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Abstract 

Data envelopment analysis (DEA) is a technique based on linear programming (LP) to 
measure the relative efficiency of homogeneous units by considering inputs and outputs. The 
lack of discrimination among efficient decision making units (DMUs) and unrealistic input-
outputs weights have been known as the drawback of DEA. In this paper the new scheme 
based on a goal programming data envelopment analysis (GPDEA) are developed to 
moderate the homogeneity and reasonability of weights distribution by using of facet analysis 
On GPDEA (GPDEA-CCR and GPDEA-BCC) models. These modifications are done by 
considering the lower bounds for each individual inputs and outputs weights in standard CCR 
model and an upper bound just for free variable of standard BCC model. In the both of the 
cases the mentioned modification preserved the inputs and outputs weights from zero value. 
The modified GPDEA models also improve the discrimination power of DEA. The 
advantages of each modified GPDEA-CCR and GPDEA-BCC models are shown by some 
examples. 
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1. Introduction 

Data envelopment analysis (DEA), developed 

by Charnes et al. (1978), is a powerful tool 

based on a fractional mathematical 

programming technique. It is used to measure 

the productive efficiency of decision making 

units (DMUs) and evaluate their relative 

efficiency.  

Two inter-related problems that have long 

been recognized are weak discriminating 

power and incommensurate weight 

distribution. The lack of   discriminating 

power problem occurs when there are not 

enough DMUs or number of inputs and 

outputs is too high compared to the number of 

DMUs under evaluation. In this situation, 

classical DEA models often yield solutions 

that identify too many DMUs as efficient. The 

problem of unfitness weight dispersion for 

DEA occurs when some DMUs are rated as 

efficient because of input -out put weights 

have the extreme or zero values. In some 

cases we meet the unfitness of weights, i.e., a 

solution giving a big weight to variables with 

less importance or zero weight to important 

variables. In particular, in the zero cases, 

weights of input-output do not contribute to 

interpret results of analysis. To improve 

discrimination power and overcome to 

unrealistic weight, restriction techniques has 

been discussed in several papers. Thompson 

et al. (1986, 1990) developed the assurance 

region approach to help choosing a best site 

for the location of high energy physics 

laboratory in Texas. Charnes et al. (1990) 

developed cone-ratio envelopment to restrict 

weight flexibility directly in the weight space. 

By adjusting bounds on the proportions of 

individual inputs (or outputs) to total inputs 

(or outputs), Wong and Beasley (1990) have 

been developed a weight restriction. Doyle 

and Green (1994, 1995) proposed cross-

efficiency evaluation technique and equated 

cross-efficiency with a process of peer-

appraisal. By extending single criterion-based 

conventional approach, Li and Reeves (1999) 

have been developed multiple criteria data 

envelopment analysis (MCDEA). 

Jahanshahloo et al. (2005) suggested a 

feasible interval for weights by using goal 

programming and big-M method their 

approach adjusts the bounds weights, which 

have been considered by decision maker. Bal 

et .al (2008) tried to improve discrimination 

power and dispersion of weight by the 

minimization of coefficient of variation (CV) 

for input-output weights. Wang and Leo 

(2009) presented that the introduced method 

by Bal et .al is questionable and pointed out 

the DEA model with the inclusion of CVs of 

input-output weights, makes no sense if input 

and output data are not normalized to 

eliminate their dimensions and units. Then 

Bal et .al (2010) are suggested GPDEA 
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models which yield more balanced input-

output weight dispersions on compared to 

basic DEA model. Also by reduction of 

efficient DMUs without any addition 

constraints on weights, cause to improve the 

discrimination power. 

In this paper a new scheme are proposed 

where by bounding of weights in GPDEA-

CCR model and bounding free variable in 

GPDEA-BCC model, i.e. with modification 

of GPDEA models based on facet analysis, 

useful results are obtained with respect to the 

GPDEA models.  

The paper is organized as follows: In section 

2, we present the basic DEA models, the 

multi-criteria data envelopment analysis 

(MCDEA) models and goal programming 

DEA models (GPDEA-CCR and GPDEA-

BCC). In section 3, we develop our method to 

improve the discrimination power and 

weights dispersion. An example is considered 

in section 4 which illustrate the proposed 

method. Conclusions are given in section 5.   

 

2. Background   

2.1. Data envelopment analysis 

Suppose that there are n DMUs, where each 

DMUj (j=1,...,n) consumes m inputs ijx

(i=1,...,m) to produce s outputs rjy (r=1,…,s). 

Taking into assumption, the efficiency rating 

for each DMUo can be computed using the 

CCR ratio model as follows: 
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The ratio form of model (1) can be transferred 

to the multiplier form by applying Charnes–

Cooper transformation and rewritten as 

follows: 
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A DMUo is said to be CCR efficient if and 

only if  the optimal value of model (2), equal 

to unity. Associated with the CCR model, we 

have 

Proposition1. At least one DMU is CCR 

efficient. 

Another DEA model, which is usually 

referred to as the BCC model, can be 

expressed as: 



Sahand Daneshvar, et al /JNRM Vol.1, No.3, Autumn 2015                                                                                         8 
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(4) 
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A DMUo is said to be BCC efficient if and 

only if the optimal value of model (3), equal 

to unity. The model (2) and (3) are called the 

basic DEA models. The super efficiency 

concept is proposed for all efficient DMUs 

when there are more than one efficient DMU. 

One of the super efficiency models for 

ranking efficient DMUs in DEA was 

introduced by Andersen and Petersen (1993). 

This method enables an extreme efficient unit 

o to achieve an efficiency score greater than 

one by removing the oth constraint in the 

envelopment linear programming 

formulation. 

 

2.2. Multiple criteria DEA model 

The CCR and BCC multiplier models have 

been discussed most frequently when dealing 

with problems of discriminating power and 

weight restriction. Based on model (2) Li and 

Reeves (1999) developed the following 

model: 
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Where od  is the deviation variable for DMUo 

and dj (j=1,…,n) is the deviation variable of 

DMUj (j=1,…,n). The quantity do (0<do<1) 

point out the inefficiency score.  Under model 

(4) DMUo is efficient if and if  do=0 or 

1
1

 

s

r ror yu . If DMUo is not efficient, it 

efficiency is od1 . Therefore the inefficiency 

score for basic DEA models under the 

constraint that the weighted sum of outputs is 

less than or equal to weighted sum of the 

inputs for each DMU. 

The lack of discriminating power of the basic 

DEA can be overcome by using a single 

objective function in place of multiple. A 

multiple criteria data envelopment model 

formulation with the minmax and minsum 

criteria, which minimizes a deviation variable, 

do, rather than maximizing the efficiency 

score,  

s

r ror yu
1

max  , is shown below:  
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where dj (j=1,…,n) is a deviation variable for 

DMUj (j=1,…,n), M is a maximum deviation 

variable (max {dj}). Also the quantity M is 

bounded by interval (0,1]. The first objective 

function, min do, is the classical DEA 

objective. Under the objective min do, DMU 

is efficient if and only if do=0. The second 

objective function, min M, (minmax) 

minimizing the maximum deviation variable. 

The third objective function, n
jj 1

min d
  

(minsum) minimizing the sum of the 

deviation variables. The constraints

0 jM d , j=1,...,n that define the 

maximum deviation M, do not change the 

feasible region of decision variables.  

 

2.3. Goal programming DEA models: 

GPDEA-CCR and GPDEA-BCC 

Because of the complexity of multiple 

objectives for MCDEA models Bal et.  al 

(2010) suggested GPDEA model and 

Converted the multiple objective 

programming problems into a single objective 

problem. the converted models were solved 

easily than priori models. Goal programming 

simultaneously considers all goals in a 

composite objective function minimizing the 

deviations between goals and aspiration 

levels. However, the MCDEA model (5) can 

be adapted to the weighted goal programming 

in the form given by Bal et al.  
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where for the DMU under evaluation, 1d   and 

1d  are the unwanted deviation variables for 

the goal which constraints the weighted sum 

of inputs to unity, 
2d  is the wanted deviation 

variable for the goal which makes the 

weighted sum of outputs less than or equal to 

unity, 
2d  is the unwanted deviation variable 

for the goal which makes the weighted sum of 

outputs less than or equal to unity. 
jd3 's are 
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(7) 

(8) 

(9) 

(10) 

the unwanted deviation variables for the goal 

(i.e., 0 jdM , j=1,..., n) which realizes M 

as the maximum deviation, and 
jd3 's are the 

wanted deviation variables for the same goal 

(i.e., 0 jdM , j= 1,..., n), where all jd  

deviation variables are also unwanted.  

Similarly, based on the BCC model, GPDEA-

BCC model can be formulated as: 
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Where 1d  , 1d  , 
2d , 

2d , 
jd3 and 

jd3  are 

defined as in the GPDEA-CCR model. 

3. Modified GPDEA models 

3.1. Modified GPDEA-CCR model 

Since the feasibility space of CCR model and 

GPDEA-CCR model are same, therefore the 

modification of GPDEA-CCR model can be 

formulated similar to the CCR model as 

follows: 

Based on approach that is given by Daneshvar 

(2002), consider the following model for all 

CCR efficient DMUs : 
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It is clear that for the inefficient DMUs the 

optimal solution of above model is infeasible, 

then, for all efficient DMUs, which the 

optimal value of above problem is nonzero, 

let the set of these DMUs be called B. For 

DMUs that are belonged to B, model (9) and 

model (10) are solved. 
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Suppose that the optimal values for model (9) 

and model (10) are represented by ru   and iv 

respectively. By placing r  and i  according 

to 
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 DMU , 1,...,  i imin v B i m ,  
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Where 1 1 2 3, , , jd d d d     and jd ( 1,..., )j n are 

unwanted deviation variables and 2d   and 3 jd   

are wanted deviation variables. 

3.2. Modified GPDEA-BCC model 

Since the feasibility space of BCC and 

GPDEA-BCC are same, therefore the 

modification of GPDEA-BCC can be 

formulated similar to BCC. Based on 

approach that is given by Daneshvar (2002), 

consider the following model for all efficient 

DMUs: 
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The optimal value for model (12) is ou . Then 

for all efficient DMUs where is 1ou , solve 

the following model: 
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Where , , , ,1 1 2 2 3 jd d d d d      and 3 jd   are 

defined in the model (7). By bounding ru  and 

iv  variables in modified GPDEA-CCR model 

and by bounding free variable, ou , in 

(12) 
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modified GPDEA-BCC model, the useful 

results are obtained with respect to GPDEA-

CCR and GPDEA-BCC models i.e. by 

reducing the number of efficient DMUs, it 

causes to improve the discrimination power. 

 

Table1. Inputs and output of 10 DMUs 

X4 X3 X2 X1 Y4 Y3 Y2 Y1 DMU 
46 82 50 32 65 54 93 47 1 
37 68 56 61 80 92 56 88 2 
34 45 58 42 80 80 65 94 3 
81 88 39 73 97 93 53 50 4 
41 68 38 45 52 70 42 47 5 
32 44 62 86 47 100 45 86 6 
74 71 74 38 74 62 91 83 7 
62 70 54 61 98 72 60 79 8 
47 38 52 84 41 51 68 85 9 
52 31 47 87 92 70 95 78 10 

 

 

Table 2. Results of the basic CCR and GPDEA-CCR for the data set. 

 DEA-CCR GPDEA-CCR 

DMU Eff. SuperEff. Rank CVsof 
weight Eff. Super Eff. Rank Cvs of 

weight 
1 1 1.481 3 1.354 1 1.014 4 1.012 
2 1 1.098 7 1.626 0.948 0.948 6 1.069 
3 1 1.541 2 1.832 1 1.067 2 1.070 
4 1 1.456 4 1.269 1 1.001 5 1.015 
5 1 1.042 8 1.343 1 1.031 3 1.013 
6 1 1.321 5 1.292 0.789 0.789 8 1.070 
7 1 1.137 6 1.354 0.747 0.747 10 1.013 
8 1 1.025 9 1.238 0.824 0.824 7 1.013 
9 0.994 0.994 10 1.796 0.770 0.770 9 1.070 

10 1 1.951 1 1.400 1 1.285 1 1.069 
 

 

Table 3. Optimal solution of model (9) and model (10) for the data set. 

4v  

3v  
2v  

1v  
4u  

3u  
2u  

1u  DMU 
1.7606 0.7502 1.4110 2.7174 1.5083 1.4521 1.0215 0.8441 1 
2.0818 0.3438 1.3061 0.6196 1.0604 1.0870 0.6380 0.8660 2 
2.3810 1.7570 1.2552 2.0704 1.2255 1.2500 1.4148 1 3 
0.5688 0.5117 1.8939 0.8615 1.0101 1.0753 0.7758 1.0475 4 
0.5231 0.2236 1.3198 1.2549 0.2496 1.4286 0.6414 0.3294 5 
2.5316 2 1.0651 0.4639 0.6095 1 0.8638 0.9824 6 
0.2923 0.8442 0.4772 2.2883 1.2299 0.8333 1.0438 1.0588 7 
0.5047 0.3650 1.1041 0.9428 1 0.1080 0.2521 0.5804 8 
1.4843 2.8409 1.5748 0.7413 1.0661 1.4164 1 1.2048 10 
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Table 4. Results of the modified GPDEA-CCR model. 

DMU Eff. Super Eff. Rank CVs of weight 
1 0.993 0.993 4 0.564 
2 0.975 0.975 5 0.564 
3 1 1.196 2 0.544 
4 0.867 0.867 7 0.564 
5 0.727 0.727 10 0.550 
6 0.822 0.822 9 0.564 
7 0.849 0.849 8 0.520 
8 0.994 0.994 3 0.564 
9 0.899 0.899 6 0.564 
10 1 1.211 1 0.531 

 

Also, the mentioned models result 

homogeneous dispersion input-output 

weights. In order to illustrate the proposed 

modified GP-DEA models, we have used the 

following example. 

4. Numerical Examples  

Because of unit-invariance property in DEA 

models and the structure of objective 

functions for the GPDEA models, 

normalizing of weights has no effect on DEA 

efficient hence, in these examples, we have 

used a normalized data obtained by dividing 

each input-output with their highest value. 

Example 1 

Table 1 shows data set with four inputs and 

four outputs. Table 2 shows the efficiency, 

super efficiency and rank values of DMUs by 

the super efficiency scores and the coefficient 

of variation of input–output weight values for 

the basic CCR and the GPDEA-CCR models. 

As seen in Table 2, variation of input–output 

weight in GPDEA-CCR model for peer DMU 

is less than variation of input-output weight 

value for CCR model. In addition, in Table 2, 

while 9 of 10 DMUs are found as efficient by 

the basic CCR model, the GPDEA-CCR 

model is reduced the number of efficient units 

to 5. According to the results, GPDEA-CCR 

models are generally more homogeneous than 

those of the basic CCR model in DEA. Also 

GPDEA-CCR model reduce the number of 

efficient DMUs and improve the 

discrimination power. 
 

 In Table 3 results of model (9) and model 

(10) are given. By placing r  and i  as lower 

bounds ( 1,..., )ru r s  and ( 1,..., )iv i m  

respectively, the modified GPDEA-CCR 

model for data set is solved. Table 4 shows 

these results. As seen in Table 2 and Table 4 

it is clear that model (11) reduces the number 

of efficient DMUs. Therefore, improves the 

discrimination power and according to the 

results of these tables, the dispersion 

(variation) of input-output weights assigned 

to DMUs by the modified GPDEA-CRR 
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model is less than, i.e., more homogeneous 

than that of GPDEA-CCR model. The results 

of BCC and GPDEA-BCC models 

summarized in Table 5.Obviously, GPDEA-

BCC model reduced the number of efficient 

units to 4 and, variation of input–output 

weight in GPDEA-BCC model for peer DMU 

is less than variation of input-output weight 

value for BCC model. The optimal solution of 

model (12) for BCC efficient DMUs equal to 

1, 0.6798, 1, 0.9387, 1, 1, 0.7452, 0.2181 and 

1. The optimal value of model (13) for DMU1 

and DMU5 equal to -79.63 and -0.2108 and 

for 3DMU , 6DMU and 10DMU  are 

unbounded. Replace   as upper bound for 

free variable ou of GPDEA-BCC model and 

solve the model (14). The results are 

summarized in Table 6. By comparing Table 

5 and Table 6, we realize that the number of 

efficient DMUs is reduced to 3 by the 

modified GPDEA-BCC. modified GPDEA-

BCC model for peer DMU is less than 

variation of input-output weight value for 

GPDEA-BCC and BCC models. 

 

 

Table 5. Results of the basic BCC and GPDEA-BCC for the data set. 

DMU 
DEA-BCC GPDEA-BCC 

Eff. SuperEff. Rank CVs of 
weight Eff. Super Eff. Rank CVs of 

weight 
1 1 1.953 8 1.731 0.762 0.762 9 1.555 
2 1 3.081 6 1.603 0.945 0.945 5 1.157 
3 1 4.179 4 1.964 1 1.245 1 1.157 
4 1 5.283 2 1.070 1 1.006 4 1.099 
5 1 1.270 9 1.303 1 1.214 3 1.157 
6 1 4.612 3 1.411 0.789 0.789 8 1.157 
7 1 2.848 7 1.392 0.727 0.727 10 1.333 
8 1 3.465 5 1.355 0.889 0.889 6 1.157 
9 0.996 0.996 10 2.128 0.821 0.821 7 1.157 

10 1 7.525 1 1.522 1 1.227 2 1.156 
 

Table 6. Results of the modified GPDEA-BCC model. 

DMU Eff. Super Eff. Rank CVs of weight 
1 0.055 0.055 9 1.107 
2 0.952 0.952 4 1.120 
3 1 1.063 3 1.131 
4 1 1.136 2 0.871 
5 0.010 0.010 10 1.107 
6 0.789 0.789 6 1.114 
7 0.752 0.752 7 1.139 
8 0.797 0.797 5 1.145 
9 0.706 0.706 8 1.087 

10 1 1.337 1 1.138 
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Example 2. Efficiency evaluation of seven 

departments in a university 

 Table7 shows Li and Revees (1999) data set 

for 7 DMUs with three inputs and three 

outputs. Similarly, Table8 shows the 

efficiency, super efficiency and rank values of 

DMUs and the coefficient of variation of 

input–output weight values for the basic CCR 

and the GPDEA-CCR models. 

It is clear, GPDEA-CCR model reduced the 

number of efficient DMUs and, variation of 

input–output weight in GPDEA-CCR model 

for peer DMU is less than variation of input-

output weight value for CCR model. The 

results of model (9) and model (10) and 

modified GPDEA-CCR summarized in Table 

9 and Table 10. By comparing Table 8 and 

Table 10, we observe that the modified 

GPDEA-CCR model specify three DMUs as 

efficient and hence improves the 

discrimination power. Also GPDEA-CCR 

results homogeneity of input-output weights. 
 

Table 7. The data of seven departments in a university. 

X3 X2 X1 Y3 Y2 Y1 DMU 
20 400 12 17 35 60 1 
70 750 19 40 41 139 2 
70 1500 42 75 68 225 3 
100 600 15 17 12 90 4 
250 2000 45 130 145 253 5 
50 730 19 45 45 132 6 
600 2350 41 97 159 305 7 

 

Table 8. Results of the basic CCR and GPDEA-CCR for the university data set. 

 DEA-CCR GPDEA-CCR 

DMU Eff. SuperEff. Rank CVsof 
weight Eff. Super Eff. Rank CVs of 

weight 
1 1 1.834 1 1.309 1 1.196 1 0.735 
2 1 1.049 6 1.528 0.957 0.957 5 0.735 
3 1 1.199 4 1.650 0.764 0.766 6 0.735 
4 0.819 0.819 7 1.495 0.576 0.577 7 0.735 
5 1 1.220 3 1.549 1 1.109 3 0.735 
6 1 1.190 5 1.184 1 1.036 4 0.735 
7 1 1.266 2 0.837 1 1.128 2 0.735 

 

Table 9. Result of model (9) and model (10) for the university data set. 

3v  

2v  
1v  

3u  
2u  

1u  DMU 
30.3030 5.8824 3.5973 5.2016 4.5455 4.7859 1 
1.5284 3.1348 2.3571 0.8954 1.0079 2.1930 2 
8.6207 0.8852 0.5245 1.7331 0.4697 1.3350 3 
1.0153 1.1751 1 1 1.0977 0.4966 5 
8.5474 3.2154 2.3514 2.8902 1.7390 2.3095 6 
0.3145 0.6974 1.0977 0.7029 1 1 7 
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Table 10. Results of the modified GPDEA-CCR model for the university data set. 

DMU Eff. Super Eff. Rank CVs of weight 
1 0.557 0.557 6 0.566 
2 0.958 0.958 5 0.566 
3 0.973 0.973 4 0.566 
4 0.520 0.520 7 0.566 
5 1.542 1.542 1 0566 
6 1.121 1.121 3 0.566 
7 1.491 1.491 2 0.566 

 

Table 11. Results of the basic BCC and GPDEA-BCC for the university data set. 

 DEA-BCC GPDEA-BCC 

DMU Eff. Super Eff. Rank CVs of 
weight Eff. Super Eff. Rank CVs of 

weight 
1 1 2.515 3 2.071 0.592 0.892 6 1.432 
2 1 1.059 6 1.590 1 1.012 4 1.475 
3 1 2.921 1 1.736 0.954 0.954 5 1.562 
4 0.976 0.976 7 1.588 0.483 0.483 7 1.505 
5 1 2.902 2 1.705 1 1.117 2 1.620 
6 1 1.227 5 1.472 1 1.029 3 1.287 
7 1 1.817 4 2.109 1 1.270 1 1.760 

 

Table 12. Results of the modified GPDEA-BCC model for the university data set. 

DMU Eff. Super Eff. Rank CVs of weight 
1 0.543 0.543 4 1.319 
2 0.508 0.508 5 1.306 
3 1 1.176 1 1.370 
4 0.005 0.005 7 1.499 
5 1 1.103 2 1.584 
6 0.484 0.484 6 1.222 
7 1 1.090 3 1.542 

 

The results of BCC and GPDEA-BCC models 

summarized in Table 11. As seen in Table 11, 

it is clear that GPDEA-BCC reduce the 

number of efficient DMUs. Therefore, 

improves the discrimination power and the 

dispersion of input-output weights assigned to 

DMUs by the GPDEA-BCC model are more 

homogeneous than that of BCC model. 

Optimal values of model (12) for BCC 

efficient DMUs equal to 1, 0.3514, 0.0746, 

0.1279, 0.4501 and 0.1200. The optimal 

solution of model (13) for DMU1 equal to -

1.7577 .Replace  -1.758 1.758   Max  as 

upper bound for free variable ou  of GPDEA-

BCC model and solve the model (14). The 

results are summary in Table 12. 
 

By comparing Table 11 and Table 12 we 
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observe the number of efficient DMUs is 

reduced to 3 by the modified GPDEA-BCC 

model.  

Therefore, modified GPDEA-BCC model 

improves the discrimination power and the 

dispersion (variation) of input-output weights 

assigned to DMUs by the modified GPDEA-

BCC model is less than, i.e., more 

homogeneous than GPDEA-BCC model. 

5. Conclusion  

It has been realized that DMUs may have 

dispersion of non-homogeneous  input-output 

weight. Hence yield many numbers of 

efficient DMUs. In this paper we have 

investigated GPDEA model and proposed 

modified GPDEA. Our research findings have 

clearly show that modified GPDEA model 

imply more homogeneous input-output 

weight. 
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