. Iran	M.Monajjemi .et al.	Vol. 3, No. 2, Summer 2006

gradients by each level of theory, with no symmetry restrictions. In the following, first we introduce a simple abbreviation for above basis sets to simplify the diagram presentations, and then the results obtained by aforesaid calculations will be shown and discussed.

Basis sets presentation

Whereas the Pople's basis sets have massive names for our presentational purposes, we had to use some abbreviations as introduced in The nomination has been table 1 . accomplished based on the form of splitting, the number of polarization and diffuse functions as similar as possible to basic name. We used the letter A for the minimal basis sets followed by a number showing the number of its primitives. The split-valence basis sets were categorized to the double (S') and triple (S") zeta.For more illumination, we applied the number of core primitives only for the 6-21G and 3-21G.

The Greek numbers were applied sequentially with the increase of polarization functions, and also _ and _ were seated instead of the diffuse function for heavy atoms and hydrogen atoms, respectively.

HF Limit

The solution of the HF equations with an infinite basis set is defined as the HF limit. Actually carrying out such a calculation is almost never a practical possibility. However, it is sometimes the case that one may extrapolate to the HF limit with a fair degree of confidence. Of the basis sets, the cc-pVnZ and cc-pCVnZ were designed expressly for this purpose. As they increase in size in a consistent fashion with each increment of n, one can imagine plotting some particular computed property as a function of n⁻¹ and extrapolating the curve fit through those points back to the intercept; the intercept corresponds to $n = \infty$, i.e. the infinite basis limit[38]. We calculated the HF limit of properties as shown in Table 2 for the geometries and Figure 3 for some other properties by the mentioned method.

Table 1: Classification, presentation and notation of applied basis set.

Basis set Type	Specification	Core	Valence	Addition Function	Presentation	Symbol ^a	No. of BF	No. of PG
Minimal (A)	2 PG (*)				STO-2G	A2	30	60
	3 PG (")	-	-	-	STO-3G	A3	30	90
	6 PG (")	-	-	-	STO-6G	A6	30	180
Split-	Double	3G	21	Simple	3-21G	S'3	55	90
Valence	Zeta (*)			Polarization	3-21G*	S'3I	55	90
(S)		6G	21	Simple	6-21G	S'62	55	105
				Polarization	6-21G*	S'62I	85	135
			31	Simple	6-31G		55	130
				Polarization	6-31G*	S'I	85	160
					6-31G**	S'II	100	175
				Diffused	6-31+G	S'α	75	150
					6-31++G	S'B	80	155
				Combined	6-31+G*	S'aI	105	180
					6-31++G*	S'BI	110	185
					6-31+G**	S'all	120	195
					6-31++G**	S'BII	125	200
					6-31++G(2df.pd)	S'BIII	220	310
					6-31++G(3df,3pd)	S'βΙV	280	370
	Triple	6G	311	Simple	6-311G	S"	80	155
	Zeta (")			Polarization	6-311G*	S"I	105	185
					6-311G**	S"II	120	200
				Diffused	6-311+G	S"α	100	175
					6-311++G	S"β	105	180
				Combined	6-311+G*	S"aI	125	205
					6-311++G*	S"BI	130	210
					6-311+G**	S"all	140	220
					6-311++G**	S"BII	145	225
					6-311++G(2df.pd)	S"BIII	230	335
					6-311++G(3df,3pd)	S"βΙV	280	370

^a Due to more simplification, the notation of 63 has omitted from the symbols of all 6-31G and 6-311G basis sets. The notation of α indicates diffuse function on heavy atoms (+), and β moreover shows diffuse function on hydrogen atoms (++).

J.Phys. &	Theo.C	Chem.I.A	.U. Iran
-----------	--------	----------	----------

Vol. 3, No. 2, Summer 2006

Bond lengths	HF Limit	Bond Angles	HF Limit	Dihedrals	HF Limit
N1-C2	1.4337	C2-N1-H3	111.370	H3-C2-N1-H4	-
N1-H3	0.9965	C2-N1-H4	111.370	H3-N1-C2-C5	- 59.636
N1-H4	0.9965	N1-C2-C5	115.652	H6-C2-N1-C5	-
C2-C5	1.5179	N1-C2-H6	110.180	H7-C2-N1-C5	-
C2-H6	1.0823	N1-C2-H7	110.180	08=C5-C2-N1	-
C2-H7	1.0823	C2-C5=O8	125.620	O9-C5-C2-O8	-
C5=O8	1.1787	C2-C5-O9	111.640	H10-O9-C5-C2	-179.965
C5-O9	1.3254	C5-O9-H10	109.335		
O9-H10	0.9439				

Table 2:]	Extrapolated	HF limit	of geometr	y parameters
------------	--------------	----------	------------	--------------

As we can observe from Figure 2, the cc-pV6Z calculation for glycine due to great number of its basis functions (about 1200 equals to more than 2200 primitives) take a time more than 220000 minute (about 150 days); then involving cc-pV6Z in extrapolation of the HF limit of properties is impractical.

Figure 2. Time of calculation versus number of primitive gaussians in basis set.

Energy, ZPE and Dipole moment

The total energy, zero point energy and dipole moment data were calculated by different levels of theory. To better deduction and realize the effects of splitting, the increment of polarization and diffuse functions to basis sets and also the effect of methods, we survey the results in following four categories:

Splitting Effect: Figures 3 to 5 respectively show the changes of total energy, dipole moment and zero point energy calculated by the Hartree-Fock and MP2 methods versus different basis sets and discretion for similar splitting in the basis sets. The results has been compared with HF limit of energy as obtained in 3.2 section. As seen from figure 2, the increment in the number of primitive gaussians From A2 to A6 basis set or the increase of splitting in valence layer in the basis sets cause a continuous decrease in the energy level of system. As one can see from junctions between S'3-S'62 and S'3I-S'62I (clearly in Figure 2), the number of primitives in core layer impress extremely on energy, while the effect of increment in splitting of valence layer and the number of primitives in each splitting valence layer continuously diminish, though generally trails decrease of total energy. In comparison of the lines corresponding with _ and _ "diffused splits" lines, we observe that the effect of diffuse functions on system energy is really very teeny and negligible.

Figure 2. Total energy calculated by HF and MP2 versus basis set compared with HF limit for conformer (I) glycine, ranking on splitting. a) complete comparison. b) comparison between splitted basis sets except STO-nG for HF method.

In Hartree-Fock level for all lines except "single split" line, the falling slope of energy in split increment from double to triple zeta with nearly maximum %6.8 difference show a steady procedure, wherein all lines are truly parallel. The exception is the "single split" line which in absence of each diffuse or polarization functions is more sensible to more splits and have higher exceptional slope. The falling slope of energy in MP2 level is more respect to HF level, which it bodes more sensibility of this method respect to splitting of basis set.

Figure 3 shows dipole moment changes versus different basis sets for similar splitting

M.Monajjemi .et al.

in them. As we see, increasing in the number primitives in STO-3G cause of an improvement in their predicting of dipole moments. "Simple split" basis sets improve widely the prediction procedure, as there is good agreement to experiment. Also the triple zeta basis sets try to improve the results more than double zeta basis sets. However the increment of polarization functions to basis set for heavy atoms change the results severely, so that the quality of basis sets in predicting dipole moment come down to limit of the smallest STO-nG. Addition of polarization functions for all atoms improves partially the prediction. Addition of diffuse functions on heavy atom basis sets always increases the value of dipole moment. This matter is obvious with comparison of the couples of S', S" to S' α , S" α and S'II, S"II to S' β II, S" β II. Increase of diffuse function to basis set of hydrogen atoms doesn't create tangible changes. At last, the comparison between the results obtained by MP2 and HF methods shows the former achieves partly more improvement in dipole moment prediction.

Figure 3. Dipole moment versus basis set for conformer (I) glycine, ranking on splitting.

Figure 4 shows zero point energy (ZPE) changes versus different basis sets for similar splitting in them. As we can see, STO-nG basis sets with a difference more than 4 kcal/mol, which is greatly faraway from splitted basis sets, aren't able to give correct results for ZPE However a relative improvement in achievements observe when the number of primitives increase.

As shown by "simple split" and " single polarized" paths in figure 4, Increment in the number of primitives in core and valence layers and also increment of splits on valence layer nearly always make ZPE values greater. The consequence of increment of polarization functions to basis sets is generally in the interest of heavy atoms and culminates in increase of results, but if done for hydrogen atoms will decrease the conclusions. Indeed, the addition of diffuse functions for heavy atoms generally decreases the results.

Figure 4. Zero point energy versus basis set for conformer (I) glycine, ranking on splitting.

3.3.2. Polarization Effect: Figures 5 to 7 show the changes of total energy, dipole moment and zero point energy, respectively, calculated by Hartree-Fock method versus different basis sets, but this time division has done based on the addition of polarization functions in the basis sets. As seen from figure 5, in general, the addition of polarization functions in basis sets continuously decrease the energy. It seems that the regular addition of polarization functions in different types of basis set (whether double or triple zeta or diffused basis set) follow a uniform procedure. It seems we can achieve to basis set limit in way of protracting the energy decrement path against the increment of polarization functions.

Figure 5. Total energy versus basis set for conformer (I) glycine, ranking on the number of added polarization functions.

As it shown in figure 6, the addition of the first polarization function to basis sets for heavy atoms generally overshoot the predicted value by basis set. This variation in triple zeta basis set is less than double one. However, if we add more polarization function, we encounter the gentle decline run which at last conduce to a definite limit value.

Figure 6. Dipole moment versus basis set, ranking on the number of added polarization functions.

Figure 7 considers zero point energy data. The comparison between figures 6 and 7 reveals that the behavior of ZPE changes against the increment of polarization functions in basis sets is similar to dipole moment. The only two discrepancies consist: first, contradictorily, the ZPE against the inclusion of the first polarization function in precipitate increment of each triple zeta basis sets is less than double zeta ones, and second, the increment of the more number of polarization functions to basis set cause a considerable decrease in ZPE value and at the end on HF limit comes to constant.

Figure 7. Zero point energy versus basis set, ranking on the number of added polarization functions.

3.3.3. Diffuse Effect: Figures 8 to 10 display the changes of total energy, zero point energy and dipole moment, respectively, calculated by Hartree-Fock method versus different basis sets, but this time division has done based on the addition of diffuse functions in the basis sets. As shown in figure 8, generally the addition of diffuse functions in various splitted basis sets for heavy atoms have the regular forms, which shows a suitable decrement corresponding about -0.01 a.u., while generalizing the increment of diffuse functions for hydrogen atoms only redound to negligible decrement of а energy corresponding about -0.0003 a.u.

Figure 8. Total energy versus basis set for conformer (I) glycine, ranking on the number of added diffuse functions.

Remarkably this regular procedure exactly is followed for ZPE, as shown in figure 9, but

J.Phys. & Theo.Chem.I.A.U. Iran	M.Monajjemi .et al.	Vol. 3, No. 2, Summer 2006

ZPE is more sensitive respect to the increment of diffuse functions for heavy atoms and shows a decrease between 0.12 - 0.18kcal/mol, while similar to energy, the inclusion of diffuse function for hydrogen atoms leave out a very small effect only in order of several thousandth.

Figure 9. Zero point energy versus basis set, ranking on the number of added diffuse functions.

In contradictory to these two properties, the addition of diffuse functions for heavy atoms, as shown in figure 10, cause the increment of dipole moment in order of several hundredth to 0.1 debyes. Whereas the addition of diffuse function for hydrogen atoms accompanied by a much less effect always decrease the dipole moment about several thousandth. In any case, the addition of polarization and diffuse functions throw away the result far from experimental value, although in triple zeta basis sets this fact occurs gentler than double zeta ones.

Figure 10. Dipole moment versus basis set, ranking on the number of added diffuse functions.

3.3.4. Method Effect: Notifying to figure 11 reveal that in general, Moller-Pelleset perturbation methods (in any order) due to considering correlation generally predict the lower energy, closer to the fact, although its impression is only about 0.9 a.u. equal to %0.3 of total energy. The B3LYP method offers the lowest energy between these methods.

Figure 11. Comparison between total energies calculated by various methods and $6-311++G^{**}$ basis set for conformer (I) of glycine. The MPn data were taken from ref. [15].

1.1. Geometry

3.4.1. Bond lengths. The theoretically optimized and experimental geometries including bond lengths, bond angles and rotational constants for the equilibrium conformation obtained for the non-zwitterionic glycine (figure 1) by microwave spectroscopy [9] are depicted in Table 3. The calculations have done by the HF method.

Concerning bond distances obtained by STO-nG basis sets, they have calculated the longest values for all of them but since this basis set is known to be less accurate than the other applied basis sets, we can consider that STO-nG basis sets overestimates the bond distances of glycine. As n increase from 2 to 3 and then 6 respectively, this overestimation improves and come nearer to the experiment. Almost in the most cases, the 3-21G series overestimate all the bond lengths except N1-C2 and C2-C5. The same observation can be

made for the 6-21G series, but the exceptions spread to the underestimation of the C5=O8 and C5-O9 bonds. The 6-31G, 6-31+G and 6-31++G sets underestimate all the bond lengths except C2-H6 and C5=O8. The underestimation of C2-H6 is just generalized to the other derivatives of the 6-31G basis set. The same expressions can be repeated for all derivatives of the 6-311G basis set, unless 6-311G, 6-311+G and 6-311++G only lead C5=O8 to be shorter.

By comparing the values obtained with the double zeta basis sets together, one can deduce that the addition of polarization functions for heavy atoms make a relative improvement in the form of decreasing the overestimations and increasing the underestimations in the bond lengths. Anyway, further addition of polarization for hydrogen atoms not only do not improve the situation but also make it a bit more critical. As one can deduce by comparing 6-31++G(2df,pd) and 6-31++G(3df,3pd), The recuperative effect of more addition of polarization function to basis set is mostly unimportant, then the complexity of the calculations can not help so much to improve the bond lengths. For instance, with going from 6-31G to 6-31++G** and 6-31++G(2df,pd) and then 6-31++G(3df,3pd), the relative errors in N1-C2 decrease corresponding to 2.16, 2.03, 2.02, %1.96, and in O9-H10 increase corresponding to 1.19, 1.82, 2.03, %2.04, respectively.

In 6-311G triple zeta basis set and its derivatives, it is not observed any preferable absolute status respect to corresponding states in the 6-31G double zeta basis set, and even most of the time there is a few tendency in the interest of double zeta basis set. However the difference between their results is negligible and we didn't observe a meaningful discrepancy. Comparing the 6-311G derivatives together, it seems the inclusion of polarization function for heavy atoms affords a relative improvement in the bond lengths except for C5=O8, C5-O9 and O9-H10.

As like 6-31G, the addition of more polarization functions only generates insignificant changes in the bond lengths and most of the time doesn't afford any improvement.

Generally, in corresponding cases, the results of MP2 method have better conformity with the experiment respect to HF method.

3.4.2. Bond angles. The theoretically optimized and experimental bond angles consist of normal and torsion angles for equilibrium conformation glycine are summarized in Table 3. As we can see, the whole derivatives of 6-31G and 6-311G basis sets overestimate N1-C2-C5, C2-C5=O8 and C2-C5-O9, and underestimate C5-O9-H10 (except for 6-31G and 6-311G). The effect of the addition of polarization functions and diffuse functions on angle values is completely inversed together.

If the addition of polarization function increases the angle, the diffuse function has a gentle descending effect on it and at last the addition of more polarization functions enforce the angles to tend to experiment in a gentle run. The impression left on bond angles by the addition of the first polarization function, is very intensive only for C2-N1-H3 and C5-O9-H10 angles equal to about 5.5° for 6-31G derivatives and negligible for others. The more inclusion of polarization function increases these two angles maximum 0.5° or less.

According to just one dihedral angle we have from experiment, whole of basis sets predict successfully.

3.4.3. Rotational constants. Again, the theoretically optimized and experimental rotational constants for equilibrium conformation glycine have been showed in Table 3.

eo.Chem	.I.A.U	J . Iran					M.Mo	naj	jer	ni .	.et	al.					V	ol. 3	3, I	No.	2, S	lummer
	S'BIV	1.4373	1666.0	1.0847	1.1834	1.3275 0.9463	20.011	115.43	110.20	125.57	111.61	108.85	118.21	01.66-	0.01	179.98	10.687	3.924	2.964		1.313	
	S'BIII	1.4364	8866.0	1.0850	1.1828	1.3271 0.9464	9	115.49	110.16	125.57	111.57	108.94	118.94	14.00-	-0.01	179.98	10.686	3.923	2.964		1.320	
	S'BII	1.4362	9666.0	8616.1 1.0850	1.1890	1.3290 0.9484	00 111	00.111	110.04	125.63	111.68	109.23	119.87	+6.60-	0.00	-180.00	10.636	3.916	2.957		1.335	
	S'αII	1.4362	9666.0	8616.1 1.0850	1.1890	1.3290 0.9484	02.111	00.111	110.04	125.63	111.68	109.23	119.87	+6.6C-	0.00	180.00	10.636	3.916	2.957		1.340	
	S'BI	1.4382	1.0014	1.0845	1.1889	1.3299 0.9526		115.42	109.89	125.63	111.65	109.07	118.57	07.66-	0.00	180.00	10.628	3.914	2.955		1.354	
	S'αl	1.4380	1.0012	1.0845	1.1889	1.3298 0.9526		115.43	109.88	125.62	111.67	109.08	118.74	10.40-	20.121	179.98	10.630	3.914	2.955		1.356	
	s'B	1.4347	0.9949	1.0829	1.2107	1.3524 0.9543	02.711	00.011	110.09	126.54	111.35	114.60	137.10	VE 101	0.00	-180.00	10 387	3.863	2.909		1.158	
	s'a	1.4347	0.9949	1.0829	1.2107	1.3524 0.9543	02.211	00.011	110.09	126.54	111.35	114.60	137.10	VE 101	0.00	-180.00	10 387	3.863	2.909		1.162	
s Set	II.S	igths 1.4372	1.0002	1.0853	1.1879	1.3287 0.9481	les	115.08	110.15	125.38	111.85	108.68	117.73 see or	10.00-	0.03	179.94	s 10.654	3.933	2.968		1.313	
HF / Basi	ĿS	Bond Ler 1.4390	1.0017	1.0846	1.1877	1.3299 0.9525	Bond ang	115.03	109.98	125.40	111.80	108.48	Torsion // 117.11 50.56	002101	-0.01	-179.97	al constant 10.645	3.930	2.965	oment	1.331	
	s	1.4343	0.9947	1.0828	1.2104	1.3529 0.9545		110.12	110.24	126.34	111.54	114.16	135.88	+6.10-	0.00	-180.00	Rotation:	3.872	2.916	Dipole m	1.075	
	S'62I	1.4499	1.0113	1.0882	1.1838	1.3352 0.9683	00.001	113.78	110.10	124.81	111.53	106.49	112.87	07 101	-0.01	-179.99	10 593	3.955	2.976		1.424	
	S'62	1.4545	1.0035	1.0821	1.2046	1.3608 0.9693		113.41	110.20	126.55	110.63	111.96	126.83	14.00-	0.00	-180.00	10 303	3.900	2.923		1.137	
	S'3I	1.4533	1.0036	1.0822	1.2020	1.3565 0.9687		113.42	110.24	126.67	110.54	112.26	127.22	10.00-	0.00	180.00	10 335	3.911	2.932		1.163	
	S'3	1.4533	1.0036	1.0822	1.2020	1.3565 0.9687		cc.c11 113.42	110.24	126.67	110.54	112.26	127.22	10.00-	0.00	180.00	10 335	3.911	2.932		1.163	
	46	1.4818	1.0334	91cc.1	1.2166	1.3891 0.9902	00 201	113.58	109.36	125.66	111.90	104.79	111.42	0/.00-	-0.02	180.00	10 094	3.754	2.825		1.248	
	A3	1.4818	1.0334	916C.1	1.2166	1.3891 0.9902	00 201	113.58	109.36	125.66	111.90	104.79	111.42	0/.00-	-0.02	180.00	10.094	3.754	2.825		1.248	
	A2	1.4900	1.0431	1.0981	1.2200	1.3926 0.9974	00.001	114.21	109.13	125.32	111.31	104.28	107.87	46.00-	0.02	179.95	9 957	3.713	2.790		1.395	
Levels of Theory	Coordinates ^a	R NI-C2	N1-H3	C2-U5 C2-H6	C5=08	C5-09 09-H10	AL 10	NI-C2-C5	N1-C2-H6	C2-C5=08	C2-C5-09	C5-09-H10	Zτ H3-C2-N1-H4 H3 N1 C2 C5	HT-CJ-N-CZ	08=C5-C2-N1	09-C5-C2-08	v	B	С		ц	

Level of							HF / Ba	sis Set							HF Linit	B3LYP Set	/ Basis	Experi mental
Coordinates ^a	s.	I.S	IIS	S"α	s"B	S"αI	Ig"S	S"all	IIg"S	S"BIII	S"BIV	CD	CT	õ		S'BII	сβD ^b	Value
R VI-C2	1 4370	1 4392	1 4389	1 4378	1 4378	1 4380	1 4380	Bond Le	ngths 1 4376	1 4347	1 4346	1 4384	1 4363	1 4349	1 4337	1 4484	1 450	1 466
V1-H3	0.9941	0.9983	1.0000	0.9942	0.9942	0.9981	0.9981	96660	0.9996	1666.0	0.9975	1.0061	0.9979	69660	0.9965	1.0163	1.018	1.001
22-C5	1.5030	1.5143	1.5139	1.5047	1.5047	1.5154	1.5154	1.5154	1.5154	1.5134	1.5143	1.5120	1.5134	1.5143	1.5179	1.5259	1.524	1.529
C2-H6	1.0803	1.0842	1.0852	1.0805	1.0805	1.0842	1.0842	1.0852	1.0852	1.0843	1.0831	1.0919	1.0835	1.0829	1.0823	1.0966	1.100	1.081
C5=08	1.2079	1.1820	1.1820	1.2078	1.2078	1.1829	1.1829	1.1827	1.1827	1.1810	1.1805	1.1862	1.1819	1.1801	1.1787	1.2127	1.211	1.204
CS-09	1.3504	1.3282	1.3285	1.3497	1.3497	1.3280	1.3280	1.3285	1.3285	1.3259	1.3255	1.3292	1.3274	1.3262	1.3254	1.3565	1.359	1.354
01H-6C	0.9497	0.9443	0.9457	0.9505	0.9505	0.9449	0.9449	0.9461	0.9461	0.9468	0.9448	0.9511	0.9455	0.9444	0.9439	0.9728	0.971	0.966
₹ A								Bond and	gles									
C2-N1-H3	114.94	110.54	110.47	115.40	115.40	111.20	111.20	111.18	111.18	111.25	111.09	109.68	110.79	111.08	111.37	110.73	110.4	,
N1-C2-C5	115.05	115.25	115.20	115.15	115.15	115.53	115.53	115.54	115.54	115.53	115.52	115.07	115.43	115.54	115.65	115.87	115.9	113.0
N1-C2-H6	110.18	110.04	110.20	110.11	110.11	109.98	109.98	110.11	110.11	110.17	110.19	110.38	110.20	110.19	110.18	109.94		•
C2-C5=08	126.40	125.61	125.48	126.33	126.33	125.75	125.75	125.67	125.67	125.57	125.60	125.20	125.55	125.60	125.62	125.70	125.8	125.1
2-C5-09	111.66	111.69	111.66	111.58	111.58	111.50	111.50	111.56	111.56	111.60	111.62	111.96	111.64	111.65	111.64	111.53	111.4	111.5
S-09-H10	113.86	109.22	108.66	114.29	114.29	109.74	109.74	109.12	109.12	109.12	108.91	108.13	108.79	10.601	109.33	107.44	107.2	110.5
24 24 C2-N1-H4	121 33	117 63	02 211	37 651	137 65	119.00	110 00	Torsion	angles	CI 011	110 72	115.05	90 811			20 211		
	70.101	cc./11	60.111	C0.7C1	C0.7C1	06.011	06.011	+0.611	+0.611	71.611	C/.011	c0.c11	110.00			10.111		
H3-N1-C2-C5	-65.66	-58.77	-58.70	-66.32	-66.32	-59.45	-59.45	-59.52	-59.52	-59.56	-59.37	-57.52	-59.03	-59.37	- 59.64	-58.94	-58.3	,
H7-C2-N1-C5	121.78	121.92	121.70	121.74	121.74	121.92	121.92	121.72	121.72	121.73	121.70	121.75	121.73			122.09		,
08=C5-C2-N1	0.01	0.01	-0.01	-0.01	-0.01	-0.01	-0.01	0.01	0.01	0.00	0.00	0.00	0.01	0.02	,	0.02	0.0	00.00
)9-C5-C2-08	179.98	179.98	-	- 179.98	-	- 179.98	-	179.97	179.97	180.00	180.00	180.00	179.99	,	-	179.95		,
							Rotation	al constan	ts									
_	10.452	10.701	10.696	10.445	10.445	10.680	10.680	10.684	10.684	10.717	10.727	10.669	10.709	10.732	10.765	10.280	10.283	10.342
	3.882	3.929	3.934	3.876	3.876	3.918	3.918	3.918	3.918	3.931	3.932	3.944	3.932	3.929	3.924	3.831	3.832	3.876
Ð	2.925	2.968	2.971	2.921	2.921	2.961	2.961	2.961	2.961	2.971	2.972	2.975	2.971	2.971	2.971	2.882	2.883	2.912
							Dipole n	oment										
	1.125	1.302	1.276	1.194	1.193	1.340	1.333	1.310	1.305	1.303	1.295	1.269	1.262	1.272	1.28	1.212	1.170	1.150

M.Monajjemi .et al.

Vol. 3, No. 2, Summer 2006

Table 3: Cont	inued.															
Theory	J.								MP2/R	seis Set						
Coordinate ^a	A2	A3	A6	S'3	S'3I	S'62	S'62I	s,	I.S	II.S	S'a	s'β	S'al	S'BI	S'αII	S'BII
R NLC	1 5107	1 5157	1 5112	1 4815	1 4815	1 4833	1 4508	CP34 1	Bond Len	gths 1 4505	8634 1	1 4630	1 4507	1 4507	1 4483	1 4483
NI-H3	1.0669	1.0598	1.0558	1.0232	1.0232	1.0235	1.0271	1.0162	1.0189	1.0144	1.0159	010160	1.0183	1.0183	1.0137	1.0137
C2-C5	1.5919	1.5766	1.5759	1.5276	1.5276	1.5300	1.5191	1.5275	1.5169	1.5166	1.5275	1.5272	1.5181	1.5181	1.5182	1.5182
C2-H6	1.1147	1.1090	1.1052	1.0941	1.0941	1.0941	1.0960	1.0984	1.0952	1.0910	1.0988	1.0988	1.0955	1.0955	1.0913	1.0913
C5=08	1.2557	1.2577	1.2558	1.2374	1.2374	1.2411	1.2134	1.2490	1.2189	1.2183	1.2491	1.2490	1.2214	1.2214	1.2208	1.2208
C5-09	1.4149	1.4157	1.4116	1.3936	1.3936	1.3991	1.3575	1.4003	1.3593	1.3585	1.4032	1.4031	1.3621	1.3621	1.3615	1.3615
09-H10	1.0232	1.0189	1.0168	0.9964	0.9964	0.9978	0.9936	0.9851	0.9796	0.9712	0.9867	0.9867	0.9812	0.9812	0.9728	0.9728
A/									Bond and	es						
C2-N1-H3	103.14	104.09	104.24	110.27	110.27	110.16	106.50	113.67	108.80	108.57	114.94	114.92	110.36	110.36	110.32	110.32
N1-C2-C5	114.00	113.60	113.64	113.18	113.18	113.16	113.34	114.89	114.88	114.87	115.41	115.39	115.57	115.57	115.60	115.60
N1-C2-H6	108.71	108.82	108.85	109.71	109.71	109.66	109.95	109.61	109.80	109.96	109.47	109.49	109.61	109.61	109.74	109.74
C2-C5=08	125.82	126.11	126.29	126.59	126.59	126.45	124.64	126.43	125.45	125.38	126.92	126.91	125.89	125.89	125.87	125.87
C2-C5-09	110.41	111.06	111.17	110.03	110.03	110.16	111.22	110.96	111.36	111.36	110.47	110.47	111.06	111.06	111.00	111.00
C5-09-H10	101.58	101.76	101.61	108.10	108.10	107.73	103.83	110.04	105.80	105.79	110.81	110.77	106.76	106.76	106.74	106.74
ZT LT							1000	10 001	Torsion A	ingles	00 001	00.101				
HI-IN-70-CH	11.701	10.001	+0.CU1	C+.611	C4-611	119.14	10.401	10.021	00.011	+C.CII	00.201	06.161	CC./11	CC./11	00./11	00./11
H3-NI-C2-C2	95.1C-	00.26-	78.76-	11.66-	11.66-	80.60-	-24.69	-64.01	-20.95	/ 9.06-	-00.00	c6.co-	80.86-	80.86-	c/.8c-	c/.8c-
H7-C2-NI-C5	122.15	121.42	121.36	121.18	121.18	121.25	121.66	121.82	121.95	121.80	121.79	121.71	122.01	122.01	121.83	121.83
08=C5-C2-N1	-0.01	-0.01	0.00	0.01	0.01	-0.01	-0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.01	-0.01
09-C5-C2-08	180.00	-179.98	180.00	-179.99	-179.99	180.00	-180.00	180.00	-180.00	180.00	-180.00	180.00	-180.00	-180.00	-179.98	-179.98
								Rotationa	ul constants							
Α	9.440	9.524	9.569	9.808	9.808	9.769	10.217	9.800	10.210	10.228	9.763	9.764	10.164	10.164	10.176	10.176
В	3.625	3.648	3.656	3.813	3.813	3.798	3.940	3.745	3.885	3.894	3.725	3.726	3.853	3.853	3.860	3.860
С	2.701	2.722	2.729	2.836	2.836	2.825	2.938	2.799	2.907	2.912	2.785	2.786	2.886	2.886	2.890	2.890
								Dipole mo	oment							
ц	1.458	1.336	1.311	1.251	1.251	1.219	1.498	1.039	1.355	1.357	1.072	1.068	1.324	1.318	1.323	1.318

Table 3: Continue	ġ.												/s . &
Level of Theory						cie Cot							Theo.0
Coordinate ^a	s	LS	II.S	S"α	S"B	S"al	S"BI	S"αII	S" βII	S"BIII	CI	Experimental Value ^c	Chem
													.I.A
R						Bond Len	gths						.U.
NI-C2	1.4630	1.4499	1.4513	1.4618	1.4618	1.4476	1.4476	1.4491	1.4491	1.4444	1.456	1.466	Ir
NI-H3	1.0131	1.0128	1.0152	1.0134	1.0134	1.0128	1.0128	1.0148	1.0148	1.0142	1.021	1.001	an
C2-C5	1.5193	1.5189	1.5195	1.5208	1.5208	1.5196	1.5196	1.5205	1.5205	1.5123	1.523	1.529	
C2-H6	1.0943	1.0940	1.0945	1.0947	1.0947	1.0941	1.0941	1.0945	1.0945	1.0919	1.102	1.081	
C5=08	1.2434	1.2096	1.2086	1.2432	1.2432	1.2110	1.2110	1.2100	1.2100	1.2072	1.220	1.204	
C5-09	1.3963	1.3526	1.3540	1.3981	1.3981	1.3549	1.3549	1.3565	1.3565	1.3521	1.367	1.354	
01H-6O	0.9788	0.9675	0.9671	0.9811	0.9811	0.9692	0.9692	0.9682	0.9682	0.9705	0.974	0.966	
~						Rond and	90						N
C2-N1-H3	113.25	109.21	108.56	114.30	114.30	110.48	110.48	109.89	109.89	109.97	109.4		1. <u>N</u>
NI-C2-C5	115.14	115.18	114.97	115.35	115.35	115.70	115.70	115.53	115.53	115.50	115.4	113.0	Ion
N1-C2-H6	109.45	109.81	110.01	109.38	109.38	109.73	109.73	109.87	109.87	110.01			ajj
C2-C5=08	126.54	125.57	125.35	126.70	126.70	125.92	125.92	125.73	125.73	125.78	125.8	125.1	em
C2-C5-09	110.92	111.19	111.25	110.53	110.53	110.80	110.80	110.91	110.91	110.95	111.0	111.5	ni .a
C5-09-H10	110.31	106.80	105.40	111.04	111.04	107.65	107.65	106.25	106.25	106.34	106.1	110.5	et a
∠t						Torsion a	ngles						1.
H3-C2-N1-H4	127.01	115.64	113.46	129.91	129.91	118.29	118.29	116.41	116.41	116.11	•		
H3-N1-C2-C5	-63.51	-57.82	-56.73	-64.96	-64.96	-59.15	-59.15	-58.21	-58.21	-58.06	-57.3	,	
H7-C2-N1-C5	121.72	122.00	121.69	121.73	121.73	122.06	122.06	121.76	121.76	121.88			
08=C5-C2-N1	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.0	0.00	
09-C5-C2-08	179.99	180.00	180.00	179.98	179.98	180.00	180.00	180.00	180.00	179.99	·	,	
					Rotational	constants							
V	9.882	10.300	10.303	9.846	9.846	10.254	10.254	10.262	10.262	10.326	10.130	10.342	Vo
2 (20/.5	C88.5	5.894 010 C	CC/.C	CC/.5	0000 0	2 000	2.8/0	5.8/0	106.5	5.844 2 979 C	5.8/0	1. 3
د	010.7	110.7	616.7	0007	0007	002.7	0007-7	C0/-7	CNC-7	C7C17	0/0.7	717.7	, N
						Dipole mo	ment						0.2
н	1.068	1.316	1.306	1.110	1.109	1.313	1.306	1.299	1.294	1.298	1.300	1.150	2, S
^a Distances (R) in an theoretical rotational	igstroms, ar constants re	ngles (A and sfer to equilib	τ) in degree srium values	s, rotational (A ₆ , B ₆ and C	constants (A C ₆), but availa	, B and C) able experim	in GHz, and tental constar	dipole mon ts do not. ^b	tents(μ) in d From ref. [1	lebyes. For 1 5].°From r	numbering o ef. [9].	f atoms see Figure	ummer 2006 that Note that
													5

133

1.2. Charge

In this section such as the energy which was discussed at above, we decide to study the point charges obtained with the HF method and different basis sets based on the effects of splitting, polarization and diffuse functions which were used in basis sets. As it is apparent from Figure 1, there are two main internal Hbonds in conformer (I) of glycine molecule, i.e. H3, H4 ... O8 and H6, H7 ... O9. Because of the symmetry present in the molecule, we just discuss about H3 ... O8 and H6 ... O9 bonds. Undoubtedly, the stability degree of this conformer is directly proportional to the strength of the H-bonds. Unfortunately, due to the lack of comparative data in the literatures to determine the appropriate basis set, we only show how the strength of H-bonds will be changed by the basis sets.

3.5.1. Splitting effect: Figure 12 shows the charge on different atoms versus the basis set for conformer (I) of glycine, mainly ranking on splitting. In the minimal basis sets (STO-nG) as n increase, a tangible increment on the absolute value of charges on the atom centers and so the strength of intramolecular H-bonds observes. The increment in the number of primitive gaussians for the electrons of core (as happened for 3-21G, 6-21G and their derivatives) and valance layer (as regarded to 6-21G and 6-31G) doesn't affect so much on the value of atomic charges, but more splitting (like 6-311G triple zeta against 6-31G double zeta and their derivatives) in basis sets catch a considerable changes on atomic charges towards weaker Hbonding. With comparing the couples of S'II-S"II, S' α - S" α and S' β - S" β , it is obvious that the descending procedure of charge quantities on the atomic centers is totally general, but exceptionally the presence of diffuse function in basis set just on the C2 and H6 atoms contravene severely this generality, so that the atomic charge on these centers increase exceptionally. For instance, the S" β basis set predicts that the C2 atom is even more electronegative than N1 atom. However, the subject of weakening the H-bonds doesn't change.

Figure 12. Charge on different atoms versus basis set for conformer (I) glycine, ranking on splitting.

3.5.2. Polarization effect: As a general rule for the addition of polarization functions in different types of double and triple zeta basis sets, we can express: "by the inclusion of more polarization functions to each type of basis set derivatives, there is a propensity to decrease of the absolute charge concentrated on the whole atoms, and consequently to weaken the H-bonds." The decrement intensity is further specifically when the polarization function adds to basis set for the hydrogen atoms. This descending run repeats with going from (d, p) to (2df, pd) except for S" β , while everything is reversed completely in (3df, 3pd) and basis set tends severely to show the charge values on the atoms much intense and make the intermolecular bonds much more polar. This changes are dominant especially for C5 which has become strongly positive, for N1, O8 and O9 which has become strongly negative and also for C2 which in S"a unlike to the negative values predicted from all the other basis sets precipitate strongly positive.

Figure 13. Charge on different atoms versus basis set for conformer (I) glycine,

J.Phys.	&	Theo.	Chem	.I.A	.U.	Iran
---------	---	-------	------	------	-----	------

Vol. 3, No. 2, Summer 2006

ranking on the number of added polarization functions.

3.5.3. Diffuse Effect: Involving the diffuse functions in basis sets except for some atomic centers, doesn't afford a considerable change in atomic charges. The centers of C5 and N1 enhance to a relatively severe diminution of charge value and inversely the C2 center to a severe accretion of the negative charge. In the derivatives of 6-311G basis set, these changes is more intensive due to the increment of positive charge on H6, H7 (for C2) and decrement of negative charge on O9 nucleus. Therefore we except to obtain a bit more stable structures through using diffuse functions in the basis sets especially in the 6-311G and their derivatives.

Figure 14. Charge on different atoms versus basis set for conformer (I) glycine, ranking on the number of added diffuse functions.

1.3. IR Spectrum

The frequency calculations were done at the stationary points obtained by optimization separately at each level of theory.

So in Tables 4 and 5, we have listed fifteen normal modes of neutral glycine in gas phase calculated by the HF and MP2 methods, respectively, with 29 different basis sets, in comparison with the corresponding experimental values resulted from the matrixisolation infrared spectroscopy given by Stepanian and et al [9]. The numbers in the gray cadres show more conformity with the experimental data, but the bold numbers insist on wrong or remote data and also the maximum digression from the experiments. The regular numbers are those we don't have opined about them.

In general, by comparison of the results of calculations by the HF and MP2 methods as shown in Tables 4 and 5 respectively, it is obvious that the HF method due to the lack of electron correlation inclusion, overestimates the frequencies more than the MP2 method. Meanwhile the latter one has less mistakes than the earlier one in predicting the intensities.

The STO-nG basis sets overestimate intensely the frequencies and have completely wrong assessment for the intensities especially in the HF method.

The 3-21G and 6-21G basis sets have an adequate evaluation of the frequencies under 1429 cm⁻¹ and over 3410 cm⁻¹. In this range (except for 619 cm⁻¹ in HF and 3560 cm⁻¹ for MP2), the intensities are assessed accurately, whereas the inmost intensities especially for the HF method are miscued severely. By comparison of the results obtained .

equencies Norma	m ²	I N	lodes	of GI	ycine																						
q IR Freq IR Freq IR Int	Freq IR Freq IR Int	IR Freq IR Int Int	Freq Int	2 =	E	req IR Int	: Freq	In R	: Freq	ht R	Freq	IT R	Freq h	R Fr	eq Int	: Freq	II II	Freq	IR .	Freq	IR F	in par	R : Freq	L IR	Freq	IR Int	
18 547 32 678 18	547 32 678 18	32 678 18	678 18	00	6	88 20	: 103	•	: 1219	42	1358		1371 2	13	73 3	: 1801	-	2063	4	2240	81 : 3	1 169	: 4160	9	4377	1	
24 539 45 659 17	539 45 659 17	45 659 17	659 17	-	6	59 25	1020	-	1141	35	1313	=	1360 3		10 10	1778	~	2023	~	2132	81 . 3	601 1	408	8	4245	2	
25 538 48 662 17	538 48 662 17	48 662 17	662 17	-	6	59 29	102	-	1130	100	1313	=	1358 3	16	11 11	1774	6	2015	6	2135	80 3	601 1	: 408(0	4205	9	
40 545 66 684 4	545 66 684 4	66 684 4	684 4	19-514	1	95 323	: 915	52	966	12	1178	82	1222 2	39 15	614 36	: 1615	24	1861	28	1967	263 : 3	241 1	0 3781	1 7	3868	99	
3 40 545 66 684 4	545 66 684 4	66 684 4	684 4	2015	1	95 323	915	52	966	12	1178	82	1222 2	39 15	614 36	: 1619	24	1861	28	1967	263 : 3	241 1	0 3781	1 7	3868	99	
41 541 66 683 5	541 66 683 5	66 683 5	683 5	1000	80	00 306	913	59	266	10	1175	. 16	1218 2	18 15	112 35	1621	22	1859	26	1948	255 3	239 1	1 3775	3 5	3844	59	
7 33 543 40 705 110	543 40 705 110	40 705 110	705 110	=	6	15 62	100	\$	1062	171	1224	23	1287 2	98 15	56 36	: 1611	6	1845	19	2054	307 : 3	215 2	3 3699	0 6	3924	73	
49 556 55 688 20	556 55 688 201	55 688 201	688 201	0	4	45 380	933	37	1000	4	1220	250	1260 8	3 15	48 27	: 1618	25	1861	38	1922	328 : 3	230 1	4 : 3918	8 16	3992	93	
34 553 39 708 138	553 39 708 138	39 708 138	708 138	õ	6	62 60	100	1	: 1045	199	1232	40	1297 2	<u>4</u> 2	570 36	: 1610	6	1852	25	2035	386 : 3	237 2	0 3818	8 5	4052	110	
5 34 550 40 704 133	550 40 704 133	40 704 133	704 133	33	6	03 100	: 100	5	: 1022	179	1228	\$	1287 2	51	64 44	1593	10	1821	26	2032	385 : 3	215 2	1 3837	9 1	4128	111	
47 562 65 686 180	562 65 686 180	65 686 180	686 180	80	5	29 335	927	31	866	12	1207	290	1250 4	2 15	42 19	1613	27	1863	42	1894	354 : 3	228 1	3 : 3919	9 21	3983	66	
47 562 64 685 18(562 64 685 180	64 685 180	685 180	8	7.	28 322	926	31	266	12	1206	297	1250 3	8 15	42 18	: 1613	27	1862	4	1894	351 : 3	228 1	4 : 391	7 19	3983	66	
34 553 42 701 13	553 42 701 13	42 701 13	701 13	3	6:9	03 84	: 100	\$: 1026	179	1228	61	1297 2		63 35	: 1605	10	1855	29	2009	430 : 3	237 1	9 : 3831	1 10	4046	117	
34 552 42 700 136	552 42 700 13	42 700 13	700 136	ŝ	5 : 9	04 80	1007	ŝ	1029	179	1228		1297 2	15	63 33	: 1605	=	1855	29	2009	428 3	237 1	9 3827	8 1	4046	117	
1 34 548 45 695 11	548 45 695 11	45 695 11	695 11	-	80	94 115	166 : :	148	866	9	1225	99	1285 2	15	56 42	1588	=	1821	29	2007	428 3	217 2	0 3849	9 12	4123	123	
1 34 548 45 695 11	548 45 695 11	45 695 11	695 11	-	80	94 113	: 998	147	866	9	1225	. 19	1284 2	15	56 40	1588	Ξ	1821	29	2007	426 3	217 2	0 3849	11 6	4123	123	
31 547 43 695 11	547 43 695 11	43 695 11	695 11	-	80	00 100	: 998	133	666	9	1219	12	1282 3	15	35 35	1580	Ξ	1808	24	1996	412 3	192 2	2 3815	5 11	4096	118	
31 550 41 695 11	550 41 695 11	41 695 11	695 11	-	8	94 88	666 :	s	: 1008	136	1219	. 69	1284 3	. 15	46 35	1578	Ξ	1809	22	1994	403 3	188 2	2 : 3801	1 10	4096	119	
0 45 555 52 685 19	555 52 685 19	52 685 19	685 19	6	1 : 0	87 333	: 939	49	: 1003	10	1215	244	1261 9	8 15	51 23	: 1617	25	1873	26	1899	347 5 3	207 1	7 : 3874	4	4041	83	
34 : 557 37 719 150	557 37 719 15	37 719 15	719 150	š	6 . 0	96 76	. 1000	5	: 1043	: 961	1225	4	1298 3	. 12	61 30	1598	Ξ	1869	26	2017	418 : 3	221 2	4 : 3827	1 2	: 4121	83	
4 31 548 44 700 14	548 44 700 14	44 700 14	700 14	4	6	02 86	: 100	9	: 1024	163	1221	22	1285 3		53 38	1586	=	1816	23	2015	406 3	200 2	2 3808	8 5	4119	114	
8 45 553 68 679 16	553 68 679 16	68 679 16	679 16	9	8 . 7	70 324	933	41	266	10	1208	266	1253 7	3 15	44 21	: 1614	1 25	1869	22	1883	370 : 3	204 1	6 3879	11 6	4031	87	
45 555 65 680 16	555 65 680 16	65 680 16	680 16	0	7 : 9	70 324	. 933	42	966	10	1207	266	1253 7	3 : 15	44 21	1613	25	1869	24	1883	367 3	204 1	5 3878	8 10	4031	88	
34 553 45 703 14	553 45 703 14	45 703 14	703 14	4	4 : 9	64 10	: 1007	9	: 1026	176	1222		1297 2		56 31	1597	12	1868	27	2001	448 : 3	221 2	2 : 383:	5	: 4114	92	
33 554 44 703 14	554 44 703 14	44 703 14	703 14	<u> </u>	6:5	64 10	: 1007	9	: 1026	176 :	1222		1297 2		56 31	: 1597	12	1867	27 :	2001	446 : 3	221 2	2 : 3835	5 5	: 4114	92	
t 32 545 51 698 1	545 51 698 11	51 698 11	1 869			96 56	666 :	9	1004	4	1219	73	1285 3	51	37	1585	12	1815	25 :	2000	437 3	201 2	0 : 3819	9 10	: 4115	123	
1 32 546 50 698 11	546 50 698 11	50 698 11	11 869	_		96 56	666 :	9	1004	143	1219	73	1285 2		36	1585	12	1815	25	2000	436 : 3	201 2	0 : 3819	9 10	: 4115	123	
30:549 47 698 10	549 47 698 10	47 698 10	698 10	•		92 100	666	130	1001	9	1218	75	1285 2	69 : 15	35 35	1583	12	1810	24	1994	416 3	192 2	1 3808	8 11	4098	120	
30 549 43 698 11	549 43 698 11	43 698 11	11 869	-		33 96	1000	9	1002	131	1220	73	1288 3		50 34	1586	Ξ	1808	21	1997	404 3	191 2	2 3813	2 10	4109	115	
1 500 1 619 3	500 1 619 3	1 619 3	619 3			01 4	883	0	907	0	1011	 S	1136 2		73 0	1429	0	1630	0	1779	? . 2	958 1	341(0 0	3560	ŝ	
O bend, CCOH tor, CCOH t str CCH bend NCC-O to	CCOH tor, CCOH t CCH bend NCC-O to	tor, CCOH t end NCC-O to	CCOH 1 NCC-O to		or, C	C str, C-O	CON	bend,	CNH k	pus	CN str, str	9	CN str, C	80 9	CH bend, O str	НСН	bend	HNH CNH be	bend, nd	C=O str	00	H6 st H7 str	, NH s	5	OH str		
•		8		1	1														1							Ĩ	

M.Monajjemi .et al.

Vol. 3, No. 2, Summer 2006

Table 5: II	R Frequ	uenci	es (cm	1 ⁻¹) an	d Inten.	sities	of GI	ycine,	calcul	ated b	y MP2	metho	.pc																
	IR)	Vorn	nal N	lode	s of G	lyci	ne																						
MP2/ Basis set	Freq	In In	Freq	II II	Freq	E R	Freq	In R	Freq	E R	Freq	E B	Freq	E R	Freq	E R	Freq In	R Fr	eq II	Fre	q IR Int	. Fre	4 IR	Freq	In R	Freq	In IR	Freq	IR Int
A2	439	17	523	s	634	48	907	17	968	0	1142	21	1278	85	1293	2	1607 13	2 : 17	05 0	196	1 7	196	8 41	3499	-	3879	1	4002	18
A3	428	53	510	6	621	67	880	15	962	0	1081	54	1236	73	1279	6	1556 1.	2 : 16	1 62	185	2 35	161	1 1	3395	5	3775	5 12	3850	2
A6	429	22	509	10	621	11	882	17	096	0	1075	57	1237	99	1276	2	1555 1.	3 16	75 1	185	7 33	161	0 8	339		3757	6 1	3798	20
S'3	458	36	521	20	654	129	794	161	874	121	944	2	1085	211	1140	61	1420 1	5	55 15	9 : 174	108	177	3 108	3119	6 (3498	8 16	3535	0
IS'3I	458	36	521	20	654	129	794	161	874	121	944	5	1085	211	1140	61	1420 1	15	55 19	9 : 174	108	177	3 27	3115	6 (3498	\$ 16	3535	0
S'62	454	37	516	49	645	126	794	143	872	130	945		1077	204	1141	62	1419 1	15	57 18	3 172	4 105	177	0 23	3116	6 9	3466	112	3522	0
S'621	469	35	521	35	069	93 :	860	55	956	7	1010	153 :	1167	135	1206	123	1457 35	5 : 15	35 1(1 174	12 17	187	2 168	3112	7 13	3505	0	3588	37
S	461	43	519	4	644	163	763	286	870	67	938	2	1086	281	1167	15	1425 12	2 : 15	38 21	111	3 143	176	3 32	3091	12	3595	¥	3666	4
I.S	471	36	521	33	682	611	859	64	964	5	993	185	1165	177	1204	109	1452 23	8 : 15	23 15	3 : 173	9 22	184	9 215	3123	11	3616	4	3691	99
S'II	470	36	518	31	676	114	857	69	941	5	983	165	1160	190	1200	16	1450 2	7 : 15	16 16	121 - 1	3 20	185	0 210	3147	7 13	3674	m	3814	62
S'a	460	39	523	5	624		736	305	855	45	933	0	1060	316 :	1155	2	1417 4	15	25 21	7 : 168	174	176	5 39	3085	11	3563	4	3678	12
S'B	460	39	522	19	624		737	297	855	48	934	5	1059	319	1154	2	1417 4	15	21 20	5 168	173	176	3 39	3083	11	3563	43	3673	10
S'al	468	36	517	42	652	113	848	73	936	-	959	164	1146	253	1193	47	1435 22	2 15	II	7 : 173	9 26	181	2 268	3115	7 12	3631	10	3665	75
S'BI	468	36	515	40	651	114	847	72	936	-	958	160	1146	255	1192	47	1436 2	1 15	07 1.	7 : 173	17 26	181	2 260	3112	7 12	3629	6 (3665	74
S'αII	468	35	510	4	644	105	842	88	930	-	941	132	1143	262	1189	38	1433 2	1 : 15	s05 14	121	2 25	181	3 261	3141	13	3691	10	3791	74
S'BII	468	35	509	39	643	106	841	87	930	-	940	130	1143	264	1189	38	1433 20	0 : 15	02 14	171	1 25	181	3 255	314(13	3691	6	3791	73
s"	461	40	512	40	634	152	781	229	874	100	936	5	1083	288	1170	21	1432 7	15	18 21	1 : 176	0 155	: 176	8 36	3046	5 14	3625	37	3633	7
IS	473	34	518	37	683	122	857	62	938	7	994	: 161	1166	171	1204	142	1439 24	4 : 14	96 16	5 : 175	7 25	. 184	2 245	3105	5 14	: 3648	ŝ	: 3772	49
IIS	472	32	507	42	652	92	853	62	937	 	983	151	1155	194	1194	 -	1430 2	14	181 13	2 16	77 19	184	12 22	8 310	2 15	363	2 3	3818	99
S"a	460	38	511	70	622	4	752	256	860	61	927	-	1066	316	1159	9	1424 4	15	13 24	167	9 175	: 176	8 39	3041	112	3598	41	3639	æ
S"B	460	38	512	67	622	4	752	255	859	62	927	_	1065	318	1158	9	1423 4	15	13 24	163	9 174	176	6 38	3041	12	3598	8 41	3638	٢
S"αI	472	34	508	25	645	9	849	67	930	6	965	168	1153	240	1194	83	1429 20	0 14	.1 68	7 : 175	8 24	182	0 284	3103	3 13	3655	8	3751	57
Ig"S	471	34	509	49	646	112	849	89	929	5	963	166	1153	241	1194	84	1429 20	0 14	1. 88	7 175	7 24	182	0 282	3102	2 13	3655	8	3751	57
S"αII	470	32	494	56	641		844	12	927	-	156	128	1144	255	1188	64	1419 2	2 14	1 17	1 163	9 22	182	1 265	3101	14	3645	6	3805	75
S"BII	470	31	495	2	641		844	12	926	-	950	128	1144	255	1188	65	1419 2	2 : 14	175 14	4 163	9 22	182	1 264	3100	14	3644	6 1	3805	75
Experiment ^a	463	-	500	-	619	 m	801	4	883	6	202		1011		1136		1373 0	4	129 0	. 163	0 0	171	÷ 6	2958	-	341(0	3560	m
Explanation	CC-OI CC str	hend,	CCOH CCH b	tor, end	CCOH NCC-O 1	tor, or	CC str. str	C-0	CNH CC str	bend,	CNH ben	5	CN str, str	C-0	CN str, str	C O	CCH hent C-O str	d, H(CH bend	CNH	H bend, I bend	Ŭ.) str	CH6 CH7	str,	s HN	ь	OH stu	
^a From ref. [9].																												

J.Phys. & Theo.Chem.I.A.U. Iran	M.Monajjemi .et al.	Vol. 3, No. 2, Summer 2006

with the 3-21G and 6-21G sets by both HF and MP2 methods, we can deduce that the increment of primitives for core electrons causes an slight improvement for the frequencies, although most of the time it is negligible.

Comparing the results of the 6-21G and 6-31G simple double zeta split valence basis sets reveals that the basis set containing less primitives in valence layer (i.e. 6-21G) shows a better correspondence with experimental values in both HF and MP2 methods. However, in prediction of intensities, 6-31G are more prosperous.

The comparison of the 6-31G double zeta with 6-311G triple zeta split valence basis sets shows that there is not any substantial difference between their results in the MP2 method, while in HF, it is for the benefit of 6-311G.

We can infer the efficacy of polarization functions via the comparison of basis sets in three groups (6-21G, 6-21G*), (6-31G, 6-31G*, 6-31G**) and (6-311G, 6-311G*, 6-311G**). As one can see, the addition of polarization functions either in the HF or MP2 method especially under frequency 1429 cm⁻¹ pervert most of the frequencies from the experiment and misstate the intensities. In the HF method, over the frequency 1429 cm⁻¹, this addition causes an improvement in the intensity predictions. These deductions repeat exactly for the groups (6-31+G, 6-31+G*, 6-31+G**), (6-31++G, 6-31++G*, 6-31++G**, 6-31++G(2d,p), 6-31++G(3d,3p)) and the corresponding groups for 6-311+G and 6-311++G.

On the other hand, with comparing the results obtained by basis sets in two groups (6-31G, 6-31+G, 6-31++G) and (6-311G, 6-311+G, 6-311++G) in both HF and MP2 methods, we realize that the addition of diffuse functions always improves the frequencies without any salient changes. The efficacy of adding diffuse functions for hydrogen atoms is much less than it for heavy atoms. These deduction repeats for the groups ($6-31G^*$, $6-31+G^*$, 6- $31++G^*$), ($6-31G^{**}$, $6-31+G^{**}$, $6-31++G^{**}$) and the corresponding groups for 6-311G* and 6-311G**.

At the end, we can suggest that the simple double zeta 6-21G and 6-31G and triple zeta 6-311G split valence basis sets and also their corresponding diffuse augmented basis sets achieve more success in predicting IR spectrum of glycine respect to the other basis sets either with the HF or MP2 method. It seems that 6-311++G are more successful among them, but if necessary to reduce the calculation time, one can content oneself with those simple double and triple zeta basis sets. Finally, it should be noted that the HF method for determination of the intensities and the MP2 method for predicting more accurate frequencies are more adequate.

2. Conclusions

The calculations were accomplished with two HF and MP2 methods using the various basis sets including the STO-nG series (n=2,3 and 6) and the derivatives of Pople's double and triple zeta basis sets including 3-21G, 6-21G, 6-31G, and 6-311G which were augmented with the different combinations of diffuse and polarization functions, as we listed in Table 1. Dunning's cc-pVnZ basis sets have also been applied to determine the HF limit of the molecule properties, as we presented in Table 2 and Figure 3. The fully geometry optimization of the conformer I of gaseous glycine (figure 1) was done by each level of theory, without any symmetry restrictions. The results were compared together and with the experiment and also the corresponding HF limits to find how these properties depend on the basis sets.

The following mentionable conclusions can be drawn from the present theoretical study:

1. In study of total energy, dipole moment and zero point energy in the 3.3 section, we discussed comprehensively the effects of the increment of splitting, polarization and diffuse functions to basis sets. As seen, the increase of primitives in the minimal basis sets and the splitting in the split valance basis sets cause a continuous decrease

M.Monajjemi .et al.

in the energy level of system and coming close to HF limit. The number of primitives in core layer on the contrary to valence layer impress extremely on energy. On the other hand, the triple zeta basis sets tend to improve the results more than double zeta basis sets. In general, the addition of polarization functions in basis sets exponentially decrease the energy, so that the assessment of basis set limit is predictable. The addition of diffuse function for hydrogen atoms doesn't create tangible changes in above properties.

Moreover, The MPn methods (in any order) and the B3LYP, due to considering electron correlation generally predict the energy about %0.3 and %0.5 lower, respectively and also have improvable effect on dipole moment results.

With attention to aforesaid highlights and Figures 2 to 10 in section 3.3, we suggest 6-311G basis set to run a quick calculation with adequate accuracy and the bigger 6- $311+G^{**}$ basis set for more accurate calculations.

2. In geometry studies we find that STOnG basis sets overestimates the bond distances of glycine. This overestimation improves as n increase. 3-21G overestimate almost all the bond lengths. The same observation can be made for the 6-21G sets.

On the other hand, there is no meaningful difference between the results of 6-31G double zeta and 6-311G triple zeta basis sets and their corresponding derivatives. Anyhow, in both kind of basis sets, the addition of polarization functions for heavy atoms makes a relative improvement in the bond lengths. Anyway, further addition of polarization for hydrogen atoms makes them results a bit critical. Also more addition of polarization function and the complexity of the calculations doesn't improve the results. Also, the basis sets augmented with diffuse functions underestimate the most of bond lengths. At last, the results of MP2 have better agreement with the experiment respect to the HF method.

The effect of the addition of polarization functions and diffuse functions on angle values is completely inversed together. The addition of more polarization functions enforce the angles to tend to experiment in a gentle run. The addition of the first polarization function, impress very intensive only for C2-N1-H3 and C5-O9-H10 angles equal to about 5.5° for 6-31G derivatives. The more inclusion of polarization functions impress them much less.

So with attention to above, it seems that the 6-31G* can be the most adequate to attain the geometry parameters.

3. In the calculation of atomic charges we conclude that:

As n increase in STO-nG, a tangible increment on the absolute value of charges on the atom centers and so the strength of intramolecular H-bonds observes. The increment in the number of primitive gaussians for the electrons of core and valance layer doesn't affect so much on the value of atomic charges. Also more splitting valence basis sets catch a considerable changes on atomic charges towards weaker H-bonding. Furthermore a general rule for the addition of polarization functions in different types of double and triple zeta basis sets consist "with including more polarization functions to each type of basis set derivatives, there is a propensity to decrease the absolute charges on the all atoms, and consequently to weaken the H-bonds". On the other hand, we except to obtain a bit more stable structures through using the diffuse functions especially in the 6-311G basis set and their derivatives.

4. In the study of the IR spectrum, we find that the HF method generally because of the lack of embracing the proportion of electron correlation overestimates the frequency much more than the MP2 method. Moreover it makes more mistake to predict the intensities. Then the HF method for determination of the intensities and the MP2 method for predicting of more accurate frequencies are more adequate.

The STO-nG minimal basis sets overestimate intensely the frequencies and evaluate the intensities completely wrong. By comparing the results obtained by 3-21G and 6-21G basis sets, it is revealed that the effect of the number of primitives in core layer on

J.Phys.	&	Theo.	Chem.	I.A.	U.	Iran
---------	---	-------	-------	------	----	------

the results are negligible. Through two simple double zeta split valence 6-21G and 6-31G basis sets, the 6-21G which applies less number of primitives in the valence layer is more valid in the estimation of the frequencies whereas it does inversely in determination of the intensities. Also it is manifested that the increment of splitting in valence layer in HF method improve the results. In deed, the addition of polarization functions to basis sets digress always the results from the experiment.

References

- P. J. Greenstein, M. Winitz, Chemistry of the Amino Acids, **1961**, John Wiley & Sons Ltd, New York, 435-522.
- 2. K. Iijima, K. Tanaka, S. Onuma, J. Mol. Struct. (Theochem), **1991**, 246, 257.
- R. Destro, P. Roversi, M. Barzaghi, R. E. Marsh, J. Phys. Chem. A, 2000, 104, 1047.
- 4. J. Almlof, A. Kvick, J.O. Thomas, J. Chem. Phys., **1973**, 59, 3901.
- 5. M. Kakihana, M. Akiyama, T. Nagumo, M. Okamoto, Naturforsch., **1988**, 43A, 774.
- R. D. Suenram, F. J. Lovas, J. Am. Chem. Soc., **1980**, 102, 7180.
- P. D. Godfrey, R. D. Brown, J. Am. Chem. Soc., **1995**, 117, 2019.
- 8. Y. Zheng, J. J. Neville, C. E. Brion, Science, **1995**, 270, 786.
- S. G. Stepanian, I. D. Reva, E. D. Radchenko, M. T. S. Rosado, M. L. T. S. Duarte, R. Fausto, and L. Adamowicz, J. Phys. Chem. A, **1998**, 102, 1041.
- 10. S. Vishveshwara, J. A. Pople, J. Am. Chem. Soc., **1977**, 99, 2422.
- 11. C. E. Dykstra, R. A. Chiles, M. D. Garrett, J. Comput. Chem., **1991**, 2, 266.
- J. H. Jensen, M. S. Gordon, J. Am. Chem. Soc., **1991**, 113, 7917.
- M. Ramek, V. K. W. Cheng, R. F. Frey, S. Q. Newton, L. Schäfer, J. Mol. Struct. (THEOCHEM), **1991**, 235, 1.
- R. F. Frey, J. Coffin, S. Q. Newton, M. Ramek, V. K. W. Cheng, F. A. Momany, L. Schäfer, J. Am. Chem. Soc., **1992**, 114, 5369.

Whereas the addition of diffuse function especially for heavy atoms operates vise versa.

Finally, we suggest that the simple double zeta 6-21G and 6-31G and triple zeta 6-311G split valence basis sets and also their corresponding diffuse augmented basis sets are valid in predicting of the IR spectrum of glycine. It seems that 6-311++G are more successful among them, but to shorten the time of calculations, one can content oneself with those simple double and triple zeta basis sets.

- A. Császár, J. Am. Chem. Soc., 1992, 114, 9568.
- C. H. Hu, M. Shen, H. F. Schaefer, J. Am. Chem. Soc., **1993**, 115, 2923.
- V. Barone, C. Adamo, F. Lelj, J. Chem. Phys., **1995**, 102, 364.
- I. D. Reva, A. M. Plokhotnichenko, S. G. Stepanian, A. Y. Ivanov, E. D. Radchenko, G. G. Sheina, Y. P. Blagoi, Chemical Physics Letters, **1995**, 232, 141.
- 19. D. Yu, A. Rauk, D. A. Armstrong, J. Am. Chem. Soc., **1995**, 117, 1789.
- 20. A. Császár, J. Mol. Struct., 1995, 346, 141.
- D. T. Neguyen, A. C. Scheiner, J. W. Andzelm, S. Sirois, D. R. Salahub, A. T. Hagler, J. Comput. Chem., **1997**, 18, 1609.
- 22. S. Hoyau, G. Ohanessian, J. Am. Chem. Soc., **1997**, 119, 2016.
- L. E. Snyder, J. M. Hollis, R. D. Suenram,
 F. J. Lovas, L. W. Brown, D. Buhl,
 Astrophys. J., **1983**, 268, 123.
- 24. a) C. C. J. Roothan, Rev. Mod. Phys. 1951, 23, 69. b) J. A. Pople and R. K. Nesbet, J. Chem. Phys. 1954, 22, 571. c) R. McWeeny, G. Dierksen, J. Chem. Phys. 1968, 49, 4852.
- 25. C. Moller, M. S. Plesset, Phys. Rev., **1934**, 46, 618.
- 26. C. Hampel, K. Peterson, H. J. Werner, Chem. Phys. Lett., **1992**, 190, 1.
- 27. a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648. b) C. Lee, W. Yang, R. G. Parr,

J.Phys. & Theo.Chem.I.A.U. Iran	M.Monajjemi .et a	dl. Vol. 3, No. 2, Summer 2006
Phys. Rev. B, 1988 , 37, 785. c) Becke, J. Chem. Phys., 1993 , 98, 56	A. D. 34. 548.	M. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys., 1984 , 80, 3265.
28. a) W. J. Hehre, R. F. Stewart, J. A J. Chem. Phys., 1969 , 51, 2657. I	. Pople, 35. b) J. B.	T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. V. R. Schleyer, J. Comp. Cham. 1083 4, 294
A. Pople, J. Chem. Phys., 1976 , 64,	5142. 36.	R. S. Mulliken, J. Chem. Phys., 1955, 23
29. a) W. J. Pietro, M. M. Francl, W. J.	Hehre,	1833.
D. J. Defrees, J. A. Pople, J. S. Bir	kley, J. $37.$	M. J. Frisch, G. W. Trucks, H. B. Schlegel
All. Chell. Soc., 1982, 104, 5055	$(0) \mathbf{K}$	G. E. Scusella, M. A. KOUU, J. K.
D. Dobbs, w. J. Henne, J. Comp. 1086 7 250 a) K D Dobbs W I	Ulelli., Hebre	Montgomery Ir D E Stratmann I C
I Comp Chem 1987 8 861 d	NK D	Burant S Dapprich I M Millam A D
Dobbs W I Hehre I Comp	Chem	Daniels K N Kudin M C Strain O
1987 8 880	chem.,	Farkas I Tomasi V Barone M Cossi R
30. a) J. S. Binkley, J. A. Pople, W. J.	Hehre.	Cammi, B. Mennucci, C. Pomelli, C.
J. Am. Chem. Soc., 1980 , 102, 939	9. b) M.	Adamo, S. Clifford, J. Ochterski, G. A.
S. Gordon, J. S. Binkley, J. A. Popl	e, Ŵ. J.	Petersson, P. Y. Ayala, Q. Cui, K.
Pietro, W. J. Hehre, J. Am. Chen	n. Soc.,	Morokuma, D. K. Malick, A. D. Rabuck
1982 , 104, 2797.		K. Raghavachari, J. B. Foresman, J.
31. a) R. Ditchfield, W. J. Hehre, J. A	. Pople,	Cioslowski, J. V. Ortiz, B. B. Stefanov, G.
J. Chem. Phys., 1971, 54, 724. b) W. J.	Liu, A. Liashenko, P. Piskorz, I.
Hehre, R. Ditchfield, J. A. Pople, J.	. Chem.	Komaromi, R. Gomperts, R. L. Martin, D.
Phys., 1972 , 56, 2257. c) P. C. Ha	riharan,	J. Fox, T. Keith, M. A. Al-Laham, C. Y.
J. A. Pople, Mol. Phys., 1974, 27,	209. d)	Peng, A. Nanayakkara, C. Gonzalez, M. Challacamba, D. M. W. Cill, D. Jahrgan
M. S. Gordon, Chem. Phys. Lett. 76, 163, a) P. C. Haribaran, I. A.	, 1980, Popla	W Chen M W Wong L L Andres C
Theo Chim Acta 1073 28 213	ropie,	Gonzalez M Head-Gordon E S
32 a) A D McLean G S Chandler I	Chem	Replogle I A Pople Gaussian 98
Phys 1980 72 5639 b) R Krisl	nnan J	Revision A.6. 1998. Gaussian. Inc.
S. Binkley, R. Seeger, J. A. Po	ople, J.	Pittsburgh PA.
Chem. Phys., 1980 , 72, 650. c) A	A. J. H. 38.	C. J. Cramer, Essentials of Computational
Wachters, J. Chem. Phys., 1970, 52	2, 1033.	Chemistry: Theories and Models, 2002
d) P. J. Hay, J. Chem. Phys., 19	77, 66,	John Wiley & Sons Ltd, West Sussex, pp.
4377.		164.
33. a) T. H. Dunning Jr., J. Chem. Phys	., 1989,	
90, 1007. b) D. E. Woon, T. H. L	Dunning	
Jr., J. Chem. Phys., 1993 , 98, 1358.		