### Journal of Physical and Theoretical Chemistry

of Islamic Azad University of Iran. 6 (3) 165-171: Fall 2009 (J.Phys.Theor.Chem. IAU Iran) ISSN: 1735-2126

### Computation of the NMR Parameters of H-Capped (10, 0) and (5, 5) Single-Walled SiC Nanotubes

Goudarz M. Rouzbehani<sup>1</sup>, Temer S. Ahmadi<sup>2</sup> and Ahmad Seif<sup>1,\*</sup>

<sup>1</sup>Nanoscience Computation Lab, Boroujerd Branch, Islamic Azad University, Boroujerd, Iran <sup>2</sup>Department of Chemistry, Villannyn University, Villannyn, PA, USA

### ABSTRACT

Geometrical structure, nuclear magnetic resonance (NMR) chemical shielding tensors, and chemical shifts of silicon and carbon nuclei are investigated for twn finite size zigzag and armchair single-walled silicon carbide nanntubes (SiCNTs). Genmetrical structures of SiCNTs, Si-C bonds and bond angles of Si and C vertices in hoth zigzag and armchair nanntubes, indicate that hond lengths are approximately constant in the armchair model hut vary in the zigzag model. The NMR parameters of C auclei change more in the zigzag model as compared to the armchair model in agreement with geometrical structure changes. The calculations were performed with B3LYP DFT method and 6-31G (d) standard basis sets using the Gaussian 03 package.

Gaussian 03 package.

Keywords: Silicon carbide nanotubes; Nuclear magnetic resonance (NMR); Chemical shielding; Chemical shift

### INTRODUCTION

Since the discovery of carbon [1] and non-carbon [2-3] nanotubes, an extensive research field in the nano scale opened up because of the exceptional electranic, mechanical, thermal and transport properties of these systems. An important class of such materials is the silicon carbides (SiC) which form a solid through primarily covalent bonding, These compounds have various outstanding properties including: (1) large band gap from 2.2 to 3.3 eV[4], (2) very high decomposition temperature of about 2545 °C[5], (3) high thermal conductivity up to about 500 W/(m K) at room temperature [6]. and (4) thermal expansion coefficient smaller than  $6\mu/K$  [7]. It is therefore not surprising that SiC is finding application in high temperature electronics, high temperature abon environment [8], and high strength composites [9].

Carbon nanotubes (CNTs), depending on their chirality, have been fnund to be either metallic nr

semiconducting. CNTs are higbly aromatic systems. Replacing one-half of the C atoms in CNTs hy Si atoms decreases the aromaticity of each six-membered ring and leads to the formation of silicon carbide nanotubes (5iCNTs). The decrease in aromaticity leads to a decrease in stability. Therefore, the exterior surface of SiCNTs is more reactive than that of single-walled CNTs. For example, the electronic structures of SiCNTs can be altered by selective hydrogenation [19].

Recently silicnn carhide nanntubes (SiCNTs) [10, 11], SiC nannbelts [12], SiC nannwires [13-14] and SiC nanowebs [15] have been synthesized. The structure and stability of SiC nanotuhes have been investigated in detail using ab initio density functional theory [16]. Such studies show

<sup>\*.</sup>Corresponding Author: Ahmaseif@yahoo.com

that the SiC nanotubes with alternating Si-C bonds are more stable than the forms which contain C-C or Si-Si bonds [16]. SiCNTs are always semiconductors with direct band gaps for the zigzag tubes and indirect band gaps for the armchair and chiral tubes, as calculations indicate [17]. The nature of the chemical honds in CNTs and SiCNTs are different. As a consequence, SiCNTs are polar materials due to the higher electronegativity of carboa atom with respect to the silicon atom in the SiCNTs. Hence, physical properties of SiCNTs are different fram those of the covalently bonded homo polar CNTs. For example, zigzag SiCNTs may becnme piezoelectric, and also show second-order nonlinear notical response [18].

Nuclear magnetic resonance (NMR) spectroscopy is among the most versatile techniques to study the electronic structure properties of matter [20]. Nuclei with uuclear spin angular momentum greater than zero (magnetic nuclei) e.g. <sup>29</sup>Si and <sup>13</sup>C, are detected by NMR. The chemical shielding (CS) tensors are very sensitive to the electronic density at the sites of magnetic nuclei, and feel changes by any perturbations. Both experimental and theoretical NMR studies, carried out nu CNTs, successfully reveal that NMR parameters are powerful tools to determine and characterize structures of nanotubes [21-22]. In recent years, aluminum and boron nanotubes (AINNTs and BNNTs) have been theoretically and experimentally studied using NMR spectroscopy [23-24].

In this work, calculations of NMR parameters are applied fur the first time to study the electronic structure and properties of two SiCNTs including (10, 0) and (5, 5) types.

# COMPUTATIONAL METHOD and GEOMETRICAL STRUCTURES

Iu this work, all computations are carried out via Gaussian 03 package [25] at the level of deusity functional theory (DFT) using the hybrid exchange-functional B3LYP method. NMR values calculated using density functional theory are only somewhat sensitive to the basis set [26], and 6-31G (d) basis set have been recommended [27]. Our considered models of SiCNTs are (10, 0)zigzag and (5, 5) armchair types (designated as model I and model 2, respectively). Model 1 is the (10, 0) SiCNT consisting of 40 Si and 40 C atoms where the two ends of the tube are capped by 20 H atoms (Figure1.), Model 2 is the (5,5) armchair SiCNT consisting of 40 Si, 40 C atoms where the two ends of the tube are capped by 20 H atoms (Figure 2.). Firstly, | the considered models were allowed to fully relax during the geometrical optimization by the B3LYP exchange-functional method and the 6-31G (d) basis set. Secondly, the natural population analysis (NPA), natural hond nrbital (NBO) analysis and the quantum chemical calculations were performed on the two geometrically optimized mndcls by B3LYP method and the above-mentioned standard basis sets were used to evaluate natural charges, bund order and the Si-29 aud C-13 NMR parameters. The quantum chemical calculations yield the chemical shift ( $\delta$ ) tensors in the principal axes system (PAS) ( $\delta_{11} \le \delta_{22} \le \delta_{33}$ ); therefore, equations (1), (2) and 3 are used to evaluate the shielding || (ICS), isotropic chemical anisotropic chemical shielding (ACS) and chemical shifts ( $\delta$ ) parameters [28]. + 1

| $ICS (ppm) = (\delta_{11} + \delta_{22} + \delta_{33})/3 $ | ; | (1) |
|------------------------------------------------------------|---|-----|
| ACS (ppm) = $\delta_{33} - (\delta_{11} + \delta_{22})/2$  |   | (2) |
| $\delta$ (ppm) =ICS reference-ICS                          |   | (3) |

# RESULTS AND DISCUSSION

As a first step, each nf the cunsidered zigzag and armchair representative midels of SiCNTs were allowed to fully relax during the genmetrical optimization at the level of the B3LYP DFT method and 6-31G (d) standard basis set. The results nf Table 1. indicate that Si-C bond lengths in the zigzag nanotube are not equivalent. Specifically, the 1, 6 bond (designated as 'a') is 1.79 Å which is shorter than the 5, 6 bond (designated as 'b' with a length nf 1.84 Å).



A Seif et al. /J.Phys. Theor.Chem.IAU Iran, 6(3): 165-171, Fall 2009

Fig. 1. (I) 2D view of zigzag (10,0) SiCNT and (II) 3D view of zigzag (10,0) SiCNT.



Figs. 2 (III) 2D view of armchair (5, 5) SiCNT and (IV) 3D view of armchair (5.5) SiCNT

Natural bond orbital (NBO) analysis sbows that bond orders for a bonds and b bonds are 0.85 and 1.06, respectively. The C-Si-C bond angles at the Si-end of zigzag tube is 120°; hnwever, this value increases to 123° at the C-end. It is worth mentioning that the optimized tube diameters at the two ends of zigzag SiCNT considered here are not equal; at the C-end this value is 10.20 Å and at the Si-end this is 10.07 Å. This, of course, means that the C atoms are relaxed outward while Si atoms are relaxed inward in contrast to CNTs where all the atoms are placed on the same surface of the nanotube. However, the geometrical properties of those nuclei in the center of the tube are almost similar and show small differences.

The results of our calculation for the armchair SiCNTs are shown in Table 2. The

Si-C bond lengths have almost negligible fluctuations with average values of 1.81 Å along the length of armchair tube (Table 2.). On the other hand, the C-Si-C bond angles reduces from 122° at the end of the tube to 119° at the center while the change of Si-C-Si bond angels from the end of tube to the center is negligible. However, in contrast to the zigzag SiCNTs which have two different ends, the ends of the armchair SiCNTs are similar to each other having hoth Si and C nuclei. Hence, the diameters of the tube at both ends are the same as well in the armchair model but the ends of the tube are elliptically oriented. At each end, the C-C diameter is 8.51 Å and that of Si-Si is 8.42 A. Mcanwhile, natural bond orbital (NBO) analysis show that bond order for Si-C bond is almost 0.96 in the armchair model.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |                 |                       |                  |           |                                         |                  | ŧ                |                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------|-----------------------|------------------|-----------|-----------------------------------------|------------------|------------------|----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     | -               |                       |                  |           | ): 165-171, H                           |                  |                  |                      |
| Bon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ding nuclei                                         |                 | Bond<br>lengths (Å    | Bond             | ing       | g (10, 0) SiCl<br>Bond angless<br>(dog) | Bonding          | <sup>µ</sup>     | ond angless<br>(deg) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Si-C                                                |                 |                       | C-Si             |           |                                         | Si-C-Si          | - 1 <sup>1</sup> | 11 1                 |
| s=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1-2)=(1 |                                                     | (5-4)           | 1.79                  | 2-1              |           | 120                                     | 7-2-1            |                  | 120                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =(1-2)=(1-6)=(3-4)=(5-4)<br>=(9-10)=(11-10)=(11-16) |                 | 1.,,,                 | 8-3-             | -         | 120                                     | 3-4-5            | <b>z</b> :       | 118                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =(13-14)=(15-14)=(13-12)                            |                 |                       | 10-11            |           | 120                                     | 9-10-11          | ji<br>L          | 117                  |
| (1311) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                 |                       | 12-13            |           | 123                                     | 13-14-15         |                  | 119                  |
| 3-2)=(5-6)=<br>(b=(13-10)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • • •                                               | -14)            | 1.84                  |                  |           |                                         |                  | Į.               | ,<br>                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Т                                                   | able 2. Stru    | cture para            | meters in th     | e armch   | nair (5, 5) SiC                         | '<br>Int         |                  |                      |
| Bon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ding                                                | Bond            | Bond                  |                  | and angle |                                         |                  | ार<br>Id angl    | ess                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     | ingths (Å)      | nuc                   | 2                | (deg)     | лис                                     | ei               | (deg)            |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -C                                                  |                 | C-S                   |                  |           | Si-C                                    |                  | ŧ <sup>i i</sup> | . 1                  |
| All of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | those                                               | 1.81            | 2-1                   |                  | 122       | 1-2                                     | -3               | 117              | i                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |                 | 2-3                   |                  | 119       | 1-6                                     | -5               | 118              |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |                 | 4-5                   | -6               | 117       | 3-4                                     | -5               | 119              | ľ                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |                 | 4-7                   | -8               | 119       | 3-4                                     | .7               | 117              | I.                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |                 | 8-9-                  | 10               | 120       | 7-8                                     | .9               | LÍ7.             | ŀ.,                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |                 | 8-9-                  |                  | 119       | 9-14                                    |                  | 117              | [i ]                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     | Table 3. 3      |                       |                  |           | 10, 0) SiCNT                            |                  |                  | · · ·                |
| Layers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     | <sup>29</sup> S | i                     |                  |           |                                         | <sup>-т:</sup> С | <u>, 13</u>      |                      |
| r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ICS(ppm                                             | ) ACS           | S(ppm)                | δ(ppm)           | ICS()     | ppm) /                                  | ACS(ppm)         | - δ(             | (ppm)                |
| Layer 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 297                                                 |                 | 33                    | 113              | 12        |                                         |                  |                  | 3                    |
| Layer 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 300                                                 |                 | 22                    | 110              | 11        |                                         | 96 69            |                  |                      |
| Layer 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 300                                                 | 12              |                       | 110              | 11        |                                         | 95               | 95 70            |                      |
| Layer 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 290                                                 | 12              | 22                    | 12 <u>0</u>      | 86        | 36 149                                  |                  | 102              |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |                 |                       | parameters       | in the (  | (5, 5) SiCN I                           |                  | <u> </u>         |                      |
| Layers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     | <sup>29</sup> S |                       |                  |           | , <u> </u>                              | <sup>F</sup> C   |                  |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ICS(ppm)                                            |                 |                       | <u>δ(ppm)</u>    |           |                                         | ACS(ppm)         | <u>}</u>         | <u>(ppm)</u>         |
| Layer 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 292                                                 |                 | 45                    | 118              |           | 11                                      | 109              |                  | 77<br>29             |
| Layer 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 289                                                 |                 | 40<br>41              | 121              |           | 20                                      | 97<br>08         |                  | 68<br>75             |
| Layer 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 289<br>290                                          |                 | 41<br>38              | 121<br>120       |           | 13<br>19                                | 98<br>92         |                  | 69                   |
| Layer 4<br>Layer 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 290                                                 |                 | 20<br>39              | 120              |           | 19                                      | 92               | II.              | 69                   |
| Layer 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 289                                                 |                 | 41                    | 121              |           | 13                                      | 98<br>98         |                  | 75                   |
| Loyer 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 289                                                 |                 | 40                    | 121              |           | 120                                     |                  |                  | 68                   |
| Layer 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 292                                                 |                 | 45                    | 118              |           | 11                                      | 109              | 77               |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |                 | ad <sup>13</sup> C Na | tural Charg      |           | e zigzag (10,                           |                  |                  | 1                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                   | Layers          |                       | <sup>29</sup> Si |           | <sup>D</sup> C                          |                  |                  |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                   |                 | Natur                 | al Charge        | : Na      | itural Char,                            | ge               |                  | ŀ                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                   | Layer I         | 1                     | .4241            |           | -1.4731                                 |                  |                  | :                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     | Layer 2         |                       | .84J 3           |           | -1.8466                                 |                  | J.               | 1                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     | Layer 3         |                       | .8369            |           | -1.8430                                 |                  |                  | , I. –               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     | Layer 4         |                       | .7175            |           | -1.7780                                 |                  | Įį.              |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |                 |                       | 168              |           |                                         |                  | ћ.               | >                    |

,

**•** 

Ì.

| Layers  | <sup>29</sup> Si | <sup>13</sup> C |
|---------|------------------|-----------------|
|         | Natural Charge   | Natural Charge  |
| Layer 1 | 1.4241           | -1.5055         |
| Layer 2 | 1.8119           | -1.8403         |
| Layer 3 | 1.8477           | -1.8363         |
| Layer 4 | 1.8571           | -1.8620         |
| Layer 5 | 1.8573           | -1.8620         |
| Layer 6 | 1.8477           | -1.8363         |
| Layer 7 | 1.8123           | -1.8401         |
| Layer 8 | 1.4239           | -1.5054         |

A Seif et al. /J.Phys. Theor.Chem.IAU Iran, 6(3): 165-171, Fall 2009

Table 6. The <sup>29</sup>Si and <sup>13</sup>C Natural Charges in the armchair (5, 5) SiCNT

| Next, the calculated chemical shielding                                  |
|--------------------------------------------------------------------------|
| (CS) tensors at the sites of <sup>13</sup> C and <sup>29</sup> Si nuclei |
| in bath models af SiCNTs, zigzag and                                     |
| armchair, are converted to the NMR                                       |
| parameters (ICS,ACS and $\delta$ ) which are                             |
| shown in Tables 3-6. along with the computed                             |
| natural charges for the above mentioned                                  |
| nuclei. Almost nn significant difference is                              |
| observed in the calculated NMR parameters                                |
| -                                                                        |
| and the natural charges for the atoms of each                            |
| layer; therefore, just the average calculated                            |
| values in each layer far <sup>13</sup> C and <sup>29</sup> Si nuclei are |
| reported in Tables 3-6. In the case of SiCNTs,                           |
| carbnn atoms possess negative and silicoo                                |
| atnms have positive charges because                                      |
| electronegativity of C ( $eC = 2.5$ ) is larger than                     |
| that of Si ( $eSi = 1.8$ ). This difference in the                       |
| electronegativity values lead to a charge                                |
| transfer from Si to C such that the electronic                           |
| charge density distribution along the Si-C                               |
| bond becomes asymmetric. Therefore, Si                                   |
| atoms act as carinns whereas C atoms act as                              |
| aninns in SiC nanntubes.                                                 |

As Table 3. shows, Si.4 layer is at the Cend nf zigzag tube and its ICS, ACS and  $\delta$ show no important variation from other layers, while their values for the Si.1 layer change about 7, 11 and 7 ppm, respectively. C.1 layer is at the C-end of the tube. The maximum ICS, 125 ppm, minimum ACS 89 ppm and minimum  $\delta$ , 63 ppm of C. 1 layer remain approximately constant in the middle of the tube; their actual values are found to be about 119, 96 and 69 ppm for ICS, ACS and  $\delta$ , respectively.

By going from Si-end to opposite end in the zigzag model of SiCNT, the ICS parameters of Si nuclei, i.e. 297, 300, 300, and 290 ppm, change in agreement with the trend in the natural charges, 1.4241, 1.8413, 1.8369, and 1.7175 (in units of electron charge). In this model, the ICS values for C nuclei reduce from C-end to Si-mouth (125, 119, 118, and 86 ppm) which parallels with C-Si-C bind angels and goes against the trend of the natural charges (see Table 1.). In nther words, C-Si-C bond angels' role is mire important than the role of natural charge in this midel.

The NMR parameters of (5, 5) SiCNT are shown in Table 4. There are 40 S1 and 40 C atoms in our (5, 5) model of SiCNT which could be separated into 8 layers (Figure 2(III).). For Si atoms, those atoms located at the edges of the armchair nanotube, namely layers 1 and 8, have the largest ICS (292 ppm) and ACS (145 ppm) values but the smallest  $\delta$  value (118) among all the other Si layers. The values of ICS and ACS decrease from the edge of the nanotube to the center while that of  $\delta$  increases going in the same directino. On the other hand, the ICS parameters change in agreement with C-Si-C bond angless' changes (not natural charges).

Also in Table 4., different behaviors are noticed for C atoms; layers 1 and 8, bave the smallest ICS (111 ppm) value but the largest ACS (109 ppm) value among other C layers. Since the electrostatic properties are mainly dependent on the electronic densities at the sites of C nuclei, the C atoms saturated by H atoms, plays a significantly different role amoog the nther layers in the considered armchair model. The NMR parameters of this layer are the smallest which means that the electronic densities at the sites of these auclei are less than those of other C layers. By going from the mouth of the armchair nanotuhe to the center, the values of <sup>13</sup>C's 1CS parameters (111,120,113,119 ppm) vary in parallel with the change in the natural charges (-1.5055, -1.8403, -1.8363, -1.8620). In our previous work, the variations of the NMR parameters of N nuclei along the zigzag AlNNT was found to be larger than that of C nuclei in the SiCNTs, which we attributed to the lone pair of electrons in the valance shell of N [29].

## CONCLUSION

DFT theory and hybrid functional B3LYP are applied to study geometrical structure, NMR parameters of the zigzag and srmchair

### REFERENCES

- [1] S. Iijima. Nature, 354, 56, (1991).
- [2] N.G.Chopra, R.J.Luykea, K.Cherrey, V.H. Crespi, M.L.Cohen, S.G.Louie and A. Zetel. Science, 296, 966, (1995).
- [3] H. Nakamura and Y. Matsui, J.Am. Chem. Soc, 117, 2651, (1995).
- [4] J. Luning, S. Eisehitt, J.E. Ruhensson, C. Ellmers, W. Eberhardt, Phys. Rev. B, 59, 10573, (1999).
- [5] R.W. Olesinski, G.J. Abbaschian, Bull. Alloy Phase Diag. 5, 486, (1984).
- [6] J. Li, L. Porter, S. Yip, J. Nucl. Mater. 255, 139, (1998).
- [7] L. Porter, J. Li, S. Yip, J. Nucl. Mater. 246,53, (1996)
- [8] H.C. Huang, N. Ghoniem, J. Nucl. Mater. 199,221, (1993).
- [9] W. Yang, H. Araki, C. Tang, S. Thaveethavorn, A. Kohyama, H. Suzuki, T. Noda, Adv. Mater. 17, 1519, (2005).

SiCNTs. After geometrical optimization and calculation of NMR parameters, some trends can be concluded from the results: (1) The optimization process reveals that Si-C bond lengths are approximately constant along the armchair model but those differ in the zigzag model of SiCNT, (2) The tube diameters at the two ends of armchair SiCNT considered are equal. That is not true at the C-end and Si-end for the zigzag model. (3) The calculated ICS and chemical shift tensors reveal that various Si and C nuclei in the length of models, armchair and zigzag SiCNTs, are divided into some layers with equivalent electrostatic properties io each layer, (4) The chemical shift tensor's values of the Si and C nuclei along the zigzag SiCNT change more in the armchair SiCNT model.(5) In the zigzag model the C.1 layer, C-mouth, has the largest ICS but in the armchair model the C atoms saturated by H atoms (layers 1 and 8) have the smallest ICS among other C atoms.

- [10] X.H. Sun, C.P. Li, W.K. Wong, N.B. Wong, C.S. Lee, S.T. Lee, B.K. Teo, J. Am. Chem. Soc. [124, 14464. (2002).
- [11] L.Z. Pei, Y.H. Tang, X.Q. Zhao, Y.W. Chen, C. Guo, J. Appl. Phys. 100, 046105 (2006).
- [12] G.C. Xi, Y.Y. Peag, S.M.Wan, T.W. Li, Y.T. Qian, J. Phys. Chem. B 108, 20102, (2004).
- [13] H. Dai, E.W.Wong, Y.Z. Lu, S. Fan, C.M. Lieber, Nature 375,769, (1995).
- [14] H.W. Shim, H.C. Huang, Appl. Phys. Lett. 90, 083106 (2007).
- [15] H.W. Shim, H.C. Huang, Nanotechnology 18, 335607, (2007).
- [16] M. Mennn, E. Richter, A. Mavrandnnakis, G. Froudakis, A.N. Andriotis. Phys.Rev. B 69, 115322, (2004).

- [17] M. Zhao, Y. Xia, F. Li, R.Q. Zhang, S.T. Lee, Phys. Rev. B 71, 085312, (2005).
- [18] I.J. Wu, G.Y. Guo, Phys. Rev. B 76, 035343, (2007).
- [19] M. Zhao, Y. Xia, R.Q. Zhang, S.T. Lee, J. Chem. Phys. 122, 21470, (2005).
- [20] K.B. Lipkowitz, D.B. Boyd (Eds.), Reviews in Computational Chemistry, vol. 8, VCH Publishers, Inc., New York, 1996, p. 245.
- [21] S. Latil, L. Henrard, C. Goze Bac, P. Bernier, A. Ruhio, Phys. Rev. Lett. 86, 3160, (2001).
- [22] E. Zurek, C.J. Pickard, B. Walczak, J. Autschbach, J. Phys. Chem. A 110, 11995, (2006).

- [23] J.K. Jung, K.S. Ryu, Y.I. Kim, C. Tang, Solid State Commun. 130, 45, (2004).
- [24] C.H. Lee, S. Park, J.K. Jung, K. Ryu, S.H. Nahm, J. Kim, Y. Chen, Solid State Commun. 134, 419, (2005).
- [25] M.J. Frisch et al., Gaussian 03, Revision C.01, Gaussian, Inc., Wallingford, CT, 2004.
- [26] P. Schleyer, C. Marker, J. Am. Chem. Soc. 118, 6317, (1996).
- [27] A.Seif, A. Boshra, J. of Computational and Theoretical Nannscience., 6, 732, (2009).
- [28] A. Seif, A. Boshra, J. Mol. Struct. 895, 82, (2009).
- [29] M. Mirzaci, A. Seif, N.L. Hadipour, Chem. Phys. Lett. 461, 246, (2008).

