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ABSTRAC 

We introduce a model for prediction the behavior of electrodes which modified with 
carbon nanotubes in a polymer medium. These kinds of polymer composites are 
developed in recent years, and experimental data for its percolation threshold is 
available. We construct a model based on percolation theory and fractal dimensions 
and using experimental percolation threshold for calculating the moments of current 
distribution function. 
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INTRODUTION 
Carbon nanotubes are the most exciting new 
materials to have been discovered in the past 
30 years. The explosion of interest in carbon 
nanotubes can be traced back to a 1991 
Nature paper by Sumio Iijima [1]. The 
structures discovered by Iijima were far more 
perfect than any that had been seen before, 
and promised to have exceptional properties. 
Carbon nanotubes are excellent electrical 
conductors [2], with current densities of up to 
1011  A m-2, and have very high thermal 
conductivities [3]. Many of these properties 
can be best exploited by incorporating the 
nanotubes into some form of matrix, and the 
preparation of nanotube containing composite 
materials is now a rapidly growing subject [4, 
5]. Multiple applications are expected for 
nanocomposite materials and therefore many 
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esearch works are currently devoted to their 
incorporation into a metal, ceramic or, more 
commonly, polymer matrix. The composites 
are generally prepared by mixing the desired 
quantity of single- or multi-walled carbon 
nanotubes with the matrix, which is either 
dissolved or in suspension in a liquid 
medium, before further treatments. One of the 
must important properties of nanocomposite 
materials is conductivity, and many 
researches, work on electrical percolation of 
carbon nanotubes in polymer composites [6]. 
Percolation threshold was experimentally 
measured for many kinds of carbon nanotubes 
and polymer matrixes. In this paper we want 
to introduce a model based on percolation 
theory in fractal space for prediction of 
electrical behavior of modified electrodes 
with carbon nanotube composite polymers. 
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Percolation theory: 
Percolation processeswere first developed by 
Flory (1941) and Stockmayer (1943) to 
describe how small branching molecules react 
and form very large macromolecules [7]. In 
1957,, Brioalbent and Hammersley introduced 
percolation theory, as a stochastic way of 
modeling the flow of a fluid or gas through a 
porous' niedium of small channels which may 
or may not let gas or fluid pass [9].The terms 
fluid and 'medium were viewed as totally 
general: 'a fluid can be liquid, vapor, heat 
flux, l electric current, infection, a solar 
system, and 'so on. The medium can be the 
pore Space Of rock, an array of trees, or the 
universe. It is very important that we attend to 
the differenCe between diffusion process and 
percolation process, in the first case fluid 
particles decide where to go in the medium, 
but in the second case the medium dictates 
the paths of particles. 

We can define percolation theory as a 
general mathematical theory of connectivity 
and transport in geometrically complex 
systems r[10].' The remarkable thing is that 
many results can often be represented in a 
small number of simple algebraic 
relationshlips. 

PereOlation theory is classified in two 
kinds, :sil 4 percolation and bond percolation. 
In the first kind we have an infinite lattice of 
sites which may occupied with probability p 
or unoccupied with probability /-p.In the 
other kind an ' infinite lattice of bonds exist 
and each bond may closed with probability p 
and open with 1-p. A set of sites (or bonds) 
that connected to each other makes a cluster, 
and in a lattice, one can find different kind of 
clusters 'in,  shape and size. It is clear that if p 
increases then the mean cluster size grow up 
and in a particular probability we envisage 
with an infinite spanning cluster which 
connected two ,side of the lattice (percolation 
done). This particular probability is phase , 

transition thi'eShold of system that it was 
introduced as percolation threshold pc. This 

quantity relates only on geometry of lattice, 
and it was calculated for much kind of lattices 
(some with exact calculation and others with 
computer simulation) [7, 8]. 

In addition to the percolation threshold, 
the topological properties of percolation 
networks are characterized by several 
important quantities, like as percolation 
probability P(p), mass of infinite cluster 
M(p), backbone mass MB(p), correlation 
length (p), average number of clusters with 
size s, ndp), mean cluster size S(p), effective 
conductivity g(p), and so on. The value of 
every percolation quantities for any p depends 
on the microscopic details of the system. But 
near the percolation threshold, most of these 
quantities obey scaling laws that are largely 
insensitive to the network structure. For 
example near pc  we have the following 
scaling laws: 

P(P) cc (P Pc) fi  

M ( P ) GC  (p Pc) fi  

M B(P) GC  (P Pc) fiB  

P 	Pc1 v 

	
(1) 

S(P )X 	° r  
g(p) oc (p — p c y 

The exponent's fl, fiB, v and y are 
completely universal. It means that they have 
not any relation to the microscopic details of 
the system and depends only on the 
dimensionality of the system. The exponent ,u 
is one of the transport exponents in 
percolating systems, and it also largely 
universal. So if one knows the dimension of a 
system then can find the universal exponent's 
and vice versa. 

Fractals in percolating systems: 
It is not easy to obtain many exact analytical 
results for cluster properties, and must of our 
knowledge come from complex numerical 
calculations. In such cases it is very useful to 
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invent simple mathematical model, on which 
we can do analytical calculations. It was clear 
that the geometry of infinite cluster at pc  is 
fractal [11]. Benoit Mandelbrot introduced 
fractal geometry as a unifying description of 
natural phenomena which are not uniform but 
still obey simple power laws of the form 
M cc LD 	 (2) 
D is non-integer dimension and L is liner size 
of system. Fractal dimension describe subset 
of the cluster sites (or bonds) necessary for 
calculating different cluster properties. The 
formal mathematical definition of fractal is 
defined by Benoit Mandelbrot. It says that a 
fractal is a set for which the Hausdorff 
Besicovich dimension strictly exceeds the 
topological dimension [11]. However, this is 
a very abstract definition. Generally, we can 
define a fractal as a rough or fragmented 
geometric shape that can be subdivided in 
parts, each of which is (at least 
approximately) a reduced-size copy of the 
whole. Fractals are generally self-similar and 
independent of scale. 

THE MODEL 
The calculation of critical exponents in 
equation (1) shows that there is no distinguish 
between different type of two-dimensional 
lattice, such as square, triangular or 
honeycomb lattice. The same is true for d-
dimensional lattices. Also, bond and site 
percolation have the same exponents. All 
evidence suggests that the critical exponents 
depend only on dimensionality of the lattice, 
and they are universal [7]. Critical exponents 
were exactly calculated for Bethe lattice, in 
which each site is connected to z nearest 
neighbors in a way that no closed loops are 
possible and percolation threshold is pc= (z-
Di. One of the important exponents that 
appears in the scaling law of conductivity is 
µ, and for Bethe lattices [1=3. The values of 
the critical exponents obtained for the Bethe 
lattice are the limiting case when the 
dimensionality of the system goes to infinity. 
The accurate studies show that the Bethe  

lattice critical exponent values are exact at 
d>6 , but in less dimensions it is identified 
with an expansion factor (E) as follow: 

,u = 3 — (5421) 	 (3) 

On the other hand, if we purpose that the 
geometry of infinite cluster at pc  is fractal (so 
subsets of this cluster are fractal), then it is 
possible to determine the fractal dimension of 
this cluster (and its subsets) in term of c : 

D= 4 — (10 6/21) (4)  
DB  = 2 + (6/21) (5)  

= Dmin  2 — (46) (6)  

Dmax = 2 — (442) (7)  

In these equation, D, DB, Dmin  and Dmax 
are the fractal dimension of infinite cluster, 
backbone, minimal path (chemical distance), 
and maximal self avoiding path respectively. 
Backbone is a set of clusters that they are 
connected to each other by a single bond and 
connects the opposite edges. It means there is 
practically only one chain of bonds in infinite 
cluster that connects two sides of the system. 
One can find the shortest way in backbone, it 
is minimal path. Also, the longest way in 
backbone is named as maximal self-avoiding 
path.With respects to relation between critical 
exponents and expansion factor (3), and the 
relations between fractal dimensions and 
expansion factor (4 to 7), we expect that the 
fractal dimensions and critical exponents are 
directly related to each other. 
D =2,u— 2 (8)  
DB  = (13 — p)/5 (9)  
Dm,„ = (7 p-1)110 (10)  
D. =(,u+17)110 (11)  

Now we can construct a fractal space and 
expand our system in such environment. 
Mandelbrot and Given proposed the recursive 
construction shown in Fig. 1: one begins with 
a straight segment of unit length, and at each 
iteration it is replaced by eight segments [12]. 
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Fig.! Mardelbrot curve generation. 

The length 'scale changes by a factor b 
which named generalized rescale factor. The 
generaliVd 1.4andelbrot-Given curve has L1  
singlyfi COririCied bonds, L2+L3  bonds in the 
blob (\NM 1i12  !< L3), and L4 dangling bonds 
and ith"14 have relations with fractal 
dimenSitiis as, follow: 
D = 	+ L3 + L4)/logb 	 (12) 

; 
DB 1= 	+L2 + L3)/logb 	 (13) 
D

min 	 1 	2 
+ L )ilog b 	 (14) ,  

D. = fog(LI  + L3 )/log b 	 (15) 
A simple calculation shows that the fractal 

dimensiOnt are able to explain the 
Mandellji&G'ven curve parameters (L1  to , 
L4) : 
L

1 
= b 	, 	B  bDmIn 	 (16) I 	

I 	I 	I  
L

2 
= b DB —b p  r 	 (17) 1 1 

I 	1 1  

L3 = 	 b Dm' 	 (18) ! 	1 
L 4 = b p  013 	 (19) 

J ,  
In a carbon ,nanotube-polymer composite, 

we can see a ;network of conductive parts 
which i ldistributed in a nonconductive 
mediurn, .11111:11 also we can study the 11 	f111 1 	1  

distribution of these particles with aim of 
function. It is often convenient to 

calculate the moments of distribution It' 	ffi 

function. pie distribution or current in a 
random 1ne ItWicirk is multifractal and therefore: 

11 	1 	1  

M (L) 	I 
q 	.v ( I )29 =_ Lyi (q) (20) 

M0  (L) 

In this equation M/L), If, I and tii(q)  are 
the qth moment of current distribution 
function, current through the bond j, total 
current and multifractal exponent 
respectively. The concept of multtfractality, 
implies that lit(q) has not a leaner relation 
with q. 
If it is supposed that the network of carbon-
nanotubes is a random network (it is 
necessary for applying the percolation 
theory), and this network has a structure like 
Mandelbrot-Given curve, we will be able to 
predict the moments of current distribution 
function. Blumenfeld et al. (1986) found that 
the multifractal exponents for the current 
distribution in such curve are given by: 

log[L, +(L2L34  +.L3L22q)/(L2  +L3)2 ]' v(q) 	  (21) 
logb 

Our model is based on calculating the 
Mandelbrot-Given curve parameters with 
respect to fractal dimensions of infinite 
cluster in a carbon-nanotube matrix (eqs.16-
19) and then applies these parameters for 
prediction of w(q) in eq.21. In order to 
compute the fractal dimensions, the 
experimental results of critical exponent of 
conductivity are applied (eqs.8-11). 

RESULT AND DISCUSSION 
There is one point about dangling bonds and 
its role in limitation of model. It is clear that 
the upper limit for our model is the Bethe 
lattice, in which we have infinite dimension 
and tt=3. On the other side, calculation of 
dangling bonds in Mandelbrot-Given curve 
shows us the lower limit of model. 

,u 3 	 (22) 

With applying the model in above limit, 
and according to experimental data, the first 
and second moment of current distribution 
function in an electrode which modified with 
carbon nanotube-polymer composite, was 
computed. The experimental critical 
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exponents of conductivity for some 
composites are collected in table.1 [14-21]. 

Tablel.Experimental data for Nand 11.(SWCNT=single 
wall carbon nanotube, MWCNT=multi wall carbon 
nanotube,PANI=polyaniline,PE=polyethylene,MA=po 
lymethyl methacrylate,PAT=polyhexadecyl thiophene, 
PC=polycarbonate, PU=polyurethane) 

matrix filler aspect 
ratio 

pc  (vol. 
%) p Ref. 

1 PANI SWCNT - 0.3 2.1 [16] 
2 PE SWCNT - 0.25 2.2 [19] 
3 PMMA MWCNT - 0.2 2.3 [20] 
4 Epoxy SWCNT - 1 2.4 [15] 
5 - - - - 2.5 - 
6 PAT MWCNT >200 12 2.6 [17] 
7 Epoxy SWCNT 400 0.005 2.7 [13] 
8 PC SWCNT - 0.1 2.8 [18] 
9 Epoxy MWCNT 100 0.6 2.9 [14] 
10 PU MWCNT >100 1 3 [21] 

The fractal dimensions of backbone and its 
subsets are listed in table.2. And finally the 
generalized 	Mandelbrot- Given 	curve 
parameters and y(0), y(1) and y(2) are given 
in table.3. It is seen that the exponent for 
zero'th moment of distribution function is 
equal to backbone fractal dimension (it was 
expectable). With deliberation on y(1), it will 
be cleared that the model predict a logical 
relation between current and conductivity and 
it seems that the system sensitivity on current, 
increases with 1.1. Also y(2) is a scale of 
deviation around average current, and the 
model tell us the fluctuation of current 
increase with 1..t more rapid than average 
current. 
These moments of current distribution 
function, may be used for calculation of other 
properties of electrode that they relate to 
current. For example the exchange current 
density (i0) is a very important quantity for 
investigation of electrode reaction kinetics. 
On the other hand the current density can be 
controlled with applying different kinds of 

composite in the surface of electrode or 
different concentrations of nanotube in 
composite and it means that it is possible (at 
least in this model) to control the kinetic of 
reaction. It may be the subject of further 
studies on this model. 
The curve which we used for construction of 
fractal space is Mandelbrot-Given curve. 
There is many other curves can be used for 
this propose. One can study the effect of these 
curves and make a fractal space with better 
compatibility. 

Table 2. Fractal dimensions as a function of µ 

p D DB  Dmin  
2.1 2.2 2.18 1.37 1.91 
2.2 2.4 2.16 1.44 1.92 
2.3 2.6 2.14 1.51 1.93 
2.4 2.8 2.12 1.58 1.94 
2.5 3 2.1 1.65 1.95 
2.6 3.2 2.08 1.72 1.96 
2.7 3.4 2.06 1.79 1.97 
2.8 3.6 2.04 1.86 1.98 
2.9 3.8 2.02 1.93 1.99 
3 4 2 2 2 

Table 3. Generalized Mandelbrot-Given parameters 
and the moments of current distribution function. 

Lz W(0) 4(1) W(2) 

2.1 1.68938 2,815219 6.463323 0.243657 2.18 1.178618 0.79954 

22 2.377887 2.486797 5.864876 3.23705 2.16 1.289696 1.008681 

2.3 3.090992 2.16256 5.242826 6.90226 2.14 1.393425 1.184085 

2.4 3.831121 1.842385 4.594758 11.40576 2.12 1.491206 1.33616 

2.5 4.60088 1.526151 3.918078 16.95489 2.1 1,584115 1.471227 

2.6 5.40307 1.213738 3.209994 23.80793 2.08 1.672996 1.593418 

2.7 6.240707 0.90503 2.467503 32.28659 2.06 1.758525 1.705584 

2.8 7.117035 0.599913 1.687372 42.7916 2.04 1.841249 1.809778 

2.9 8.035546 0.298273 0.866121 55.82213 2.02 1.921616 1.907527 

3 9 72 2 
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