Journal of Physical and Theoretical Chemistry

of Islamic Azad University of Iran, 14 (3) 229-236: Fall 2017 (J. Phys. Theor. Chem. IAU Iran) ISSN 1735-2126

DFT study of the intermolecular interaction of 3,4-dinitropyrazole (DNP) and H₂O

Morteza Rouhani^{*}

Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran

Received December 2017; Accepted March 2018

ABSTRACT

In the present work, the sensitivity to the moisture (hygroscopisity) is studied for 3,4-dinitropyrazole (DNP) as a famous energetic molecule. All of the DNP-H₂O complex systems (1-3) as well as individual molecules were optimized and bond lengths, bond angles, dihedral angles, charge transfer and stability via NBO analysis, corrected interaction energies with ZPE + BSSE and hydrogen bonds analysis were carried out and related data were gathered and explained with details. According to the NBO analysis, it was observed that the complex 2 was the most stable one among the others. However, on the basis of the interaction energies, complex 3 displayed more strong interactions. So, it proves the existence of the strong hydrogen bonds in complexes 2 and 3 as well as occurrence of the inconsistent manner between interaction energies and charge transfer changes. Furthermore, it shows that charge transfer is not the main and effective parameter of intermolecular interactions in complexes 1-3.

Keywords: 3,4-dinitropyrazole (DNP); intermolecular interaction; DFT study

INTRODUCTION

Recently, many researchers have been focused on the synthesis and computational investigation of nitrogenrich energetic materials [1-4]. Among the all of the energetic materials, nirogen-rich ones have attracted more interests, because they have some special features such as numerous C-N and N-N bonds in chemical structure which causes to have high density, fair stability and oxygen balance etc [5]. Pyrazole-based energetic materials are one of the most stable nitrogen-rich ones. Their suitable stability is related to the aromotacity of the pyrazole core. So, study these series of explosives such as 3,4-dinitropyrazole (DNP) (Figure 1) are of great importance and causes to better understanding of their mechanism of explosion.

Fig. 1. The optimized structure of the DNP.

One of the most important topics in the pyrotechnics is the control of the sensitivity of the energetic materials. These

^{*}Corresponding author: rouhani.morteza@gmail.com

compounds have different sensitivities to the external shocks such as spark, heat, impact so on, which can lead to the unexpected explosions [6-11]. So. improving the detonation performance as well as controlling the impact and heat resistance is a very challenging problem [12]. Recently, 3,4-dinitropyrazole (DNP) has been presented as one of the stable energetic materials with good detonation properties. DNP belongs to the azole family, which are five-membered nitrogen containing heterocycles. Electrophilic and nucleuphilic sites of the DNP have been studied with via computational methods [13]. However, the computational studies on the various pyrotechnic features of DNP are very limited and its decomposition mechanism is still unclear. So, it is necessary to investigate its energy storage properties and the parameters which can affect on its decomposition.

Sensitivity to the moisture which is also named hygroscopicity is one of the most important topics in pyrotechnics. Moisture can be adsorbed by the energetic molecules during the production process or storage period. Hence, the properties such as decomposition, sensitivity and detonation velocity can affect by moisture absorption. Furthermore, it can lead to corrosion of the explosive container which is usually metallic. So, it is very important to study the interaction between energetic molecules (DNP in the present work) and water to evaluate the changes of its structural parameters while encountering to the moisture [14].

In the continuation of our previous work [15] in the present work, the intermolecular interactions of the DNP and water have been studied via computational approach. The DFT calculations at the B3LYP/6-31G* level carried out to obtain the accurate, qualified and comparable computational results with experimental observations.

COMPUTATIONAL METHODS

First, DNP, H₂O and all of the dimeric complexes were designed and optimized by Gauss view 05 and Guassian 03 respectively programs, [16]. DFT calculations at the B3LYP/6-31G* basis set carried out for optimization. Zero point energy (ZPE) correction and basis set superposition error (BSSE) correction were considered for the intermolecular interactions [17]. For detection of the source of the interactions, the natural bond orbital (NBO) analysis was carried out for each of structures.

RESULTS AND DISCUSSION

The optimized structures of the DNP-H₂O complexes (1-3) are shown in the figure 2. The optimized structural properties are listed in the Table 1 for all of the three complexes. According to the table 1, the average of the changes in bond lengths in the complexes 2 and 3 are more than complex 1. It can be seen that the changes in bond angles in complexes in comparison with individual DNP molecule are negligible. However, dihedral angles show significant variations, especially at complex 1 implies that there are intermolecular interactions in this type that could affect the clear rotation in the molecule.

The natural bond orbital (NBO) analysis shows the intra and intermolecular interactions between donor and acceptor orbitals. So, NBO analysis is a useful approach which helps to calculate the amount of the charge transfer between and acceptor. Second order donor perturbation energy $E^{(2)}$ reveals all of the donor(i) and acceptor(j) interactions quantitavely:

$$\mathbf{E}^{(2)} = \mathbf{q}_{i} \frac{F2(i,j)}{\varepsilon j - \varepsilon i}$$

Bond	Monomer	1	2	3
O ₁ -H ₂	0.968	0.970	0.969	0.973
O ₁ -H ₃	0.968	0.968	0.973	0.969
 C ₄ -C ₅	1.395	1.398	1.401	1.402
C ₄ -N ₁₁	1.421	1.422	1.423	1.425
$\frac{1}{C_1 - N_4}$	1.353	1.352	1.353	1.349
	1.402	1.409	1.407	1.407
<u> </u>	1.441	1.434	1.438	1.439
<u> </u>	1.072	1.079	1.079	1.079
<u> </u>	1.331	1.329	1.332	1.331
<u> </u>	1 013	1.012	1.032	1.027
<u>N10-N7</u>	1 342	1 343	1 340	1 344
<u>N11-012</u>	1.433	1.433	1.432	1.431
Nu-Ou	1 431	1 429	1 431	1.431
N12-015	1 220	1 233	1.131	1.131
N12-016	1 231	1.233	1 234	1 234
Bond angle	1.201	1.201	1.231	1.23
4.11.13	112.07	111.68	112.63	111.89
4.11.14	112.11	113.13	112.72	111.82
4.7.10	114.21	114.25	113.63	113.65
478	125.44	125.40	123.94	129.82
4.5.6	105.17	105.22	104.82	105.08
4.5.12	130.65	130.63	130.85	130.99
5.12.15	118.68	118.90	118.72	118.83
5.12.16	115.77	116.28	115.93	115.77
5.6.9	127.21	127.27	127.20	127.23
5.6.10	111.45	111.39	111.35	111.09
10.6.9	121.33	121.32	121.43	121.66
10.7.8	120.34	120.33	122.42	116.51
7.4.5	104.72	104.70	105.28	105.17
7.4.11	113.45	113.41	113.64	113.58
11.4.5	141.81	141.78	141.07	141.24
13.11.14	61.50	61.55	61.49	61.45
13.11.4	112.07	111.68	112.63	111.89
14.11.4	112.11	113.13	112.72	111.82
15.12.16	125.54	124.81	125.34	125.38
Dihedral angle				
4.5.12.15	-0.05	-10.24	0.11	0.15
4.5.12.16	179.95	170.13	-179.93	-179.83
4.5.6.9	-179.98	179.60	-179.99	179.99
5.4.11.13	-33.63	-29.19	-33.85	-33.64
5.4.11.14	33.36	37.99	33.44	33.16
5.4.7.8	179.96	179.63	-179.87	-179.43
6.10.7.8	-179.98	-179.52	179.87	179.57
6.5.12.15	-179.98	168.41	-179.80	-179.90
6.5.12.16	0.03	-11.20	0.15	0.10
6.5.4.11	-179.94	175.81	179.88	-179.71
10.6.5.12	1/9.96	-1/8./4	1/9.93	-1/9.90
	1/9.95	-1//.46	-1/9.92	1/9.66
/.4.11.13	146.45	146.30	146.01	146.56
/.4.11.14	-146.55	-146.50	-146.68	-146.62
/.4.5.12	-179.96	178.92	-179.92	-179.96
8.7.10.13	1/9.98	-1/9.52	1/9.8/	1/9.57
8./.4.11	-0.02	2.51	0.20	0.43
9.0.10.7	1/9.99	-1/9.83	1/9.99	1/9.88
9.0.3.12	-0.04	0.00	-0.05	0.04

Table 1. The bond lengths (Å), bond angles and dihedral angles for monomers (DNP and H_2O) and complexes 1-3. All of the structures were optimized at B3LYP/6-31G* level.

In the above equation, q_i shows the electron occupancy in the donor orbital, F(i,j) presents the off diagonal NBO Fock matrix element and ε_i and ε_j are diagonal elements in orbital energies. The atomic charges for DNP, H_2O and complexes 1-3

are listed in the table 2 which are calculated via NBO analysis. In this table, $\Delta 1$, $\Delta 2$ and $\Delta 3$ shows the differences of the natural atomic charges of the complexes 1-3 with monomers (DNP and H₂O) respectively.

Fig. 2. Optimized structures of complexes 1-3.

Table 2. The resulted natural atomic charges for DNP, H_2O and complexes 1-3 in B3LYP/6-31G* level

Atom	Monomer	1	2	3	Δ1	Δ2	Δ3
O ₁	0.939	-0.960	-0.951	-0.953	-0.021	-0.011	-0.013
H ₂	0.469	0.481	0.490	0.498	-0.011	-0.021	-0.028
H ₃	0.469	0.469	0.499	0.487	-0.011	-0.029	-0.017
C_4	0.298	0.625	0.599	0.612	-0.326	-0.326	-0.313
C ₅	-0.004	0.209	0.194	0.186	-0.213	-0.198	-0.190
C ₆	0.003	0.077	0.066	0.080	-0.073	-0.062	-0.076
N ₇	-0.320	-0.432	-0.462	-0.448	0.111	0.141	0.141
H ₈	0.459	0.378	0.413	0.402	0.081	0.046	0.057
H ₉	0.268	0.200	0.197	0.198	0.068	0.071	0.070
N ₁₀	-0.249	-0.244	-0.243	-0.298	-0.005	-0.006	0.048
N ₁₁	0.065	-0.100	-0.148	-0.103	-0.034	-0.082	-0.037
N ₁₂	0.415	0.341	0.339	0.340	0.074	0.076	0.075
O ₁₃	-0.105	-0.126	-0.116	-0.118	0.020	0.010	0.012
O ₁₄	-0.105	-0.113	-0.112	-0.120	0.007	0.006	0.014
O ₁₅	-0.337	-0.410	-0.392	-0.387	0.072	0.054	0.049
O ₁₆	-0.386	-0.382	-0.395	-0.396	-0.004	0.008	0.009

The intermolecular interactions between two molecules cause to redistribute the The charges of each monomer. stabilization energies (ΔE) are listed in the table 3 which are obtained via NBO analysis. The bonding-antibonding interactions and the related ΔE amounts between monomers were obtained according to the second-order perturbation theory. The ΔE amounts are related to the interaction measures. Table 3 demonstrates that in all three complexes 1-3, O_1 -H₂ and O₁-H₃ bonds act as donor NBO versus the different acceptors. Furthermore, in the complex 1, the oxygen atoms of the nitro group (O_{13} and O_{14}) donate the lone pairs

to the neighboring O_1 -H₂ antibonds. In the complex 2, there is a very strong donoracceptor interaction between the oxygen atom of the H₂O as a lone pair donor and the N₇-H₈ antibonds as acceptor (20.11 kJ/mol). However, it can be seen that a weaker interaction exists between N₁₁ as a lone pair donor and the O₁-H₂ antibonds as an acceptor (2.28 kJ/mol). In the complex 3, the O₁ interaction as the lone piar donor with N₇-H₈ antibond as an acceptor is lower than that in complex 2 (13.97 kJ/mol). So, it can be concluded that the order of the stabilization energy among the complexes is 2>3>1.

Table 3. NBO analysis data for complexes 1-3 at B3LYP/6-31G* level

Complex	Donor NBO	Acceptor NBO	E(j)-E(i) a.u.	F(i,j) a.u.	ΔE (kJ/mol)
	BD(1)O ₁ -H ₂	LP(3)O ₁₅	0.43	0.015	0.18
	$BD(1)O_1-H_2$	RY*(5)O ₁₅	2.84	0.011	0.05
	$BD(1)O_1-H_2$	BD*(1)O ₁₃ -O ₁₄	0.70	0.006	0.07
	$LP(2)O_1$	RY*(3)C ₅	1.32	0.010	0.10
	$LP(2)O_1$	$BD^{*}(2)C_{4}-C_{5}$	0.26	0.005	0.09
	$LP(2)O_1$	BD*(1)C ₅ -N ₁₂	0.59	0.005	0.06
1	$LP(2)O_1$	BD*(2)N ₁₂ -O ₁₆	0.15	0.004	0.08
1	$LP(2)O_1$	BD*(1)O ₁₃ -O ₁₄	0.27	0.005	0.13
	$LP(1)O_{14}$	BD*(1)O ₁ -H ₂	1.34	0.031	0.92
	$LP(2)O_{14}$	RY*(1)H ₂	1.18	0.007	0.05
	$LP(2)O_{14}$	BD*(1)O ₁ -H ₂	0.88	0.015	0.34
	$LP(1)O_{15}$	BD*(1)O ₁ -H ₂	1.28	0.037	1.34
	LP(2)O ₁₅	BD*(1)O ₁ -H ₂	0.77	0.028	1.20
	LP(3)O ₁₅	BD*(1)O ₁ -H ₂	0.75	0.040	1.95
	$BD(1)O_1-H_2$	BD*(1)N ₇ -H ₈	1.17	0.016	0.27
	$BD(1)O_1-H_3$	RY*(1)H ₈	1.42	0.015	0.19
	$BD(1)O_1-H_3$	BD*(1)N ₇ -H ₈	1.17	0.030	0.97
	$BD(1)O_1-H_3$	BD*(1)N ₁₁ -O ₁₃	0.84	0.006	0.06
	$BD(1)O_1-H_3$	BD*(1)N ₁₁ -O ₁₄	0.84	0.006	0.05
	$CR(1)O_1$	BD*(1)N ₇ -H ₈	19.45	0.080	0.40
	$LP(1)O_1$	RY*(1)H ₈	1.17	0.008	0.07
	$LP(1)O_1$	BD*(1)N7-H ₈	0.92	0.019	0.46
2	$LP(2)O_1$	RY*C ₄	1.35	0.009	0.07
	$LP(2)O_1$	RY*N ₇	2.13	0.019	0.20
	$LP(2)O_1$	RY*N ₇	2.82	0.013	0.08
	$LP(2)O_1$	RY*(1)H ₈	1.15	0.011	0.13
	$LP(2)O_1$	BD*(1)N ₇ -H ₈	0.09	0.120	20.11
	$LP(2)O_1$	BD*(1)N ₇ -H ₁₀	0.86	0.012	0.20
	BD(1)N ₇ -H ₈	RY*(1)O ₁	1.93	0.017	0.18
	BD(1)N ₇ -H ₈	BD*(1)O ₁ -H ₂	1.13	0.009	0.09
F	LP(1)N ₁₁	$\overline{BD^*(1)O_1}-H_2$	0.93	0.041	2.28

Table 3. Continued							
-	BD(1)O ₁ -H ₂	RY*(2)N ₇	2.04	0.016	0.15		
	BD(1)O ₁ -H ₂	RY*(1)H ₈	1.38	0.014	0.19		
	$BD(1)O_1-H_2$	BD*(1)C ₄ -N ₇	1.20	0.008	0.07		
	$BD(1)O_1-H_2$	$BD^{*}(1)C_{6}-N_{10}$	1.26	0.013	0.16		
	$BD(1)O_1-H_2$	BD*(1)N ₇ -H ₈	1.16	0.027	0.75		
3	$BD(1)O_1-H_3$	BD*(1)N ₇ -H ₈	1.16	0.013	0.17		
	$CR(1)O_1$	BD*(1)N ₇ -H ₈	19.44	0.063	0.25		
	$LP(1)O_1$	$RY^{*}(1)H_{8}$	1.15	0.007	0.05		
	$LP(1)O_1$	$RY^{*}(1)N_{10}$	1.36	0.008	0.06		
	$LP(1)O_1$	$BD^{*}(1)C_{6}-N_{10}$	1.03	0.007	0.06		
	$LP(1)O_1$	BD*(1)N ₇ -H ₈	0.93	0.017	0.38		
	$LP(2)O_1$	$RY^{*}(1)N_{7}$	1.86	0.010	0.07		
	$LP(2)O_1$	$RY^{*}(1)N_{7}$	2.14	0.013	0.10		
	$LP(2)O_1$	$RY^{*}(1)H_{8}$	1.08	0.007	0.06		
	$LP(2)O_1$	$BD^{*}(1)C_{4}-N_{7}$	0.90	0.015	0.31		
	$LP(2)O_1$	$BD^{*}(1)N_{7}-H_{8}$	0.86	0.098	13.97		

Morteza Rouhani /J. Phys. Theor. Chem. IAU Iran, 14 (3) 229-236: Fall 2017

ΔE: stablilization energy, BD: bonding orbital, BD*: antibonding orbital, LP: lone pair, RY*: empty orbital.

The interaction energies for the DNP- H_2O complexes are calculated and corrected with zero point energy (ZPE) and basis set superposition error (BSSE) corrections:

 $\Delta E = E(\text{DNP} + \text{H}_2\text{O}) - (E(\text{DNP}) + E(\text{H}_2\text{O}))$ $(\Delta E)_{\text{C,ZPE}} = (\Delta E)_{\text{C}} + \text{ZPE}$ $(\Delta E)_{\text{C}} = (\Delta E) + \text{BSSE}$

Table 4 shows that the BSSE amounts are 0.62, 1.06, 1.56 and the corrected ZPEs are 6.13, 6.18 and 6.18 for complexes 1-3, respectively. The corrected interaction energies order among the complexes 1-3 is 3>2>1 with amounts -34.21, -31.59 and -25.80 kJ/mol, respectively. By comparison of table 3 and table 4, it can be seen that the interaction energies occur in an inconsistent fashion with charge transfer changes. It reveals that the charge transfer is not the main factor of the intermolecular interactions in the complexes 1-3.

The intermolecular hydrogen bond can be assumed as an interaction between H-X as a donor and A-Y as an acceptor (Figure 3). X-H bond length, A-Y bond length, H...A intermolecular distance, X-H...A angle and the X to Y overall length are expressed as r, Φ , d, α_{HB} and D, respectively. The table 5 demonstrates fair H...A distances which proves the existence of strong hydrogen bonds.

Fig. 3. The hydrogen bond parameters.

Table 4. Uncorrected interaction energy (ΔE), corrected interaction energy with BSSE (ΔE)_c and corrected interaction energy with BSSE and ZPE (ΔE)_{c,ZPE}

	Ε	ZPE	ΔΕ	ΔE) _C	ΔE) _{C,ZPE}	BSSE	ZPE) _C
DNP	-398500.22	194.91	Ē.				
H ₂ O	-47921.76	55.57					
1	-446454.53	256.69	-32.55	-31.93	-25.80	0.62	6.13
2	-446460.81	258.95	-38.83	-37.77	-31.59	1.06	6.18
3	-446460.81	258.82	-38.83	-40.39	-34.21	1.56	6.18

	r _{Monomer}	r _{Complex}	Δr (Å)	d (Å)	$\alpha_{\rm HB}$	D(Å)
1	0.962	0.970	0.008	2.183	138.16	3.220
1	09.62	0.970	0.008	2.382	110.84	3.506
2	1.012	1.032	0.02	1.820	153.78	2.886
2	0.962	0.973	0.011	2.394	125.36	4.241
2	1.012	1.027	0.015	1.892	134.97	2.622
3	0.962	0.973	0.011	2.418	115.33	2.968

Table 5. The quantitative parameters for hydrogen bonds in complexes 1-3 in B3LYP/6-31G*

CONCLUSION

The sensitivity to moisture, which is called hygroscopicity is a very important case about energetic materials that should be considered carefully. A computational study for structural analysis of the 3,4dinitropyrazole (DNP) as a famous energetic molecule and its interactions with H₂O molecule were carried out in B3LYP/6-31G* level. The corrected interaction energies with ZPE and BSSE are -25.80, -31.59 and -34.21kJ/mol. Therefore, the stability order for three complexes is 3>2>1. Complexes 2 and 3 shows a very strong charge transfer between interacting atoms of the monomers (H₂O to N₇-H₈: 20.11 kJ/mol, N_{11} to O_1 -H₂: 2.28 kJ/mol in the complex 2 and H₂O to N₇-H₈: 13.97 kJ/mol in the complex 3). So, the order of the stabilization energy for the complexes is 2>3>1. Thus, it can be concluded that the interaction energies and charge transfer changes arise in an inconsistent manner. It proves that the charge transfer is not the principal parameter of the intermolecular interactions in the complexes 1-3.

REFERENCES

- [1] A.K. Sikder, N. Sikder, J. Hazard. Mater. 112 (2004) 1.
- [2] J.P. Agrawal, High Energy Materials: Propellants, Explosives and Pyrotechnics, WILEY-VCH, (2010).
- [3] D.M. Badgujar M.B. Talawar, S.N. Asthana, P.P. Mahulikar, J. Hazard. Mater. 151 (2008) 289.

- [4] G. Chalasinski, M.M. Szczesniak, Chem. Rev. 100 (2000) 4227.
- [5] M. Oftadeh, Sh. Selahvarzi, M.H. Keshavarz, Cent. Eur. J. Energ. Mater., 10 (2013) 289.
- [6] B. Tan, X. Long, R. Peng, H. Li, B. Jin, S. Chu, and H. Dong, J. Hazard. Mater. 183 (2010) 908.
- [7] M.R. Manaa, L.E. Fried, C.F. Melius, M. Elstner, Th. Frauenheim, J. Phys. Chem. A 106 (2002) 9024.
- [8] A.B. Kunz, M.M. Kuklja, T.R. Botcher, T.P. Russell, Thermochim. Acta 384 (2002) 279.
- [9] [9] M.M. Kuklja, J. Appl. Phys. 89 (2001) 4156.
- [10] K.E. Gutowski, R.D. Rogers, D.A. Dixon, J. Phys. Chem. A 110 (2006) 11890.
- [11] K.E. Gutowski, R.D. Rogers, D.A. Dixon, J. Phys. Chem. B 111 (2007) 4788.
- [12] B. Yuan, Z. Yu, E.R. Bernstein, J. Chem. Phys. 140 (2014) 34320.
- [13] I.L. Dalinger, D.V. Khakimov, T.K. Shkineva, I.A. Vatsadze, G.P. Popova, T.S. Pivina, S.A. Shevelev, Chem. Heterocycl. Compd. 48 (2013) 1646.
- [14] Zh. Yang, F. Gong, L. Ding, Y. Li, G. Yang, F. Nie, Propellants Explos. Pyrotech. 42 (2017) 1.
- [15] M. Rouhani, J. Phys. Theor. Chem. 14 (2017) 93.
- [16] C. Peng, P.Y. Ayala, H.B. Schlegel, M.J. Frisch, J. Comput. Chem.17 (1996) 49.

Morteza Rouhani /J. Phys. Theor. Chem. IAU Iran, 14 (3) 229-236: Fall 2017

[17] C.D. Sherrill, Counterpoise Correction and Basis Set Superposition Error, http://vergil.chemistry.gatech.edu/note s/cp.pdf/ (accessed Mar 20, 2010).