Journal of Physical and Theoretical Chemistry

of Islamic Azad University of Iran, 8 (3) 161-173: Fall 2011 (J. Phys. Theor. Chem. IAU Iran) ISSN 1735-2126

Theoretical Analysis on the Conformational Features of the HCO–Gly–L–Leu–NH₂ Protected Dipeptide Motif: *Ab initio* and DFT Exploratory

B. Chahkandi^{1*}, M. Chahkandi², S. M. Sadati Amiri¹ and M. Giahi³

¹Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran ²Department of Chemistry, Sabzevar Tarbiat Moallem University, Sabzevar, Iran ³Department of Chemistry, Lahijan Branch, Islamic Azad University, Shahrood, Iran

Received June 2011; Accepted September 2011

ABSTRACT

For better understanding of conformational stability of the dipeptide model HCO-Gly-L-Leu-NH₂, ab initio and DFT computations at HF/6-31G(d), 6-311++G(d,p) and B3LYP/6-31G(d) levels of theory were carried out. Geometry optimization of the dipeptide within the leucine (Leu) side chain angles (χ_1, χ_2) resulted in three stable conformations as followings: anti-anti, the most stable one, ($\chi_1 = 180^\circ, \chi_2 = 180^\circ$), Gauche (+)-trans ($\chi_1 = 60^\circ, \chi_2 = 210^\circ$) and 270°-Gauche (-)($\chi_1 = 270^\circ, \chi_2 =$ 300°). The thermodynamic properties E, H, G, and S by changing dihedral angles Ψ_1 (D₁) and Φ_1 (D₁₁) of glycine (Gly), Ψ_2 (D₆), and Φ_2 (D₄) of Leu and keeping the SC dihedral angles of the antianti conformer were obtained by frequency calculations at the same levels. The calculations indicate that the BB has the highest stability bearing Ψ_1 (D₁) = 180°, Φ_1 (D₁₁) = 180°, Ψ_2 (D₆) = 150°, and Φ_2 (D₄) = 210°.

Keywords: Dipeptide structures; Ab initio; DFT calculations; Conformational stability

INTRODUCTION

Structures of proteins as a key factor of their function are built of 20 naturally of amino acids [1, 2]. The number of the amino acid residues of a protein is typically range 100-1800 [3]. Since physical and chemical properties of the all 20 amino acids residues of proteins are different, they have different structure than each other [3, 4]. Their properties are controlled by the 3D dimensional structure which is dependent to amino acids linear sequence [3]. Peptides are formed by highly controlled polymerization reaction bearing amide bond so called the peptide bond. Two amino acids joined by a peptide bond form a dipeptide (Fig. 1) [2]. The entire 20 amino acids can naturally

bonded together with both L- and Denantiomeric configurations. The D isomers are often found in the cell walls of bacteria and in their antibiotics, while L-amino acids are using for protein synthesis in human body organisms [5]. The Leu is an amino acid hasing two dihedral SCs that show important affect on energy and thermodynamic functions. Peptide structures were almost investigated employing the ab initio calculations for nine decades [1]. [For more information see ref. 6]. Related initial studies [7–8] due to restriction of technology limited to insufficient ones about diamides and dipeptides until 1980s [9-10]. Recently, the potential energies of diamides, dipeptides, and other short chain peptides

^{*} Corresponding author: bchahkandi@gmail.com

structures have been studied [11-15]. These conclude that the related potential energies are just functions of the torsional angles of respective amino acid. However, not more geometrical parameters affected the energy and || structure of peptides has been considered [1]. Considering the dipole moment, the planar geometry, and the relatively high rotational barrier around C-N bond, the conformation of polypeptides and proteins have been determined [16]. Plenty work on dipeptide models Ac-Ala-Ala- $HN_{+}Me$ [17], Por-Ala-Ala- NH_{2} [18], and $Ac-Pro-Ala-NH_2$ [19] elucidated the mechanism of protein folding [20]. Herein, we report the most stable structure of dipeptide with respect to dihedral angles of BB and SC. For this purpose, here, the $HF/6^{1}_{31G}$ (d), HF/6-311++G (d, p) and B3LYP/6-31G (d) optimized geometries of the HCO-Gly-L-Leu-NH₂ within protected dipeptide with rotation around the C α and the dihedral angles of the amide plane have been investigated. General structure and numbering scheme of the HCO-Gly-L-Leu-NH₂|within protected dipeptide is shown in Fig. 2. The 3D dimensional structure of $HCO_{+}Gly-L-Leu-NH_2$ can be predicted using an empirical energy function, $E = f(\chi)$, defined in terms of a set of BB and SC dihedral angles where $\chi_{=} [(\Phi_i, \Psi_i, \omega_i, \chi_i^{-1}, ...$ χ_i^2] associated with the constituent amino acid (Fig. 2). All peptide bonds are in the *trans* isomeric state, and chiral C α is in the L- enantiomeric state. With aid of dipeptide angles (ω_0 , Φ_1 , Ψ_1 , ω_1 , Φ_2 , Ψ_2 , and ω_2), and $\chi_1 \& \chi_2$ the most stable BB and SC conformations have been determine.

THEORETICAL METHODS

The structure of HCO–Gly–L–Leu– NH_2 was numbered according to the standardized modular numbering system in Fig. 2. The dipeptide was divided four to sections that numbered separately as the N-terminal protecting group, the Gly residue, the Leu

residue and the C-terminal protecting group. The optimization and frequency calculations at HF/6-31G (d), HF/6-311++G (d, p), and B3LYP/6-31G (d) levels on the SC angles $(\chi_1 \text{ and } \chi_2)$ of Leu from 0.0° to 360.0° with 30.0° intervals have been performed. The torsion angles are defined as follows: $\omega_0 =$ $\angle H_{32}$ -C₁₄-N₁-C₂, $\Phi_1 = \angle C_{14}$ -N₁-C₂-C₃, Ψ_1 = $\angle N_4 - C_3 - C_2 - N_1$, $\omega_1 = \angle C_2 - C_3 - N_4 - C_6$, Φ_2 = $\angle C_7 - C_6 - N4 - C_3$, $\Psi_2 = \angle N_9 - C_7 - C_6 - N_4$, $\omega_2 = \angle H_{23} - N_9 - C_7 - C_6, \chi_1 = \angle C_{11} - C_8 - C_6 - N_4,$ $\chi_2 = \angle C_{12} - C_{11} - C_8 - C_6$ (Fig. 2). All of calculations were carried out by employing the Gaussian 03 package with using HF/6-31G(d), HF/6-311++G(d,p), and B3LYP/6-31G(d) for all atoms.

RESULTS AND DISCUSSION

Side chain conformers

The rotation angles of the N–C α , the C α – CO of HCO-Gly-L-Leu-NH₂ have been defined as: ω_0 , Φ_1 , χ_1 , χ_2 , Ψ_1 , ω_1 , Φ_2 , Ψ_2 , and ω_2 (Fig. 2) which six of them, Φ_1 , Ψ_1 , χ_1 , χ_2 , Φ_2 , and Ψ_2 , relevant mostly to the shape and stability of the dipeptide model. For determining the effect of SC angles on stability of dipeptide, the SC dihedral angles $(\chi_1 \text{ and } \chi_2)$ from 0° to 360° with 30° intervals have been changed. At first, the γ_1 was changed and each conformer was optimized at the HF/6-31G (d), HF/6-311++G (d, p), and B3LYP/6-31G (d) levels. The dihedral angles and energies that obtained from χ_1 optimization summarized in Table 1. Three minima for χ_1 in the: 180° 60° (g⁺) and 270° states, were (anti), obtained respectively, which the anti conformer has the lowest energy (Table 1). Then for $\chi_1 = 180^\circ$ (anti), 60° (g⁺), and 270° the χ_2 angle was rotated around C₁₂- C_{11} - C_8 - C_6 atoms from 0° to 360° with 30° intervals and optimization of each state carried out at HF/6-31G(d), HF/6-31G(d,p), and B3LYP/6-31G(d) levels of theory. From

changing of χ_1 and χ_2 , three minima anti-anti (χ_1 and $\chi_2 = 180^\circ$), g (+)-*trans* ($\chi_1 = 60^\circ$ and $\chi_2 = 210^\circ$), and 270°-g (-) ($\chi_1 = 270^\circ$ and $\chi_2 = 300^\circ$) with the most stable anti-anti conformation and the best SC angles has been found (Table 2). Based on our calculation results the most favored SC angles for HCO-Gly-L-Leu-NH₂ dipeptide are χ_1 and $\chi_2 = 180^\circ$.

Dihedral angles

;

Investigating of dihedral angles in the dipeptide can provide valuable information regarding the peptide bond and the planarity of the amide plane. Specifically the dihedral angle between atoms 4 and 3 (peptide bond), 14 and 1, 7 and 9, 2 and 3, 1 and 2, 6 and 7, and 4 and 6 of the amide plane referred to D₃, D₂₉, D₂₀, D₁, D₁₁, D₆, and D₄, respectively. The planar amide plane bearing the dihedral angles, D₂₉, D₃, and D₂₀, equal to 180° (Fig. 2). D₂₉, D₁₁, D₈, D₉, D₁, D₃, D₄, D₆, and D₂₀ are equal to ω_0 , Φ_1 , χ_1 , χ_2 , Ψ_1 , ω_1 , Φ_2 , Ψ_2 , and ω_2 , respectively.

Energy and thermodynamic properties

With performing optimization and frequency calculations of the BB angles between 0° to 360° with intervals 30°, their effect on the shape and stability of the dipeptide has been investigated. From the frequency calculations on BB angles, the thermodynamic properties, ΔE , ΔH , ΔG , and ΔS , relative to most stable conformer, antianti, were obtained (Tables 3-6). For this purpose, at the first part of calculations for D_1 the SC was fixed at anti-anti conformer and D11, D6 and D4 dihedral angles kept at 180°, by 30.0° intervals from 0.0° to 360.0°. The most stable conformer by optimization and frequency calculations at HF/6-31G(d), HF/6-311++G (*d*,*p*), and B3LYP/6-31G(d)levels has been determined (Table 3). We found that at HF/6-31G(d) level the lowest values of the energy, enthalpy, and Gibbs free energy are at the state of D_1 , D_{29} , D_3 ,

and -172.3°, respectively. The same calculations at the HF/6-311++G(d,p) level showed that minimum energy values gain for D_1 , D29, D_3 , and D_{20} are equal to 180° , -179.5°, -174.2°, and -172.1°, respectively. According to the B3LYP/6-31G(d)calculations, the most stable conformer has been found within D_1 , D_{29} , D_3 , and D_{20} are equal to 180°, 179.7°, 195.6°, and 173.3°, respectively (Fig. 3). Followings, the energy values of conformers with keeping D_1 , D_6 , and D₄ at 180.0° and changing the D₁₁ from 0.0° to 360.0° along with 30.0° intervals have been determined (Table 4). The most stable optimized conformers at the HF/6-31G (*d*), HF/6-311++G(d, *p*), and B3LYP/6-31G(d) bearing the dihedral angle $D_{11} = 180.0^{\circ}$ (Table 4). At the HF/6-31G(d), HF/6-311++G(d, p), and B3LYP/6-31G(d)levels dihedral angles D_{29} , D_3 , and D_{20} are equal to (-179.6°,-174.4° and -172.3°), (-179.5°, -174.2°, and -172.1°), and (-179.7°, -175.58°, and -173.3°), respectively. The calculations indicate that the lowest stable conformers at the HF/6-31G (d), HF/6-311++G (d, p), and B3LYP/6-31G (d) levels was turned out in the $D_{11} = 0^{\circ}$ or 360°. Their relative energies (ΔE) to the respective most stable conformers are 20.969, 21.032, and 18.833 kcal mol⁻¹, respectively. One can conclude that while D_1 and D_{11} are both equal to 180° the E, H, and G have the minimum values for the Gly conformer (Tables 3, 4 and Figs. 3, 4). The third part of calculations carried out at all previous mentioned levels show while D₆ dihedral angle is 150° the dipeptide has the highest stability (Table 5), and other dihedral angles (D₂₉, D₃, and D₂₀) are (-179.3°, -170.0°, and 178.8°), (-179.3°, -169.5°, and 179.8°), and (-179.4°, -171.5°, and 175.7°), respectively (Fig. 5). Finally, the D_4 dihedral angle has been changed from 0.0° to 360.0° with 30.0° intervals while D₁, D₁₁, and D₆ kept at 180°.

and D₂₀ are equal to 180°, -179.6°, -174.4°,

The results show that while D₄ is equal to 210° the HCO-Gly-L-Leu-NH₂ within dipeptide has the most stable conformer bearing the D₂₉, D₃, and D₂₀ dihedral angles equal to (179.9°, 173.2°, and -172.1°), (180.0°, 173.5°, and -172.0°), and (179.8°, 171.5°, and -173.1°), respectively. For this part of calculations, the conformer with the lowest stability was turned out that its D4 dihedral angle is either equal to 0° or 360°, and the relative energies (ΔE) are 25.376, 24.994, and 22.624 kcal mol⁻¹, respectively (Fig. 6). For L-Leu amino acid while the D_6 and D₄ dihedral angles are equal to 150° and 210°l respectively the conformer has minimum values for E, H, and G (Figs. 5 and 6).

CONCLUSION

The results of the present work obtained using *ab initio* and DFT optimization and frequency calculations at the HF/6-31G (d), HF/6-311++G (*d*, *p*), and B3LYP/6-31G (*d*) levels of theory indicating that

- 1. Three minima anti-anti $(\chi_1 \text{ and } \chi_2 = 180^\circ)$, g (+) *trans* ($\chi_1 = 60^\circ$ and $\chi_2 = 210^\circ$), and 270°-g (-) ($\chi_1 = 270^\circ$ and $\chi_2 = 300^\circ$) found for SC.
- 2. The most stable anti-anti conformer, within both SC dihedral angles χ_1 and χ_2 are 180° obtained.
- 3. For Gly amino acid, the relative conformer within both D_1 and D_{11} dihedral angles equal to 180° has the minimum values of E, H, and G.
- 4. For L-Leu amino acid, the relative conformer has minimum values of E, H, and G while the D_6 and D_4 dihedral angles are equal to 150° and 210°, respectively.
- The most stable conformer of HCO Gly–L–Leu–NH₂ within protected dipeptide bearing the D1, D₁₁, D₆, and D₄ dihedral angles equal to 180°, 180°, 150°, and 210°, respectively.

Fig. 1. General Structure of an amino plane.

Fig. 2. HCO-Gly-L-Leu-NH₂ within dipeptide model. The dipeptide was divided into four sections: the Nterminal protecting group, the Gly residue, the Leu residue and the C-terminal protecting group and showing all backbone torsional angles.

Fig. 3. Relative energies, enthalpies and Gibbs free energies for various amount of Ψ_1 at the B3LYP/6-31G (d) level of theory.

Ŀ,

Fig. 4. Relative energies, enthalpies and Gibbs free energies for various amount of Φ_1 at the B3LYP/6-31G (d) level of theory.

B. Chahkandi et al. /J. Phys. Theor. Chem. IAU Iran, 8(3): 161-173, Fall 2011

Fig. 6. Relative energies, enthalpies and Gibbs free energies for various amount of Φ_2 at the B3LYP/6-31G (d) level of theory.

Table1. Optimized energies for HCO-Gly-L-Leu-NH ₂ varying the SC dihedral angle χ_1 at the HF/6-31(d),
HF/6-311++G(d, p), and $B3LYP/6-31G(d)$ levels of the theory.	

χı	HF/6-31G(d)	HF/6-311+++G(<i>d</i> , <i>p</i>)	B3LYP/6-31G(d)		
0	-738.6962478	-738.9058139	-743.1634749		
30	-738.7004776	-738.9094260	-743.1674221		
60	-738.7023251	-738.9114036	-743.1691305		
90	-738.6968324	-738.9060905	-743.1641187		
120	-738.6921353	-738.9013249	-743.1600897		
150	-738.6980965	-738.9074587	-743.1645556		
180	-738.7033790	-738.9128561	-743.1694293		
210	-738.7016777	-738.9111489	-743.1682850		
240	-738.6992196	-738.9088330	-743.1664941		
270	-738.7010425	-738.9106395	-743.1674876		
300	-738.7008885	-738.9102700	-743.1674858		
330	-738.6 9 78902	-738.9074165	-743.1651200		
360	-738.6962478	-738.9058139	-743.1634749		

60- <u>7</u> 2	HF/6-31G(d)	HF/6-311++G(d,p)	B3LYP/6-31G(d)	180- X2	HF/6-31G(d)	HF/6-311++G(d,p)	B3LYP/6-31G(d)	270 · X2	HF/6-31G(<i>d</i>)	HF/6-311++G(d,p)	B3LYP/6-31G(d)
60-0	-738.6921681	-738.9011593	-743.1600842	180-0	-738.6949013	-738.9038500	-743.1625145	270-0	-738.6915828	-738.9018313	-743.1585925
60-30	-738.694972	-738.9038828	-743.1624601	180-30	-738.6975056	-738.9062894	-743.1650252	270-30	-738.6949954	-738.9049433	-743.1614419
60-60	-738.6981446	-738.9068328	-743,1654686	180-60	•738.6990705	-738.9081233	-743.1655153	270-60	-738.6999061	-738.9094603	-743.1665183
60-90	-738.6963794	-738.9051305	-743.1636772	180-90	-738.6958461	-738.9046784	-743.1632265	270-90	-738.6972055	-738.906574	-743.1648055
60-120	-738.6919537	-738.9006847	-743.1600906	180-120	-738.69.37771	-738.9029925	-743.1612697	270-120	-738.6915873	-738.9016377	-743 1588657
60-150	-738.6960726	~738.9050549	-743.1634295	180-150	-738.7003116	-738.9094332	-743.1673252	270-150	-738.6950706	-738.9050444	-743.1615201
60-180	-738.701401	-738.9102070	-743.1684480	180-180	-738.7030704	-738.9124622	-743.1691628	270-180	-738.7009064	-738.910502	-743.1672486
60-210	-738.7021263	~738.9115099	-743.1686666	180-210	-738.7015657	-738.9112374	-743.1676072	270-210	-738.6990796	-738.9088652	-743.1659116
60-240	-738.7010535	-738.9100437	-743.1673676	180-240	-738.6991674	-738.9086200	+743.1653438	270-240	-738.6970251	-738.9067425	-743.1641145
60-270	-738.7014055	-738.9105366	-743.1679109	180-270	-738.7005416	-738.9099808	•743.16687.31	270-270	-738.7004415	-738.9101652	-743.1671127
60-300	-738.7007973	-738.9099607	-743.1674567	180-300	-738.6985736	-738.9079312	-743.1650183	270-300	-738.7018736	-738.9113904	-743.1685871
60-330	-738.6971949	-738.9059936	-743.1645422	180-330	-738.6966298	-738.9054740	-743.1639891	270-330	-738.6969991	-738.9066486	•743.1646156
60-360	-738.6921669	-738.9011593	-743.1600843	180-360	-738.6949013	-738.9038500	-743.1625145	270-360	-738.6915828	-738.9018313	-743.1585925
											

Table 2. Optimized energies (in hartree) for HCO-Gly-L-Leu-NH₂ varying the SC dihedral angle χ_2 at the HF/6-31G(*d*), HF/6-311++G(*d*,*p*), and B3LYP/6-31G(*d*) levels of the theory while χ_1 is 60°, 180° and 270°

	$\Delta \mathbf{E}$				ΔH			∆G		ΔS				
Ψ_{l}									<u>.</u>					
(D ₁)	JIF/6-31G(d)	11F/6-311++G(d _x p)	B3LYP/6-31G(d)	HF/6-31G(d)	HF/6-311++}G(d,µ)	B3LYT/6-31G(d)	HF/6-31G(d)	11F/6-311++G(dp)	B3LYP/6-31G(d)	HF/6-31G(d)	111F/6-311+++G(d _s p)	B3LYP:6-31G(d)		
Û	6,053	5.992	6.093	5.989	5.960	6.043	6.145	5.858	6.170	-0.520	0.337	-0.429		
30 -	4.457	4.596	4.484	4,408	4.559	4.452	4.458	4.509	4.390	-0.164	0.166	0.208		
60	5.046	5.00.6	4.941	4.569	3.965	3'.918	5.491	7.144	7.153	- 3.094	-10.670	-10.852		
90	5.579	5.230	5.375	5.029	4.706	4.887	6.355	5.996	5.684	-4.445	-4 3 27	-2.671		
120	3.566	3.388	3.314	2.939	2.762	2.732	4.808	4.663	4.539	-6.266	-6.381	-6.062		
130	1.124	1.105	0.977	1.063	1.045	0.930	1.231	1.216	1.129	-0.560	-0.571	+0.66 8		
180	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
210	0.823	0.741	0.749	0.761	0.674	0.690	0.996	0.963	0.961	-0.788	-0.969	-0.908		
240	3.271	3.066	3.204	2.6.52	2.450	2.579	4.562	4.389	-1.621	-6.404	-6.507	-6.348		
270	5.438	5.107	5.274	4.903	4,576	4.796	6.288	5.911	5.933	-4.6]3	-4.478	-3.812		
300	4.934	4.868	4.961	4.477	4.421	3.926	5.455	5.276	7.285	-3.281	-2.871	-t1.266		
330	4.293	4.413	4,349	4.227	4.360	4.307	4.412	4.440	4.301	-0.619	-0.269	0.022		
360	6.053	5.992	6.093	5.989	5.960	6.043	6.145	5.858	6.170	-0.520	0.337	-0.429		

.

Table 3. Relative energies and thermodynamic properties for HCO-GIy-L-Leu-NH₂ varying the backbone dihedral angle Ψ_1 (D₁) at the HF/6-31G (*d*), HF/6-311++G (*d*, *p*), and B3LYP/6-31(*d*) levels of theory

 ΔE , ΔG , ΔH are Kcal/mol and ΔS is cal/mol K

.

.

		Δ Ε .			ΔH			$\Delta \mathbf{G}$			ΔS	
Φ_1						· · · ·						
(D ₁₁)	IIF/6-31G(d)	HF/6-311+-+G(đ,p)	B3LYP/6-33G(d)	IIF/6-31G(d)	HF/6-311+++G(d,p)	B3LYP/6-31G(d)	IIF/6-31G(d)	HF /6-333+++G(<i>d</i> , <i>p</i>)	B3LYP/6-31G(d)	11F/6-31G(d)	HF/6-31 [+++G(d _s p)	B3LYP/6-31G(d)
0	20.968	21.032	18.833	20.043	20.099	17.889	22.804	22.895	20.901	-9.259	-9.382	-10.106
30	12.971	12.804	12.288	12.444	12.253	11.743	14.167	14.110	13,671	-5.777	-6.228	-6 465
60	4.224	4 267	4.743	4.084	4.127	4.127	4.511	4.572	6.344	-1.429	-1.497	-7.434
90	2.214	2.171	2.647	2154	2.114	2.055	1.882	1.925	3.711	0.915	0.635	-5.557
120	1.593	1.564	1.403	0.982	0.954	1,335	2.748	2.757	1.229	-5.919	-6.047	0.355
150	0.563	0.547	0.350	0.534	0.518	0.288	0.375	0.404	0.548	0.535	0.382	-0.861
180	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
210	0.483	0.458	0.310	0.457	0.432	0.257	0.275	0.291	0.309	0.613	0.472	-0.173
2 40	1.405	1.354	1.245	0.796	0.747	1.194	2.580	2.563	0.885	-5.980	-6.091	1.034
270	1.921	1.822	2.408	1.869	1.780	1.846	1.485	1.433	3.009	1.290	L 163	-3 902
300	3.668	3.652	4.466	3.534	3.512	3.816	3.953	3.980	6.221	-1.402	-1 573	-8.066
330	12.218	11.987	11.718	11.666	11.409	11.172	13.532	13.422	13.124	-6 356	-6 754	-6.547
360	20.969	21.032	18.833	20 043	20.099	17.888	22,804	22.895	20,901	-9.259	-9.182	-10.106

.....

Carlo Sec

and an an and an and a

Table 4. Relative energies and thermodynamic properties for HCO-Gly-L-Leu-NH₂ varying the backbone dihedral angle $\Phi_1(D_1)$ at the HF/6-31G (d) HF/6-311-

,

. . .

 ΔE , ΔG , ΔH are Kcal/mol and ΔS is cal/mol K.

-min altry and

B. Chahkandi et al. /J. Phys. Theor. Chem. IAU Iran, 8(3): 161-173, Fall 201

A CONTRACTOR OF CALMER AND AND A CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR

.

	$\Delta \mathbf{E}$				Δ H			$\Delta \mathbf{G}$			Δ\$		
Ψ_2					<u></u>			·					
(D ₆)	HF/6-31G(d)	HF/6−311) +G(d _s ρ)	B3LYP/6-31G(d)	₩F/6-31G(d)	HF′6-311+++G(<i>d</i> ₽)	B31AP/6-31Ci(d)	11F/6-31G(d)	11F/6-311+++G(d _s p)	B3LVP/6-31G(d)	HF/6-31G(d)	11F/6-311)+ G(d _a p)	B3LYP/6-31G(d)	
0	8.422	8.697	7.893	8.244	8.545	7.701	8.151	8.338	7.646	0.311	0.694	0.185	
30	13.750	5.740	12.764	12.672	5.059	11.751	15.280	6,598	14.154	-8.756	-5.16)	-8.059	
60	3.928	3.828	4.154	3.529	3.405	3.800	4.217	4.226	4.163	-2.307	-2,752	1.219	
90	2.693	2.248	3.274	2.259	1.819	2.910	3.154	2.745	3.416	-3,000	-3,107	-1 699	
120	0.685	0.470	1.308	0.755	0.531	1.399	0.248	0.124	0.557	1.699	1.365	2 821	
150	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
180	2.736	2.765	1.684	2.568	2.613	1.506	2.845	2.826	1.970	-0.930	-0.717	-1 558	
210	7.250	7.044	5.307	6.675	6.500	4.712	7.228	7.085	5.867	-1.855	-1.967	-3.876	
24 0	6.838	6.606	6.059	6.261	6.043	5.519	7.322	7.088	6 664	-3.561	-3 507	-5.676	
270	5.958	5.286	6.099	5.116	4.413	5.755	7,236	6.674	4.834	-7.111	-7.587	3.097	
300	4 204	3.862	4.689	4.309	3.971	4,790	3.309	3.106	3.623	3 355	7.900	3617	
330	4.305	4.482	4.526	4.179	4.381	4.393	4.258	4.399	4 478	-0.269	.0.067	0.794	
360	8.422	8.697	7.893	8.244	8.545	7.701	8.151	8.338	7.646	0.311	0.694	0.185	

1

Table 5. Relative energies and thermodynamic properties for HCO-Gly-L-Leu-NH ₂ varying the backbone dihedral angle Ψ_2 (D ₆) at the HF/6-31G (d), HF/6-311++G (d, p).	v).
and B3LYP/6-31G (d) levels of theory	- 7,

.

,

 ΔE , ΔG , ΔH are Kcal/ mol and ΔS is cal/mol K.

.

		ΔE			ΔH			$\Delta \mathbf{G}$		Δ\$		
Φ_2				· · · ·								
(D ₄)	HF/6-31G(d)	HF/6-311++G(d _a p)	B3LYP/6-31G(d)	IFF/6-31G(d)	HF/6-311++G(d_p)	B31XP/6-31G(d)	HF/6-31G(d)	HF/6-311++G(d _y p)	B3L7P/6-31G(d)	HF/6-31G(d)	IF76-311++G(d,p)	B31,YP/6-31G(d
0	25.376	24.994	22.624	24.258	23.874	21.520	27.309	25.735	24.718	-10.240	-6.239	-10.727
30	13.874	13.805	13.314	13.285	13.234	12.764	15.275	15.198	14.639	-6.674	-6.587	-6 287
60	6.443	6.539	6.884	6.113	6.181	7.155	7.1492	7.469	5.998	-3.475	-4.323	3.880
90	8.601	8,483	8.251	7.625	7.526	7.306	10.488	10.374	10.167	-9.604	-9 553	-9 593
120	9.481	9.503	8.192	8.399	8.418	7.680	11.626	11.699	9.191	-10.820	-11 000	-5.067
150	6.367	6.456	4.608	5.784	5.879	4.613	7.493	7.553	3,871	-5.733	-5.610	191.5
180	1.675	1.815	1.032	1.649	1.799	1.019	1.736	1.818	1.179	-0.296	-0.059	-0.536
210	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
240	1.243	1.0473	1.383	0.722	0.524	0.822	2.098	1.951	2.479	-4.620	-4.786	-5 554
270	1.905	1.723	2.856	1.398	1.216	2.33 l	2.606	2.454	3.738	-4.053	-4.148	-4 720
300	3.586	3.477	4.647	3.510	3.402	4.664	3.7105	3.552	4.421	-0.673	~0.504	0.815
330	13.175	12.822	12.485	12.482	12.122	11.849	14.605	14.306	13,713	-7.124	.7 326	-6 253
360	25.376	24,994	22.624	24.258	23.874	21.520	27.309	25,735	24 718	.10.240	-6 239	10 707

۰.

. . . .

.

:

ΔE, ΔG, ΔH are Kcal/mot and ΔS is cal/mol K.

100

B. Chahkandi et al. /J. Phys. Theor. Chem. IAU Iran, 8(3): 161-173, Fall 201

.....

i

B. Chahkandi et al. /J. Phys. Theor. Chem. IAU Iran, 8(3): 161-173, Fall 2011

REFERENCES

- C. D. Keefe and J. K. Pearson, J. Mol. Struct. (Theochem) 679 (2004), 65.
- [2] S. Mondal, D. S. Chowdhuri, S. Ghosh, A. Misra and S. Dalai, J. Mol. Struct. (THEOCHEM). 810 (2007) 81.
- [3] R. H. Garrett and C. M. Grisham, Biomolecular interactions, 2nd ed, Saunders College Publishing, New York, 1999.
- [4] D. E. Metzler, The Chemical Reactions of Living Cells, In Biochemistry, 2nd ed, Harcourt Academic Press, New York, 2001.
- [5] S. U. Brijbassi, M. A. Sahai, D. H. Setiadi, G. A. Chass, B. Penke and I. G. Csizmadia, J. Mol. Struct. (THEOCHEM). 666-667 (2003) 291.
- [6] G. A. Chasse, A. M. Rodriguez, M. L. Mak, E. Deretey, A. Perczel, C. P. Sosa, R. D. Enriz and I. G. Csizmadia, J. Mol. Struct. (THEOCHEM). 537 (2001) 319.
- [7] R. Ramani and R. J. Boyd, Int. J. Quantum Chem, Quantum Biol. 20 (1981) 117.
- [8] P. T. V. Duijnen and B. T. Thole, Biopolymers. 21 (1982) 1749.
- [9] L. Schafer, C. V. Alsenoy and J. N. Scardale, J. Chem. Phys. 76 (1982) 1439.
- [10] R. F. Frey, J. Coffin, S. Q. Newton, M. Ramek, V.K.W. Cheng, F.A. Momany and L. Schafer, J. Am. Chem. Soc. 114 (1992) 5369.

- [11] A. Perczel, J. G. Angyin, M. K. Tar, W. Viviani, J. L. Rivail, J. F. Marcoccia and I. G. Csizmadia, J. Am. Chem.113 (1991) 6256.
- [12] A. Perczel, O. Farkas and I. G. Csizmadia, J. Mol. Struct. (THEOCHEM). 118 (1996) 7809.
- [13] A. M. Tarditi, M. W. Klipfel, A. M. Rodriguez, F. D. Suvire, G. A.Chasse, O. Farkas, A. Perczel and R. D. Enriz, J. Mol. Struct. (THEOCHEM). 545 (2001) 29.
- [14]G. N. Ramachandran, J. Mol. Biol. 6 (1963) 1494.
- [15]G. N. Ramachandran, C. Ramakrishnan and V. Sasisekharan, J. Mol. Biol. 7 (1963) 95.
- [16] L. Esposito, L. Vitagliano, A. Zagari and L. Mazzarella, Protein Sci. 9 (2000) 2038.
- [17] M. A. McAllister, A. Perczel, P. Csa'sza'r and I. G. Csizmadia, J. Mol. Struct. (THEOCHEM). 288 (1993) 181.
- [18] A. Perczel, M. McAllister, P. Csa'sza'r and I. G. Csizmadia, Can. J. Chem.72 (1994) 2050.
- [19]O. Antohi and A. Sapse, J. Mol. Struct. (THEOCHEM) 430 (1998) 247.
- [20] C. P. Chun, A. A. Connor and G. A. Chass, J. Mol. Struct. (THEOCHEM). 729 (2005) 177.