Journal of Physical and Theoretical Chemistry

of Islamic Azad University of Iran, 6 (2) 87-95: Summer 2009 (J.Phys.Theor.Chem. IAU Iran) ISSN: 1735-2126

NMR and Solvent Effect Study on the Active Site of Oxidized Azurin

K.Shahanipour¹, T.Nejad Satari², F.Mollaamin⁴ and M.Monajjemi^{3,*}

¹ Ph.D. student, Science and Research Branch, Islamic Azad University, Tchran, Iran

² Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

³ Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran

⁴ Department of Chemistry, Qom Branch, Islamic Azad University, Qom, Iran

ABSTRACT

We have evaluated the NMR shielding tensors for active site of oxidized azurin .Azurin is classified to a type I copper protein with ET functionality. We have computed NMR shielding tensors at B3LYP and HF levels by using 6-31G basis set in the gas phase and in different solvents such as water, DMSO, Nitromethane, methanol, ethanol, acetone ,dicholoroethane. These solvents represent a wide range of solvent properties from the point of view of polarity as well as hydrogen bonding interactions. The NMR shielding tensors were calculated using the GIAO and CSGT methods. Our results reveal that NMR chemical shielding parameters are strongly affected by inducing different solvent media. Regarding to our platted graphs of σ_{1so} , σ_{antso} , $\Delta\sigma$, η , δ versus c, the largest σ_{1so} values obtained in ethanol and water for Cu atom whereas the smallest one belonged to DMSO. It is interesting to note that the opposite trend have been observed for asymmetry parameters (η) ,

Also, calculations at the HF in CSGT and GIAD methods have shown that molecolar geometry and shielding properties are better than the other methods, B3LYP in GIAO and CSGT methods.

Keywords: Azurin; NMR parameters; Bloe capper protein: Solvent effect

INTRODUCTION

The metalloproteins have attracted considerable interest among many researchers because of their various functionalities, such as electron transfer (ET), redox reaction, oxygen transportation, and activation. Blue copper protein is one of metalloproteins, which can be classified into three types on the basis of spectroscopic properties.

Type 1 copper protein has an absorption peak near 592-625 nm: type II copper protein has a similar peak to that of the general $Cu(\Pi)$ complex. Type Π ! copper protein exhibits antiferromagnetism and has an absorptioo peak near 300 nm.

Azurin is classified to a type I copper protein with

ET functionality. The active site of azurin consists of one copper ion and five ligand residues: Gly 45, His46, Cys112, His117, and Met121. The coppenion is strongly coordinatebonding to His46, Cys112, and His117, and bonds weakly to other residues[1].

The Cu site has a distorted trigonal geometry that is intermediate between that preferred by Cu(l) complexes (tetrahedral) and that preferred by Cu(II)complexes (tetragonal). Thus, the change in geometry with redox is limited, and the energy required for this structural rcarrangement is small [2]. These observations

Corresponding author: m_monajjemi@yahoo.com

led to the induced rack theory [3] and the entatic state theory[4], based on the hypotheses that the protein matrix forces the Cu(II) site into a catalytically poised geometry similar to the Cu(I) geometry. These thearies, which trace the peculiar properties of the cupredoxins and their electron transfer capability back to the strained geametry of their active site, have been cballenged recently[5,6], and the issue has been addressed through different theoretical methods.

Fig.LOverview of the second structure of azurn. The active site consists of the copper ion and five ligand residues Gly45, His46, Cys112, His117, and Met121[1].

al.[5,6] perfarmed quantum-R vde et mechanical(QM) aptimization in vacuo of the geometry of the axidized and reduced Cu sites, using the B3LYP bybrid density functional (DFT) method[6,7] .Surprisingly, the results of the calculations nn the copper site were in clear enntrast with the rack and entatic state hypotheses. The in vacuo optimized geometry of the isolated $Cu(\Pi)$ site was highly similar to the experimental genmetry of the site in the protein structure. This suggested that the geometry of the Cu (Π) site in cupredoxins is not strained by the protein matrix. [8, 9].

Swart investigated the electranic structure of the active site of azurn by density functional

theory (DFT) and carried out MD simulation using the results.

Sugiyama et al.[1] have also carried out MD simulatian of oxidized and reduced azurins and have analyzed their backbone dynamics **1** Nuclear magnetic resonance (NMR) spectroseopy is a valuable technique for obtaining chemical information. This is because the spectra are very sensitive to changes in the molecular structure. This name sensitivity makes NMR a difficult case for molecular modeling [10-12].

NMR spectroscopy is a powerful tool for study the structure dynamics and interaction of biological molecule such as protein and nucleic acids in solution [13-16].

As we know the effect of solvent molecules on proteins plays an important role in the ebernical behavior of them and the effects span a considerable range and arc governed primarily by solvent polarity. So in our current research, we have theoretically studied the effects of DMSO methanal ,ethanol, acctone, .nitroincthane dicholoroethane , water and gas phase on the chemical shielding parameters of ¹³C, ¹⁵N, ¹⁷O ⁶⁴Cu, ³²S nuclei involving in active site and its structural stability. The Gauge Including Atomic Orbitals (GIAO) and Continuous Set of Gauge Transformations (CSGT) approaches within the SCF-Hartree-Fock and B3LYP approximatian have been used in nrder to investigate the influence different solvent media on the inagnetic shielding tensors through Hartree-Fock and B3LYP approximation using 6-31G basis set. This basis set seems proper, because the CPU-consuming ealculations using the HF method generally inhibit its application for NMR calculations of binlngical macromolecules with large basis sets.

COMPUTATIONAL DETAILS

In the present work, extensive quantum extensive quantum mechanical calculation of electronic structure nf the active site nf oxidized azurin (Fig.1) and solvent effects nn ¹³C, ¹⁵N, ¹⁷O, ⁶⁴Cu, ³²S -NMR parameters bave heen performed in different solvent media and in two available methods using GAUSSIAN 98 program.

We have studied the influence of OMSO, nitromethane, methanol, ethanol, acctone, dichnlnmethane, water and gas phase on chemical shielding tensors. There are different methods of salvation. One family of models for systems in solution is referenced to as Self-Consistent Reaction Field (SCRF) method. The simplest SCRF model is the onsager reaction field model. For the simulation of a polar environment, this model was used as implemented in GAUSSIAN 98. In this model the solvent is consider as a uniform dielectric with a given dielectric constant.

At first, we have modeled the active site of azunn with chem. Office package and then optimized at the Hartree-Fock and B3LYP levels of theory with 6-31G basis set.

In view of the fact that the results of our earlier works [17-18] proved that addition of a greater number of polarization functions and extension of the basis set did not lead to a significant improvement of the results, the choice of the middle basis set 6-31G was in our opinion justified.

After fully aptimization of active site ,we bave calculated NMR parameters using the density functional B3LYP and HF method by Gauge Including Atomic Orbitals (GIAO) and Continuous Set of Gauge Transformations (CSGT) and have been reported in table 1(a,b,e). For more investigation of solvent effect, the graphs of obtained NMR parameters versus dielectric constant bave been evaluated.

RESULTS AND DISCUSSION

In figs. 2-4, chemical shift anisotropy asymmetry (η), isotropy (σ iso), anisotropy (σ anisu), and Δo and chemical shift tensor (δ) are observed for 13C, 15N, 17O,64Cu, 32S nuclei in active site of oxidized azurin with respect to diclectric constants.

Fig. 2. The graphs of a) isotropic shielding values (σ iso), b) indirect shielding ($\Delta \sigma$), c)asymmetry parameters(η), d) anisotropic shielding value(σ aniso), of propose atoms of active site azurin in different solvent media at the level of HF/6-31G theory in CSGT method.

Fig. 3. The graphs of a) indirect shielding (dσ), b) chemical shift tensor(d), of propose atoms of active site azurm in different solvent media at the level of HF/6-31G theory in GIAO method

In the basis of the above diagrams, table i(a,b,c) list values of the σ iso, σ amso, $\Delta\sigma$, δ , η values for ${}^{13}C$, ${}^{15}N$, ${}^{17}O$, ${}^{64}Cu$, ${}^{32}S$ nuclei in different dielectric constants

As expected, the NMR shielding tensors of ¹³C, ¹⁵N, ¹⁷O, ⁶⁴Cu, ¹²S nuclei are drastically affected by what it is bonded to and the type of bond to its neighbor. Our obtained results yielded strong evidence that intermolecular effects such as electron transfer interactions play very important role in determining the ¹³C, ¹⁵N, ¹⁷O, ⁶⁴Cu, ³²S-NMR chemical shielding tensors of active site of oxidized azunn and some systematic trends appeared from the analysis of the calculated values.

On the basis of both geometrical positions of ¹³C, ¹⁵N, ¹⁷O, ⁶⁴Cu, ³²S existing in active site of nxidized azurin asd computed results, for nuclei involved in electron transfer the obtained NMR parameters are not the same as those computed for other atoms.

Fnr Cu₉ atom which behaves as electron donor, the oiso component showed the largest intermolecular effects and it shows positive shielding values ,i.e, the electron transfer interaction produced a deshielding in this position. Comparison of σ iso, σ aniso, $\Delta \sigma$ and δ values of Cu₉ atom with another shielding values in table 1 and also analysis of graphs of σ iso, σ aniso, $\Delta \sigma$ and δ 's versus dielectric constant exhibited in figs 2-4 revealed that, the targest values observed for ethanol and water, whereas the smallest helongs to DMSO. It is interesting the note that on the costrary, the opposite trend have been observed for asymmetry parameter (η). This logical behavior may be readily understood in accord with biological conceptioos.

The metal ion in the electron-transfer copper proteins such as the type I copper proteins has been proposed to exist in an entatic state. These studies as well as earlier reports suggest that the metal-ligand interactions in the blue cupper proteins indeed play an important role in imparting extra stability to the metal binding site of the protein[19].

K Shahanipour et al. /J.Phys. Theor.Chem.IAU Iran, 6(2): 87-95, Summer 2009

Table 1.NMR parameters of C.N,O, Cu, S nuclei involving in active site azurin in different solvent media at
the levels of RHF/6-31G and B3LYP/6-31G theory in GIAO and CSGT methods(a).(b),(c)(n)

20	3		GIAO						CSCT					
lven		Atoms	नोऽ०	gantsu		<u> </u>			ganiso					
	2	<u></u>	187.1B	34 14	34.14	0.5276	22,763	173.85	28,197	78 107	R 6812	10 744		
		7 2	169 76	37.91	37.91	0 5377	25 277	157.68	32.NR3	37 882	1677	21 840		
		64	740.4	332 (09	3 32 09	0 3817	221 197	6514	447 155	442 16	0.125	21,009		
		30	566.54	344.81	344.81	0.68	229 876	498.75	412 355	432.36	8 5 290	100 337		
		Cu9	1758 5	260 43	-405 19	0 285	-270 13	1292.3	PM 373	304 38	0.5209	260 257		
			168 64	1312.34	1312 34	0.9158	874 895	0L 5 1L	1151 17	1158.6	0.604	202.915		
	i i	NIA	8.25	361.85	361,84	0.351	241 229	4.54	332.85	332.85	0.034	-910,000		
	1		21.45	275.11	275.11	0.1024	183 105	11 892	256 303	2563	0 1327	170.840		
~	нғ	NII	8.23	369 04	369.83	0 3577	246.022	1102	341.554	341.55	0.1050	719.000		
96 192	B3LYP		24 56	298 67	298.67	8 184	199 112	L L L MAN	275 877	275 88	0.1024	193 010		
1 ~		612	55.32	46.41	146.41	0.6943	47.7464	15.935	154 349	154.35	0.1904	103,910		
1			47.46	122.03	122.03	0.557	81.15	1111	129 223	129.22	0.0327	R6 140		
		C11	62.89	127.57	127.56	8,9525	85443	14 1152	140.947	140.95	0.9967	01.045		
			65 7	90 95	90.95	0 9493	MANTE	39 744	103,257	-103.3	0.9907	20.703 60.0KE		
		CIA	61,83	138,47	138.47	0.7494	92.315	15 (155	145.58	148 52	0 7003	-00.002		
			59.19	189.55	109.55	0.6586	73 ()45	43 7144	119 154	11914	0.5946	70,004		
		C15	62.68	128 79	129	0,9713		411	141 648	.147.58	0.9864	05.055		
			58 Q1	182.07	182.07	0.8136	68 047	11 508	111.963	111.96	0.6837	24 642		
		C2	187 23	3417	34.17	0.5278	22.778	173.55	2× 222	28.224	0.6815	18 815		
			169.85	37.81	37.81	0.5315	25 207	157 75	32,721	32.721	0.6207	21 814		
		Sô	7,39,9	332.83	332 83	0.382	221 88	650.75	+43.025	443.83	0.1899	205.25		
			565.8	341.47	716.01	0.678	227 647	497.87	428 762	428 76	0.5285	285 84		
		Cu9	1744-4	262.51	-413 12	0.27	-275.41	1282.9	400 404	400 4	0 6963	266.936		
			169.81	1288,84	1298.84	0.925	865 89	-412.12	1139-48	-1351	0 6568	-900-62		
	1	NIB	8 59	361.62	3 6 1 62	0.3496	241,079	-11 896	332.385	332,38	0 29	721.59		
	нг		21.75	276.03	276 (43	0 1022	184 019	12.081	257 174	257.12	0.1275	171.45		
46.		NIE	8 83	368,08	368 169	8.3534	245 388	•13.03	340 546	340.55	0 3019	227.03		
	B3LYP	·1F	24.5	299.14	299-14	0.1865	199.42	14,864	275.94 6	275,95	0 1941	183.963		
		C12	5541	146.29	14 6 29	0.6991	97,527	30.034	154 166	154,17	8.658	102 778		
			47.4	122.19	122 19	0.556	8146	33.3%6	J29 318	129 32	0 47	86 212		
		C13	65.51	127,33	127 33	8.9548	84 XX5	34 124	140.641	140.64	0.9983	93 761		
			62.05	120.21	178 31 1	8 9506	60.675	39 603	103.264	-103-41	0 9972	-68 938		
		C14	58.24	138.21	138 ZI 100 AR	0 7535 8 4 4	92.142	45 196	148 341	148,34	0 7044	98 894		
		C 15	62.73	128.22	128.27	0.0605	72 985 PE 940	43 /93	119.883	119.08	0.5955	79.389		
			58.02	102.18	102 18	0.9095	AD 040 68 118	,54,203 17 51	E41.523	-142 27	8.9895	-94.846		
38.215		62	187 19	34 15	34.15	0 5227	72 764	173 86	111.959	11190	0.8835	74 639		
			169.77	37.89	37,9	0.5314	25 263	157.67	32 706	28 2 37 704	0.0813	11 02 4		
	Ì	S 6	740.31	332.18	332 18	0.38188	221,451	651.3	447.237	447 74	0.186	21,804		
			585.82	343.04	343,04	0.677	228.695	498 12	438 164	430 16	0.528	286.776		
	Γ	Cu9	1749.8	260.97	-406.52	0 2838	-271 02	1291	795.214	395.22	0.672	263 476		
	L		172.16	1294.77	1294,77	0.9235	863-18	-410.35	1137.09	-1346	0.689	-897,343		
	!	N10	8.29	361.83	361 83	0 3509	24J 22	-)4 247	332.7B7	332.79	łr 29 į	221.858		

91

K. Shahanipour et al. /	J.Phys. Theor.Che	em.IAU Iran, 6(2	2): 87-95, 9	Summer (2009
L	•				

Table 1. Continue.

(b)

1

:

ŀ

<u> </u>			2175	276.17	276 17	8.1025	184,115	12.05	257 34	257.34	0.126	171 56
	HF	זוא	8.35	368 88	368.88	0 3569	245 92	-13 509	341.39	341.39	0,3051	227.594
	B3LYP		24.24	298.99	298.99	0 1891	199.33	14.704	276 192	276 19	0.1998	184 129
			55.34	146 39	146 39	0.695	97 592	38.952	154.319	154 32	0.653	102.879
		C12	47 36	122.23	122.23	0.5566	81,487	33.341	129.357	129.36	0.4709	86.238
	ł		62.9	127.52	127.52	0.953	85.017	34,067	140.896	140.9	8 997	93.93
		C13	65.44	91.03	91,03	0 9486	60 684	39.55	103 287	-183 35	0 9987	-68 902
	ł		61.87	138.43	138.43	0.7581	92.285	45,858	[48,54]	148 54	8 7009	99 0 27
		C14	58 26	109.4	109.48	0.6611	72.987	43.822	119.077	119 08	0.5961	79,385
-			62 7	128 76	128 78	0.971	85.856	34,147	141.623	-142.53	0.9873	-95,818
		C15	57.96	102.19	102.23	0 8125	68 128	33 457	112 054	112.05	0 8825	74,703
	<u> </u>		187.2	34.15	34.15	8 5279	22,765	173 86	28,201	28.281	8.6616	18.881
		C2	169.74	379	37,9	0.5349	25,268	157.66	32.8	32.8	0.6251	21,867
			740.29	332.25	332.25	A 381	221.5	651 28	442.317	442.32	1186	294 878
		56	585.78	343.28	343.28	0.673	228.852	498 23	430,587	430.59	0,5249	287 058
		C0	1749.6	261.05	-406 89	0.283	271.26	1290.6	395,729	395.73	8.672	263 819
		Gua	174.64	1294 .14	1294 14	0.9193	862.76	-407 93	1139	-1341.8	8.697	-1194 557
		N10	8.33	381.82	361.82	0.3507	241.215	-14 212	332.769	332 77	8 2913	223.846
			21.61	276.18	276 19	8,1827	184 13	12,112	257.297	257.3	0.1261	371 55
5	нғ	N11	836	368.85	368 85	0 3568	245 902	-13 494	341 353	341.35	0.305	227,209
8	B3LYP		24 33	299.58	299 58	0 1889	199 72	14.652	276.22	270,22	0 1982	104 147
		C12	55.35	148 36	146.38	0.6952	97.386	58,979	104 300	170.25	8 4202	26 717
			47.33	122 24	122.25	11000	81.495	33.328	129 13 1411 9 R1	129.55	16.9971	93 971
		G13	62.9	127 51	127.51	11755	60 736	34 007	103 310	103 34	0.9999	68 893
1			03.44	100.40	96.3	0.7401	0730	45 064	148 534	148.53	0.7011	99 0 2 3
		C14	61 08 50 24	120-42	100 43 s	0.6632	72 954	43.8	119028	119 03	0 598	79 352
			62.7	103 40	128.78	0.9711	85 856	34.154	141.616	-142.52	Ö 9873	-95 01
		C15	57.95	102.32	182.32	0.807	68 211	33.421	112.071	112.07	0.8767	74,714
┣		<u> </u>	184 25	34.5	34.5	0.5652	22.998	171.17	28.435	28,434	0.7339	18.956
		C2	169 7	87.98	37 99	0 539	25.323	157.61	32.865	32.865	0.6277	21.91
1	ļ	\$6	729.6	371.08	371.88	0 502	247,38	645 52	487.887	487.08	8 3 98	324 725
			566.11	344.66	344,66	6 68	229,77	498.61	431.968	431.97	8.5382	287 979
	ļ		1857.8	655 76	655.76	0.7365	437 172	12208	612 212	612.21	0 2398	408.142
l	HF	Cu9	178.81	1311.36	131136	0.918	874.239	-412.36	1151 19	-1358 5	0.6948	-905 634
			21.95	347.64	147.64	0.279	231.26	-2 035	320 209	320 21	8 248	213.47
]		N10	21,60	276.86	276.06	0 1019	184 639	12.027	257 183	257.18	11274	171.455
			17.05	210.00	250 60	0.353	233 923	-5 514	725.345	325 35	8,3094	216 897
15		N11	24.41	286.63	208 63	01864	199 838	14 681	275 98	275 98	8,1978	184.867
1 24	BULLE		24.+1	200 00	11404	8 2100	06 561	20.050	153 736	153.23	0.6717	102 157
ļ		C12	55 49	144 64	144 84	0.5566	81 427	31 368	129 284	129.28	0 4712	86,189
			47.4	1/2 14	12214	1 2300	01.447	37.057	120.40	120 40	6 0731	07 003
		C13	61 87	125.85	125 BS	0.9132	40.471	34.944	103 250	-103 33	0.9987	.68,883
	1		65.53	91.81	91.01	0,9445	00071	39,040	143 239	-110.00	0 0007	05.410
		G14	66.96	131.58	131.58	0.8608	32 0 00	49.221	143 128 1 10 t07	145.15	0 5050	79 405
I I		ļ	59 29	109.51	10931	0.6608	7.3 9/10	43.04+	117.10	117,11	0.7002	00.05
1		G15	55.34	138 75	138.75	0 7238	93.502	28 178	149 955	149.96	6 2012	79.97
			57.98	182.21	162.21	0,8117	08 141	55.A73	112.076	11	0 4012	14,11
	1	C 2	187.21	34,15	34.15	0.5279	22 768	173.87	28 206	28 206	0.6817	21 077
			169.78	37 91	37.91	0.538	25.275	157.68	32,809	52.809	0.0272	21.875
8		56	748.2	332 37	332.37	1 38169	221.583	651 16	442,472	442.47	0 1869	294 98
15			567 34	345 75	345 76	0 677	230.5	499.53	413.166	433.17	11.527	288 77
		Gu9	17483	261.53	-408 53	0 2803	-272.36	12887	396.964	396,97	0.679	264,643
			170-32	1386.63	1306.83	0.92	871.22	-462.51	1145.55	-1355_8	8.689	-943.8

Table 1. Continue...

(c)

			8.39	361.70	361.70	0.2404	247.704	14.480	200 400	1 110 10	F	1
1		N10	21 48	274 94	274.04	4102	241 195	-14,129	332,686	332.68	0 291	221.791
	HF	├ ──	R 40	260.00	274 91	0.102	183,273	11 912	256 083	256 08	01326	170 722
1	Bat VO	N11	24.40	200 08	208 0/	0.356	245 784	-13 38	341.163	341.16	0 3041	227 442
1	OUL IF	<u> </u>	£4.49	298.75	298,75	0 1855	199.165	14 957	276.058	276.06	0.1994	(84.039
		C12	00.38	146.36	146.36	0 6961	97.57	38 975	154 27	(54/27	0 6549	102 847
		i	4/ 44	121.97	121.97	0.558	81 312	33 422	129.182	120.18	0 473	86 (21
		C13	62.91	127.47	127,47	0.9535	84 977	34.084	140 819	140 82	0.9974	93,88
1		<u> </u>	65.78	90.98	90 98	0.9482	60.657	30 836	103.276	103.28	0.9999	68 851
I		C14	61.92	138 37	138 37	0 7511	92 244	45.095	148.485	148.49	8,7819	98.99
<u> </u>			59.25	109.58	(09.58	8 65B2	73.057	43.818	119,172	119 17	0 594	79 448
		C15	62.71	128.78	(28.78	0.9708	85.851	34 (7	I41.58B	-142 45	0.9878	-94,967
	<u> </u>		57.88	182.1	102.08	0 8132	68 066	33.493	112,003	112	0.8829	74,669
]		C2	187 22	34.18	34 16	0.5279	22.776	173 81	28 218	28.218	0.6815	18 812
	1		168 73	37 95	37.95	0.5436	25.3	(57.63	32.83	32 83	0 6326	21.887
		56	738.94	332.74	332.73	0.3819	221 82	650.81	442.928	442.93	0.189	295,285
		30	568.08	350.16	358.16	0.675	233 44	500 12	436 46	436 46	0.528	290.92
			1745.2	262.11	-412.26	0 2715	-214 84	1784.2	300 480	04 005	0.6017	266 276
	HF B3LYP	Cu9	166 86	1285.58	1285.57	0.9648	857.04	417.61	1172 04	1747	\$ 25 0.0433	000.001
		N10	8.57	361.65	361.65	0.3404	7411	12 012	219 440	-13021	5.05 0.3000	-908 OK1
10.36			21.67	275.69	275 60	8 1012	183 704	-11 072	352 448	332.45	0 2902	221 632
		N11	8.75	368.22	368.22	0.1013	246 470	13/13	200.915	256.91	0.1277	171,277
			74.54	208 82	700 91	6 30.40	100 310		54068]	340 68	0 30 23	227.12
		— —	55 A	446.00	200.05	8 18 18	199.219	14 973	275 93	275,93	0.1969	183.953
		C12	35.4	140 31	146.31	8 6984	97 538	39 011	154.191	154,19	8.6573	102.794
			47,39	122.15	122.15	0.556	81.433	33.372	129 31	(29.31	0 4703	86.207
		C13	62.92	127.35	127 35	0.9546	84 901	34.(15	140 677	140.68	0.9481	93 785
			65 48	9 1.09	91,09	0.9476	60.73	30,581	103 343	-103.38	0 9993	-68 917
		C 14	82.81	138.25	138 25	0.7529	92 166	45.17	148 375	148.38	0 7038	98 917
			59 15	109.37	109 37	0.659	72.91	43.75	118,987	118.99	0 5943	79,321
		C15	82.74	128 77	128,77	8 9699	85,843	34 201	141.529	-142.31	8.989	-94 871
			58.21	101.75	t01,7 t	8 8177	67.832	33.694	111.646	111.65	0.8867	74,431
		62	184.26	34.18	34.18	0.57	22 785	171 18	28.335	Z8 339	0.7226	18,89
			178.64	38.12	38 12	0.599	25.413	158 12	333	33.3	8 6798	22.2
		38	728.54	364.7	364 7	0 4999	243 136	644.67	480.694	480.69	0,3465	328 462
			885 61	385.21	365 21	8 473	243,471	540.91	456 891	456 89	0.38	304,504
		Guß	1649 7	878 57	618,57	0.70187	452.38	1214,1	644,831	644.85	0.2139	429 887
	l		485.5	1231 35	1231.35	0 287	8209	-87.266	1152 54	1152.5	0.62	768.356
]IF	N18	20.94	348.04	348.04	0 2799	232,03	-2.06	320.544	320 54	0.248	213,696
	B3LYP		31.67	293.44	293.44	0.179	(95 629	16 801	270 447	270.44	8 0517	180 208
		_	18.33	349, 48	349.4	8,3400	232 036		171 07	272.02	8 34 4	214.00
-		N11	25.25	305.09	306.00	0.247	102 102		323.71	157 41	0.3114	215 98
	ŀ		55.75	1440		0.202	205 393	11 499	261 465	281,47	0194	187 644
		C72	58.82	179 97	(44,9 31,97	0.7266	90,599 93,579	38 656	153 34	153 14	0.6756	102.226
	ŀ		61.97	126.17	122 07	0.0075	84.318	35 509	130 295	30.29	0.467	86,863
		C13	69 13	87.69	-90.74	0.041	64.116	32.97h	159,737	139.74	0.9653	93,158
	ł		67.21	131.65	131.65	0.8605	-043,109	41.86/	98,925	-105 14	0.8817	-70.095
	ļ	C14	63,99	110 19	110.19	0.687	72,450	47 400	100 24	14516	0.8009	95,441
ľ	ŀ		54 25	148 15	40.15	0.6902	41,418	97 999 100 77	119 074	114,07	0.6224	79.383
		C15	60.68	186.38	1(12.28	0 6802	73 75 8	21 2114	12 444	101,2	8 204	E00,797
					194100	0.0005	re 20 🕈	., ⇒ .310	617.440	617.45	o /84	78 2 98

The metal ion in the electron-transfer copper proteins such as the type I copper proteins has beea proposed to exist in an entatic state. These studies as well as earlier reports suggest that the metal-ligand interactions in the blue copper proteins indeed play an impartant role in imparting extra stability ta the metal binding site af the protein[19].

As expected, after Cu₉. S₆ shows positive shielding values. Cys 112 is among the ligand residues the one that more strongly bybridizes with the Cu orbitals. The covalency of the capper-ligand bonds is very anisotropic and it was suggested that this should favur hole super exchange pathways that couple to the Cu through the Cys112 ligand[20]. The cysteine ligand decreases the reorganization energy. This decrease is caused by the transfer of charge from the negative charged thiolate group to CuII, which makes the oxidized and reduced structures quite similar[21].

For both N_{10} and N_{11} atoms which are fused in imidazole ring, stielding tensors are close to each other but according to our obtained results of fig. 2, as the dielectric constant in passing from the nitromethane to water, the σ_{aniso} and $\Delta \sigma_{af} N_{11}$ and N_{10} increase and the η decrease in the ethanol which is expected to result in a significant shielding of this nitrogen nuclei at the Hartree-Fock level of theory with CSGT method.

Nitrogen ligands give up an appreciably lower reorganization energy than water, owing to the lower Cu-N force constant[21].

Figure 4 shows that, as the dielectric constant nf the solvent increases, the $\Delta\sigma$ and σ_{aniso} of C_{15} and C_{13} increase and the η nf C_{15} and C_{13} decreased in the ethanol at the Hartree-Fock level of theory with GIAO method.

Also, calculations at the HF in CSGT method (Fig. 2) and the HF in GIAO method (Fig. 3) have shown that molecular geometry and shielding properties are better than the other methods, B3LYP in GIAO and CSGT methods(fig. 4).

CONCLUSION

The results reported in this paper indicates that it is possible to measure NMR tensors of various nuclei involving in biological compounds either in

gas phase or in the presence of different solvent malecules theoretically. Several coaclusions can be made on the basis of the observed results af the present study. Such amount af theoretical data can provide us important insights into the nature of malecular structures in bialogical systems.

Our main findings from the point of view of solvent effects can be summarized as follows:

optimization at the HF level of theory provides a suitable computational model in terms of calculated NMR parameters and relative energies.

NMR parameters are very sensitive to small changes in molecular geometry and chemical environment exhibited significant sensitivity to the intramolecular interactions. So, our obtained theoretical results emphasized on the influence of the environment factors

The largest o_{sso} value of mentianed nuclei af active site azurin nbserved for ethanol and water, whereas the smallest one belongs to DMSO. It is interesting to note that the oppasite trend have been observed for asymmetry parameters(η). This usual behavior may be readily understood in accord with hiotechnnlogical conceptions.⁷

The calculation of nuclear magnetic resonance (NMR) parameters using ab initin techniques seems to be a major and a remarkable tool for investigation of how variations of biological systems and provides information on the local environment of selected species and their next nearest neighbors. However, combination of NMR study embedded in solvent medium reveals a logical interpretation of the observed results.

in conclusion, we have shnwn that theoretical calculations can be used to successfully solve biochemical problems. In similarly with experimental methods, they involve assumptions and interpretation, and they have their limitations, but there are many problems that are best studied by theory. Thus, theoretical methods have become a competitive alternative to experiments for biochemical investigations.

REFERENCES

- A. Sugiyama, K. Sugimori, T. shuku, T. Nakamura, H. Saito, H. Nagao, H. Kawabe, K. Nishikawa. Int J Quantum Chem. 105, 2005, 588-595.
- [2] F. Rienzo, R. Gabdoulline, R. Wade, M. Sola, M. Menziani, CMLS, 61, 2004. 1123-1142.
- [3] B.G. Malmstrom.Eur J Biochemistry 223, 1994. 711-718.
- [4] R. J. P. Williams.Eur J Biochem.234, 1995. 363-381.
- [5] U Ryde, M H Olsson, K. Piertoot. Theoretical and Computational Chem. 9. 2001.1-55.
- [6] U Ryde, M H Oisson, B O Roos, A C Borin.Theor Chem Acc.105. 2001.452-462.
- [7] M J Frisch, G W Trucks, AB Schlegel, P M Grill, B G Johnson, M A Robb GAUSSIAN 94, Gaussian1994, Pittsburgh , PA.
- [8] M. H. M. Olsson, Theoretical studies of blue copper proteins. Ph.D thesis,2000.
- [9] U Ryde, M H Olsson, B O Roos, O A Kerpel, K Pierloot J Biol Inorg Chem. 5. 2000.565-574.
- [10] M Muhl.Encycl Comput Chem.3, 1998. 1835.
- [11] C J Jameson, H J Osten, Annual Reports on NMR spectroscopy, 17, 1986, 1.

- [12] C J Jameson. Annual Reports on NMR spectroscopy.21.1989.51.
- [13] B Furtin, C Richter, J H Schwalbe, Chem Biochem. 2003.10-36.
- [14] S E Bucher, J M Burke, Biochemistry, 33, 1994, 992-999.
- [15] T J Warren. P B Moore, J Biomol NMR, 20, 2001.311-323.
- [16] T J Warren, P B Moore, J Biomol NMR, 20, 2001.311-323.
- [17] S A Me Callum. A J Pardi , J Mol Biol..325, 2003.843-856.
- [18] M Monajjemi.S Ketabi, A Amiri, Russ J P hys Chem, 80, 2006.55-62.
- [19] M.Monajjemi, A. Hadadi, B. Honarparvar, S. Irani, F. Mollaamin, A. TahanThe Egyptian J. of Biochemistry& Molecular Biology.26, 2008, 83-100.
- [20] A. Sujak, N. J. M. Sanghamitra, O. Maneg, B. Ludwig, S. Mazumdar, Biophys. J. 93, 2007,2845-2851.
- [21] P. V. R, Schleyer, Eacyclopedia of Computational Chemistry (Wiley, Chichester, 1998), Vol. 4, pp. 2547--2574.
- [22] U. Ryde, M. Olsson, K. Pierloot.Enksson L. A, editor, Elsevier, Amsterdam, Theoretical and Computational Chemistry.9, 2001, 1-5.

i • ן ו : i × ---- -----. . 10.14 . ł . l **ļ** . ! ı : i

ł