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ABSTRACT 

In this paper we have solved analytically the Schrodinger equation for a 
microscopic particle in a one-dimensional box with two infinite walls, which the 
potential function inside it, has a linear form. Based on the solutions of this 
special quantum mechanical system, we have shown that as the quantum number 
approaches infinity the expectation values of microscopic particle position and 
square of the linear momentum are equal to the classical time average of particle 
position and its square of the linear momentum, respectively. 

Keywords: One-dimensional Schrodinger equation; Bessel generalized 
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INTRODUCTION 

Because of its simplicity, the 
problem of a particle in a one,  
dimensional infinite square well 
potential with stationary walls is 
usually one of the first example 
discussed in a beginning course in 
quantum mechanics [1]. The slightly 
more complicated situation is where 
the potential inside the well has a 
linear form. 
Now, imagine that a single 
microscopic particle of mass "m" 
bounces back and forth between the 
walls of a one dimensional box, as in 
the following figure. Moreover we 
shall assume that the walls of the 
box are infinitely hard, so the 
microscopic particle does not lose 
energy each time it strikes a wall, 
and that its velocity is sufficiently 
small so that we can ignore 
relativistic effects. 

V(x) 

0 	x, 
Figure (1): The graphical representation of a single 
microscopic particle which moving in one dimension, x, 
and subject to the potential energy function of Eq. (1). 

At x = 0, and xo , and at all points 
beyond these limits the particle 
encounters an infinitely repulsive 
barrier, in the other words, because 
of the microscopic particle cannot 
have an infinite amount of energy, it 
can never tunnel into a region of 
infinite potential energy. So the 
following mathematical potential 
form describes the above figure and 
its physical behavior. 

00 	if x < 0 

V(x)=Ikx if 

00 	if 

0 	x 

x > x 

)(0  (1) 

In this system as we discussed in 
the next section, and for (x) and 

(132 ), the classical mechanics and 
quantum physics, as the quantum 
number approaches infinity, yield 
the identical results. It is an 
instructive example of corresponding 
principle from the pedagogical point 
of view. 

DISCUSSION 

Average values of position and 
square of linear momentum 
according to the classical 
mechanics. 

From the classical mechanics, for 
one dimensional motion, the 
conservative force is the negative of 
the derivative of the potential energy 
function [2]. 
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d 
F(x) =V(x)  

dx 

So classically, for the microscopic 
particle which it moves under the 
Eq. (1), we can write 

if 	x < 0 

k if 0 x xo (3) 

if 	x 0  < x 

It is seen from the above equation, 
the microscopic particle moves with 
constant acceleration in the interval 
of [0 , x01. 

(2) 
F(x) = 

<The direction of force 

• 	 

The directions of motion 

Figure 2. Classically, along the path of TB, the microscopic 
particle has the maximum mechanical energy. The microscopic 
particle under the constant force which its direction has been 
shown has an oscillatory motion. In this motion the microscopic 
particle has the maximum velocity at the point of B. 

Alternatively, from the kinematical 
point of view, the equation of its 
motion is equal to 

k 2 
x(t) = --t + vit + xi 	(4a) 

2m 

where v, , and x , are the initial 

velocity and position of microscopic 
particle. Now, according to Figures 
(1) and (2), if the microscopic 
particle initially at rest at x = x 0  , 

then we can write 

x(t) =
k

t
2 

+ xo  
2m 

(4b) 

On the basis of the Eq. (4b), it is 
obvious that 

tmax = 

So 

t max 

0 = 	= 

2mx 0  

2 

3 
x 

(4c) 

(5) 

fx(t)dt 

t max 
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t max 
(— —

k 
t)

2
dt 

0 m   21a°  
v2 = 

t max 	3m 
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total energy must be finite, says that 
y(x) must be vanish in these two 
regions. 
If we assume that the total energy of 
microscopic particle is equal to kx„ 

and introduce the following 
(6) 	notations 

On the other hand, for this classical 
system we have 

And finally, it is obvious that 

2mkx0  
P = 	 (7) 3 
So classically, if the microscopic 
particle moves along TB path (as be 
specified in figure), its average of 
position and average of square of 
linear momentum can be determined 
according to the Eqs. (5) and (7), 
respectively. 

Average values of position and 
square of linear momentum 
according to the quantum 
mechanics. 

In the quantum physics, the 
Schrodinger equation for a single 
microscopic particle between 0 and 
x0 , which has been surrounded by 

Eq. (1), has the following 
mathematical form 

2mk 
= 	h2 
	 (10) 

6 =x0  —x 

then Eq. (8) becomes 

d2kv(xo —  + ow(x0  —)= 0 (12a) 
d62  

It is concluded that the above 
equation transforms to the following 
equation by changing the direction of 
motion from 0 —> xo  to xo  —> 0. So 

we can write 

d2w(6)  
+ Okv(6) =0 	(12b) 

On the other hand, if d, p, q are nonzero 
and (1— a)2  4c, then the following 

equation represents the general form of 
the Bessel equation [3]. 

h2 d2w(x)±10„11(x)_ ali (x) (8) 62 d2(ö)  +6(a + 2b6P )4(6)  + [c + d62 1̀  
2m dx2 d62  d6 

+1)(a + p —06P + b262 1̀  v(6) = 0 (13) 

The fact that V(x) is infinite for 
x <0 and for x > x0 , and that the 
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The general solution of this equation 	2) If v {1,2,3, 	then we 

can be written as 	 transform Yv  —> J,, and Kv  —› I. . 

W(6) = ete-06P FAij 	q 
v(A'S  ) 

+ A 2; (?c'  )1 	 (14) 

where 

a = 
1—a 

, 13= —
b

, X, = —Vci , and v 
2 	P 	q 

= 1  A1(1— a)2  —4c 
2q 

And A, and A2  are constants. 

Moreover, for the Eq. (14) there are 
two following important conditions; 

1) If d < 0, then Jv  and Yv  replace 

with Iv  and Kv, respectively. 

Now, we return to the Eq. (12b) and 
by comparing this equation with the 
Eq. (13), the following relations can 
be concluded 

a + 2b6P =0 

c + (1132q + b(a. + p —1)43P + b2o2q = 

And finally we have 
3 

a = b = c = 0, d=c pE - {0}, and q = —2  . 

Since the conditions of the Eq. 
(13) are satisfied, the constants 
within the Eq. (14) become 

	

a=1,13=0,k= 
2[ 	1 
	,andv=—. 

2 	3 	3 

So the general solution of Eq. (12b) is equal to 

W(6) 

where [4], 

= 62  

-3 

A,J,( 	62)+A2J 	
g 6

2 ) 1 (
2A  

62 

1 

(15) 

(16a)  

(16b)  

3 ji(2,g6)=  (-1)k  x  

4 3 	 „ 2 k=0 k!F(— + K) 
3 

3 
(-1)k (2j61)=i 2_3  k=0 k!F( 
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Therefore, the Eq. (15) can be written in the following form 

1 	3 1 	2 	1 	3 7 2  
3./8-36( j82)3FH  .j,36(  j,52)3 F(_)  

3 	 3  y(6) = 
2n 

,J33 (  JE,2 )3 

6F(-
2

) 

1 	3 5 

3 

This solution is subject to the 	 1 2.*k 3 

boundary conditions that y(6) = 0 	y(x0 )=Aixo2 J1 ( 	x02)= 0(19) 

3 3  for x =0 and for x = xcl • Since 

33 	 In 	the 	other 	words, 
	# 0, the second term of 2,2j 	 2.j  
(-1)3F(-

3
) 	 J , —x02 = 0, or 	x0 2 is the 

-3-  3 	 3 
Eq. (17) is an improper term from 	nth root of the J (x) [51. 
the physical point of view. 	 3 

Because the wave function dose not 	Now by introducing 
vanish at x =0 or x = xo. Hence we 

3 conclude that A2  = 0. co= 	
(20) 

2.\X 
So we can write 3 

1 	2_\g- 3 

W(6)= A16211( 	62) 	(18) 

3 - 
On the other hand for x =0, we 
should have 

and using the normalization 
condition, we can write 

2j 	3  
1 

(L 3  (J1  (0)))2 do) = /64-2  

3 

1 

2  

1 

2  3 x02 

0 3 

3 

(21) 
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In order to determine the constant of normalization A1 , with respect to the 
above equation and the Eq. (19), we should apply the following important 
relation [6], 

-2t 
fx-2t-1 (jt+i  (0 2dx  _  A 	(j, (02 ( t+1  (0 2 

(4t + 2) 
(22) 

2 	4 	 4 	1 
Here t = — 	and Lj,r,r,i(x 3 (J-2  (02  = 23 (F(i))-2

. 

3 

Now, after some algebraic calculations we have 

( 

r2j _3  
A1 = 	x0.1-  2 ( 	x02 ) 

-- 3 
3 

4 

2 3  xP 
4 

( n 2.4 	3 1 2 
	X02 (1"(-3)) 3 

(23) 

On the other hand, the average value of position of the microscopic particle in 
this system is equal to 

21g  
( \ 3  x02 

(xo — x)=A? —3 	co(J I  (0)))2 do) 
2b1 

o 

In order to calculate the value of (x) according to above equation we can use 
the following equation (a form of the second Lommel integral) [6], 

(24) 

2 	
v

2 

1)0 v  (X))2 dx = 	1 — — 
0 	 _ 	s 

  

(Jv (s))2  + (rv (0)2  (25) 

  

  

3 

Here s=
3 
	xo and so 
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where 

(X) = X0 

21g 
R( 

1 

2-g 
(F1( 

_3 	2  
x02)) 

(26)  

(27)  

)) 

3 	- 
( 

—i  
2j 	3  2 21g 

\ 

3  
xo2) x02)) 3 

4 

2 3  

R( 
3 

xo2)= 3 4 
( 2.vc 	1 2 
	x02 (F(4)) 

3 

In order to visualize and better 
understanding of the mathematical 
relation of (x), we can use the 
following maple program. Figure 
(3), and the below table have been 
produced with the aid of this 
program. 

>restart: 
>m:=9.109390*10" (-31) ; 
>k:=2; 
> h:=6.626076*10" (-34) ; 
> zeta := (2*m*k) (h/ (2*Pi) ) '2 ; 

X:=(2*( (zeta) A  (1/2) )/3)*x0' (3/2 
) ; 

R:=evalf((2"(4/3))/((X"(4/3))*( 
GAMMA(1/3))"2)); 
>F:=diff(Besse1J(1/3,x),x); 
>x:=X;L:=evalf(F); 

Averagevalueofposition:=evalf(x 
0*(1-(LA2)/(3*((L"2)-R)))); 

plot(Averagevalueofposition,x0= 
0.1*10"(-10)..0.2*10"(-
10),y=0..4*10"(-
11),color=b1ack,thickness=1); 

plot(Averagevalueofposition,x0= 
20*10"(-10)..30*10"(-
10),y=10"(-10)..20*10"(-
10),co1or=black,thickness=1); 

plot(Averagevalueofposition,x0= 
50*10"(-10)..100*10"(-
10),y=0..80*10"(-
10),color=black,thickness=1); 

plot(Averagevalueofposition,x0= 
1000*10"(-10)..10000*10"(-
10),y=0..7000*10"(-
10),color=black,thickness=1); 

On the other hand, we know that 

xJv_i  (x) = xJiv  (x) + vJv  (x) 	(28) 

Now, based on the above Bessel 

recurrence relation and for v = —
1

'  3 

and x =
2J 3 

	X 2 we have 3 	0 , 

2j .3_ 	2-j 
r1( 	3  x02)=Ji  2( 	3  x02) (29) 
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Figure (3): In the each of four above graphs, for k = 2, and different ranges of 

x o , we plot the average value of position of electron vs. x o . As we can see, in 

(a), (b), (c), and (d) the range of x, are 0.1-0.2, 20-30, 50-100, and 1000-10000 

21g 
Angstrom, respectively. The vertical lines show the zeros of J'( 	x 2 ), and if 

3 	° 

x o  —> 00, then according to the graph of (d), we have (x) = 
2x

0 
3 • 
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And finally, when n —> co, according 	the clear result of Eqs. (26) and (29) is 

to the figure (3), and the above table (x) = —
2

xo 	 (30) 
3 

411 
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In order to calculate the average value of the square momentum, we first 
multiply both sides of Eq. (8) by w(x)dx, and then integrate over the range of 
0 	x 	xo , by assuming that, E = kx0 . In the other words 

h2 xo 
X0 

d2(x) dx 
X0 

= kx o  
0 
jw2 (x)dx 	(31) 2m 0  

f
w(x) 	+ k ixv2 (x)dx 

dx 2  0 

Table!. The value of (x) is a function of variations of xo , and k. As we can see, if x -> 00, 
2 then we have (x) =-x0 . 

x (A) 

0.1 1 10 100 1000 10000 

2 0.116116 0.654228 6.59729 66.5839 666.357 6665.56 

4 0.063691 0.653001 6.63623 66.4995 665.150 6665.45 

k(Jrn-1 ) 6 0.105459 0.659342 5.46106 66.5739 664.094 6664.55 (x) (A) 

8 0.064519 0.645796 6.58281 66.6025 662.968 6665.22 

10 0.059243 0.660096 6.61651 64.0385 666.377 6666.03 

12 0.039009 0.658946 6.58624 62.7590 666.478 6665.96 

Since the normalization constant 
of w(x) and the average value of 

position as R(
2 
	x 0 2) ---> 0, have 

3 
been known, according to the Eq. 
(31), we can write 

(P
2
) = 2kmx 

3 

CONCLUSIONS 

Upon the correspondence principle, 
all the quantum mechanical 
behaviors that distinguish quantum 
systems must disappear in some 
appropriate limits in which we 
recover the familiar world of 
classical mechanics [7]. If h---> 0, or 
m>> me  (me  is the mass of 
electron), or as the quantum number (32) 
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approaches infinity, the complete 
laws of quantum physics must 
reduce to the classical laws. This 
principle is inherently unsatisfactory, 
since it admits of no definite 
methodology and depends strongly 
on intuition [8]. Nevertheless, 
according to the correspondence 
principle, Eq. (1), figure (2), figure 
(3), table of data, and from the Eqs. 
(5), (7), (30), and (32), it is obvious 
that 	quantum 	mechanical 
calculations and the classical 
considerations yield the identical 
results. 
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