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Abstract 
Uncertainty is a prominent feature of real world problems and more especially financial 

markets; with this in mind, dealing with uncertainty becomes a necessary part of performance 

evaluation by means of data envelopment analysis. This paper presents three robust data 

envelopment analysis (DEA) models and their application for performance evaluation in 

Tehran Stock Exchange (TSE). Based on the results, the evaluated performance of stocks and 

the number of efficient stocks is decreased in all three models by increasing the level of 

uncertainty. 
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1. Introduction 

Performance evaluation and efficiency 

measurement with DEA models have 

various applications. So in literature, 

researchers presented various models with 

respect to data type and different 

applications. Uncertainty and the way of 

dealing with it are unavoidable aspects, 

when researchers use DEA models under 

variable conditions. These aspects are 

important because DEA is so sensitive to 

little data changes. In fact, data uncertainty 

can dramatically change final results and 

unit performance classification. So DEA 

models must be robust against data 

uncertainty. Recent improvements in 

robust optimization, lead to new DEA 

models which are robust. 

Sadjadi and Omrani (2008) used Ben-Tal 

and Nemirovski (2000) and Bertsimas and 

Sim (2004) approaches to present a robust 

DEA model for performance evaluation of 

Iranian power distribution companies. 

Also Sadjadi and Omrani (2010) used 

Bertsimas and Sim (2004) approach for 

performance calculation of Iranian 

telecommunication companies. Roghanian 

and Foroughi (2010) evaluated the 

performance of Iranian regional Airports 

using robust data envelopment analysis. 

Sadjadi et al. (2011) presented a robust 

super efficiency data envelopment analysis 

model for ranking of provincial gas 

companies in Iran. Lu (2015) used Ben-Tal 

and Nemirovski (2000) and Bertsimas and 

Sim (2004) approaches to present a robust 

DEA model for evaluating algorithmic 

performance. 

With respect to the uncertainty of financial 

markets, the purpose of this article is to 

present robust DEA models for stock 

performance evaluation. So in section 2, 

DEA models are described and in section 3 

models are presented. Next in section 4, 

real data of Tehran Stock market are 

presented and analyzed. Finally in section 

5, final notes are discussed.  

 

2. Data Envelopment Analysis 

DEA developed by Charnes et al. (1978) 

based on Farrell (1957) idea. This 

approach estimate relative efficiency of 

sets of decision making units by use of 

inputs and outputs. DEA separates units in 

two different category efficient and 

inefficient units. Charnes et al. (1978) 

presented CCR as first model in DEA. 

CCR assumption is constant return to scale 

(CRS). A multiplier CCR input oriented 

model that is as model (1): 

1

s

ro r
r

Max y u


   

1 1
. . 0

s m

rj r ij i
r i

S t y u x v
 

                        (1) 



Utilizing Robust Data Envelopment Analysis Model for Measuring Efficiency of Stock, A case study                17 
 

 

 

1

1
m

io i
i

x v


     

1, ..., nj        1,..., sr         1, ..., mi   
0ru          0iv   

Banker et al. (1984) presented BCC with 

the assumption of variable return to scale 

(VRS). This assumption makes BCC more 

real than CCR. A multiplier BCC input 

oriented model that is as model (2): 
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Another model which is used in the 

research is additive model (Charnes et al., 

1995). Unlike two other models presented 

before, this model considers input 

reduction and output increasing 

simultaneously. Multiplier form of this 

model with variable return to scale (VRS) 

is presented as the model (3): 
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Therefore CCR, BCC and additive models 

are selected in this research. 

 

3. Robust Data Envelopment Analysis 

After specifying models to evaluate 

efficiency, in this section robust modeling 

approach is examined: Soyster (1973), 

Ben-Tal and Nemirovski (2000) and 

Bertsimas and Sim (2004). First of all, 

their weaknesses and strengths are 

discussed. It is clear that Soyster approach 

usually find solutions which are 

conservative, i.e. in order to ensure 

solution robustness in this approach, we 

may be far away from nominal problem 

optimality. Ben-Tal and Nemirovski’s 

approach, lead to nonlinear and conical 

robust formulations so their approach 

cannot be used directly for discrete 

optimization problems. Bertsimas and 

Sim’s approach can operate in a reasonable 

conservative level and leads to a linear 

optimization pattern, so we can use this 

approach for discrete optimization 

patterns. With respect to this feature and 

linearity of robust solution in this 

approach, we use it for data envelopment 

analysis designing. For introduction of 

robust structure based on Bertsimas and 

Sim’s approach, consider following linear 

optimization problem: 
TMax c x    . .s t A x b  l x u      (4) 
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Bertsimas and Sim (2004) proposed a new 

method for dealing with uncertainty in 

parameters in a model  . Consider ith 

constraint of a nominal problem as: 

ii bxa  . iJ  is coefficient set of iij Jj,a 

which has uncertainty. iij Jj,a~  receives 

its values based on a symmetric 

distribution (which has an expected value 

of aij). ija~  receives its values for each i in 

]âa,âa[ ijijij  . Here, i  parameter 

should be introduced. The value of i  is 

restricted to ]J,0[ i  and this is not 

necessary an integer number. i adjusts 

model robustness in response to solution 

conservative level. In other word, it is too 

unlikely that all ija  values change, 

,ij ia j J .the purpose is to protect model 

when its changing is more than i   , so 

ita  would be a coefficent that changes in 

the form of ˆ( )i i ita      , i.e. only a 

subset of coeficients will change. So in  

this approach if all of changes are in i  

limit, so solution is certainly feasible and 

also if these change are more than i   , 

there is a high probability that the solution 

is still feasible. Uncertaint problem in 

normal form is as model (5): 
TMax c x   

st.     ∑ 푎 푥  +
푀푎푥

{푆 ∪ {푡 }|푆 ⊆ 퐽 |, |푆 | =  ⌊Γ ⌋ , 푡  휖 퐽 \푆 }  

 
∑ 푎 휂 + (Γ −  ⌊Γ ⌋)푎 휂  ≤  푏          ∀푖  

 

j j jx      

j j jl x u                                      (5) 
0jf     

 

If i    is an integer number then ith 

constraint is formulated as Equation (6): 

퐵  (푥 , Γ ) =  푀푎푥
{푆 ⋮ 푆  , 푆 ⊆ 퐽  |푆 | =  Γ  }  

 
∑ 푎 푥                                         (6) 

 
To reformulate robust cunterpart of a 

nominal problem, the bellow proposin is 

needed: the ith constraint change as follow: 

퐵  ( 푥∗ , Γ ) =

 푀푎푥
{푆 ∪ {푡 }|푆 ⊆ 퐽 |, |푆 | =  ⌊Γ ⌋ , 푡  휖 퐽 \푆}  

 
∑ 푎 푥∗ + (Γ −  ⌊Γ ⌋ 푎 푥∗ )       (7) 

 
To find the maximum of function (7) DMs 

can solve below mathematical peoblem: 

퐵  ( 푥∗ , Γ ) =   푀푎푥 ∑ 푎푖푗 푥∗  푍푗휖    
 

. .
i

ij i
j J

s t Z


                                     (8) 

0 1ijZ    
 

Above formulation is not linear 

programming. Dual form of this problem 

is linear programming. Dual form is as 

model (9): 

i

ij i i
j J

Min P Z
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0ijP         ij J                       (9) 
0iZ         i  

Based on strong duality in optimality if 

primal problem is bounded then dual 

problem is bounded. In this case if 

[0, ]i iJ   then primal and dual problem 

is bounded. In relations presented below, 

iZ  and ijP  are dual auxiliary variables 

which are used for problem linearity. Also

  is used for jx transformation to linear 

form (Bertsimas and Sim, 2004). 
TMax c x  

. .
i

ij j i i ij i
j j J

s t a x Z P b


            i  

i ij ij jZ P a                     , ii j J   
j j jx                      j  

j j jl x u                      j         (10) 
0ijP                              , ii j J   
0j                              j  
0iZ                             i  

 

It is noteworthy that we can show îja  as 

ˆit ija a  , in which   is deviation 

percentage. With respect to features of 

Bertsimas and Sim model and with our 

best knowledge, we can say that all of 

linear optimization models which use 

robust optimization methodology utilize 

this approach. As we said before, the most 

important feature of this approach is that 

when we use it, the dual of linear robust 

problem stays linear. Also we can say that 

this methodology has a good 

controllability over the solution robustness 

degree with respect to conservatism issues. 

Now we can present robust CCR model 

based on Bertsimas and Sim’s approach 

for considering outputs data uncertainty in 

model (11) as below: 
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Robust BCC model based on Bertsimas 

and Sim’s approach for considering 

outputs data uncertainty is as model (12): 
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And final robust additive model With 

respect to Bertsimas and Sim’s approach 

which considers inputs and outputs data 

uncertainty, is presented as model (13):  

Min  
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4. Case Study and Numerical Results 

Numerical results are presented in this 

section. At first inputs and outputs of 

robust DEA are presented. Inputs and 

outputs are selected to evaluate 3 

important stock aspects: stock risk, stock 

return and stock liquidity. The third aspect 

is important because sometimes stocks are 

in a good position from risk and return 

perspective, but selling them is not 

possible at the time. It must be mentioned 

that in this paper, two metrics (i.e. more 

efficient risk and better risk) are used as 

risk measures including semi-variance and 

value at risk. Researchers used monthly 

data of 15 stocks. Time period is between 

March 2012 and March 2015 and real-

world data extracted from Tehran stock 

exchange (TSE). 

The results of running Robust CCR Model, 

Robust BCC Model and Robust Additive 

Model based on Bertsimas and Sim’s 

approach under different price of 

robustness and different level of 

uncertainty are presented in table (2), (3) 

and (4) respectively: 
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Table 1 : The inputs and the outputs of RDEA model 

 Title Description 
   

Inputs 

Semi Variance average of the squared deviations of values that are less than 
the mean of returns 

  

Value at Risk (VaR) Maximum expected loss during a specific period over a 
specific confidential level. 

   

Outputs 

Rate of Return Proportion of gain or loss on an investment over a specified 
period 

  

Liquidity degree which presents stock ability can be quickly bought or 
sold in the market 

   
 

 

 

 

Table 2 : The Results of Robust CCR Model 

DMUs  Γi=0  Γi=0.25%  Γi=0.50%  Γi=100% 

  δ=0   δ=0.01  δ=0.02  δ=0.05   δ=0.01  δ=0.02  δ=0.05   δ=0.01  δ=0.02  δ=0.05  
Stock 01  0.673  0.666 0.660 0.640  0.660 0.647 0.609  0.660 0.647 0.609 
Stock 02  0.487  0.483 0.478 0.464  0.478 0.468 0.441  0.478 0.468 0.441 
Stock 03  0.794  0.786 0.778 0.755  0.778 0.763 0.718  0.778 0.763 0.718 
Stock 04  0.728  0.721 0.714 0.693  0.714 0.700 0.672  0.714 0.700 0.659 
Stock 05  0.693  0.686 0.679 0.659  0.679 0.666 0.627  0.679 0.666 0.627 
Stock 06  0.535  0.530 0.525 0.509  0.525 0.514 0.484  0.525 0.514 0.484 
Stock 07  0.662  0.656 0.649 0.630  0.649 0.636 0.599  0.649 0.636 0.599 
Stock 08  0.780  0.773 0.765 0.742  0.765 0.750 0.706  0.765 0.750 0.706 
Stock 09  1.000  0.995 0.990 0.975  0.990 0.980 0.951  0.980 0.961 0.905 
Stock 10  0.739  0.731 0.724 0.702  0.724 0.710 0.668  0.724 0.710 0.668 
Stock 11  0.605  0.599 0.593 0.576  0.593 0.581 0.547  0.593 0.581 0.547 
Stock 12  0.874  0.865 0.857 0.831  0.857 0.840 0.791  0.857 0.840 0.791 
Stock 13  0.662  0.655 0.649 0.629  0.649 0.636 0.599  0.649 0.636 0.599 
Stock 14  0.600  0.594 0.589 0.571  0.589 0.577 0.543  0.589 0.577 0.543 
Stock 15  0.886  0.877 0.869 0.843  0.869 0.851 0.802  0.869 0.851 0.802 
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Table 3 : The Results of Robust BCC Model 

DMUs  Γi=0  Γi=0.25%  Γi=0.50%  Γi=100% 

  δ=0   δ=0.01  δ=0.02  δ=0.05   δ=0.01  δ=0.02  δ=0.05   δ=0.01  δ=0.02  δ=0.05  
Stock 01  0.696  0.685 0.682 0.681  0.684 0.678 0.668  0.680 0.674 0.653 
Stock 02  0.576  0.570 0.562 0.560  0.557 0.557 0.549  0.557 0.552 0.535 
Stock 03  1.000  0.997 0.997 0.996  0.996 0.996 0.991  0.988 0.985 0.968 
Stock 04  0.979  0.978 0.978 0.977  0.975 0.971 0.970  0.967 0.966 0.966 
Stock 05  0.777  0.766 0.758 0.745  0.765 0.758 0.746  0.765 0.740 0.727 
Stock 06  0.608  0.599 0.596 0.592  0.598 0.587 0.582  0.566 0.564 0.553 
Stock 07  0.999  0.965 0.906 0.836  0.891 0.862 0.693  0.890 0.832 0.691 
Stock 08  1.000  0.962 0.932 0.806  0.927 0.863 0.700  0.918 0.856 0.705 
Stock 09  1.000  0.997 0.997 0.996  0.997 0.989 0.982  0.991 0.989 0.950 
Stock 10  1.000  0.884 0.788 0.681  0.786 0.727 0.675  0.762 0.708 0.669 
Stock 11  0.757  0.743 0.741 0.735  0.743 0.735 0.735  0.720 0.711 0.704 
Stock 12  1.000  0.996 0.992 0.990  0.995 0.987 0.984  0.990 0.986 0.983 
Stock 13  1.000  0.894 0.797 0.689  0.814 0.712 0.621  0.786 0.704 0.621 
Stock 14  0.621  0.609 0.604 0.607  0.605 0.603 0.597  0.602 0.593 0.592 
Stock 15  1.000  0.970 0.932 0.880  0.941 0.894 0.811  0.930 0.853 0.785 

 

 

Table 4 : The Results of Robust Additive Model 

DMUs  Γi=0  Γi=0.25%  Γi=0.50%  Γi=100% 

  δ=0   δ=0.01  δ=0.02  δ=0.05   δ=0.01  δ=0.02  δ=0.05   δ=0.01  δ=0.02  δ=0.05  

Stock 01  15.57  15.94 16.24 17.25  16.15 16.52 18.58  16.40 17.07 19.54 

Stock 02  20.19  20.72 21.28 22.39  21.21 21.81 23.15  21.33 22.25 24.55 

Stock 03  0.00  1.94 3.44 8.74  2.04 4.04 10.10  2.40 4.61 11.61 

Stock 04  6.90  7.45 7.68 8.56  7.68 7.86 9.31  7.68 8.33 10.56 

Stock 05  14.94  15.34 15.99 17.18  15.53 16.22 18.23  15.80 16.78 19.41 

Stock 06  26.29  27.02 27.32 28.73  27.06 27.74 29.52  27.27 28.08 30.71 

Stock 07  0.05  2.17 4.32 10.33  2.56 4.99 12.32  3.68 5.96 14.59 

Stock 08  0.03  2.13 4.10 9.96  2.40 5.03 11.49  3.03 5.62 12.98 

Stock 09  0.00  0.35 0.82 2.27  0.68 1.38 2.63  0.95 1.62 3.89 

Stock 10  0.00  6.85 8.84 11.44  7.26 9.37 12.51  7.60 9.82 14.09 

Stock 11  14.69  15.22 15.76 16.29  15.39 15.84 17.43  16.00 16.26 18.80 

Stock 12  0.00  2.36 4.83 10.06  2.82 5.42 12.10  3.65 6.46 13.33 

Stock 13  0.00  12.52 14.64 20.25  12.71 15.45 22.40  13.36 15.81 23.61 

Stock 14  17.56  18.16 18.23 19.46  18.41 18.75 20.88  18.60 19.88 22.11 

Stock 15  0.01  3.82 5.50 9.39  4.05 6.20 10.67  4.28 6.59 12.39 
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From results, it is obvious that when the 

price of robustness increases or when data 

deviation is possible, stock efficiency can 

decrease. In some situations efficient stock 

can change to inefficient stock. The main 

reason of this event is data uncertainty. 

With the help of robust DEA model, the 

most pessimistic solution for stock 

efficiencies can be obtained. Thus a robust 

efficiency against data variance will be 

established. 

 

5. Conclusion 

In this paper, robust DEA models were 

used for stock performance evaluation, 

because they are powerful and suitable for 

considering data uncertainty. Neglecting 

this kind of uncertainty can influence on 

stock efficiency. After presenting robust 

DEA models, their solutions for Tehran 

Stock Exchange data were obtained and 

analyzed. Results show the effects of 

uncertainty on efficiency. In the extreme 

case, effects can be so dramatic. In fact 

they can change an efficient stock to 

inefficient stock and vice versa.   
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