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Abstract: Keyword Search is known as a user-friendly alternative for structured languages 
to retrieve information from graph-structured data. Efficient retrieving of relevant answers to a 
keyword query and effective ranking of these answers according to their relevance are two main 
challenges in the keyword search over graph-structured data. In this paper, a novel scoring function 
is proposed, which utilizes both the textual and structural features of answers in order to produce 
a more accurate order of answers. In addition, a query processing algorithm is developed based 
on information spreading technique to enumerate answers in approximate order. This algorithm 
is further improved by allowing a skewed development toward more promising paths and enables 
a more efficient processing of keyword queries. Performance evaluation through extensive 
experiments on a standard benchmark of three real-world datasets shows the effectiveness and 
efficiency of the proposed algorithms.

Keywords: Information retrieval, Database, Keyword search, Relevant answers, Information 
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I. INTRODUCTION

In recent years, keyword search has attracted 
the attention of researchers as an effective 

method to retrieve information from different 
datasets which could be modeled as a graph. 
The success of keyword search is rooted in 
its simplicity in expressing a query (a set 
of keywords). It enables the user to search 
for his/her needed information without 
knowing a specialized query language (e.g. 
SQL, SPARQL or XQuery) or having a 
prior knowledge about the underlying data 
structure (e.g. tables, docs or properties) 
[1]. An answer to a keyword query is a set 
of nodes connected as a sub-tree or a sub-
graph covering all the keywords of the query. 
It represents how the nodes containing query 

keywords are interconnected in the dataset [2]. 
For example, consider Fig 1. This figure shows 
a part of a geographical database modeled as 
a graph. Any node in this graph represents 
a tuple in the dataset, and any edge shows a 
connection made between the connected 
tuples by foreign keys. Suppose a user queries 
the dataset by Q={Turkmenistan,Uzbek} to 
know the relationship between the two queried 
keywords. These keywords are not covered 
together in any of the graph nodes. Instead, 
two minimal collections of nodes cover the 
wanted keywords as they are shown in Fig 1. 
Collection A1 is  an answer to query Q and 
means “Uzbek is the name of an Ethnic group 
in Turkmenistan including 9% of the total 
population”. Collection A2 is another answer 
to the query and means “Turkmenistan is 
bordered by a country named Uzbekistan in 
which Uzbek is the official language”.
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A keyword search system consists of two 
main subsystems: a search subsystem to retrieve 
relevant answers to given query, and a ranking 
subsystem to rank the retrieved answers.

The search subsystem has an effective impact 
on the efficiency of the system. According to a 
comprehensive study, the search methods which 
were proposed on the schema-free graphs can 
be divided into four categories: cluster-based 
methods, subgraph-based methods, Lawler-based 
methods and virtual document-based methods. 
In the cluster-based methods, the keyword nodes 
are grouped into some initial clusters according 
to the keywords they covered. These clusters are 
expanded based on different strategies to reach 
common nodes. Detected answers by this way are 
in the form of star-trees in which leaves contain 
keyword nodes of different types. BANK [13], 
bidirectional [14] and BLINKS [5] are samples 
of such methods. Although these systems are fast 
in detecting answers, they are unable to retrieve 
non-star answers. Therefore, they present an 
incomplete list of answers to the user. 

 
In the subgraph-based method, the search is 

initiated by the keyword nodes. In this method, 
the low-weights subgraphs are incrementally 
merged until reach answers. DBPF [4] is a 
dynamic programming implementation of this 
method. In DBPF, each edge is just observed in 
one answer. Therefore, a large number of answers 
are lost. 

The Lawler-based methods produce a 
complete set of answers [6, 7]. In these methods, 
all the search space is first searched (by a system 
such as DBPF) to find the lowest weight answer. 
The search space is then divided to subspaces and 

each subspace is searched separately to find the 
next answer. Since the generated subspaces may 
differ only in one edge with each other and with 
the base graph, the search on them is done with 
the same upper bound complexity as the search 
on the overall graph. These expansive repetitive 
searches make Lawler-based methods empirically 
inapplicable on the large graphs.

In the virtual document-based methods more 
focus is on the text processing of subgraphs. In 
these methods, the nodes of graph are mapped 
to virtual documents and then processed with 
existing text processing methods. Graph-LM 
[16] and KESOSASD [17] are samples of such 
methods. Relying on the text retrieval processes 
which have been evolved a lot over the years 
[18], the virtual document-based methods could 
retrieve answers very quickly and accurately. 
However, these methods need an extra memory 
to save virtual documents. In addition, the radius 
of answers generated by these methods is limited 
to the size of considered virtual documents.

In response to a query, numerous answers may 
be retrieved by the search subsystem. Therefore, a 
ranking step is necessary to provide more relevant 
answers to the user. 

A ranking function is usually used to evaluate 
the relevance of answers to a given query [3]. 
Some of the proposed ranking functions in the 
literature use only the structural attributes of 
answers to rank them [4-7]. It is obvious that 
these functions are unable to differentiate among 
the answers with the same structure but different 
content. A group of methods tried to solve this 
problem by considering the IR-style features 
(commonly TFIDF) in addition to the structural 
features of answers in the ranking efforts [8-12]. 

 

Fig1. A modified part of Mondial dataset and two answers in response to query Q={Turkmenistan,Uzbek}.
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Although these methods are usually more 
successful than the first group, they are still unable 
to detect some differences between answers. For 
example, consider two answers shown in Fig 1. 
These answers are structurally similar. On the 
other hand, the TFIDF of the two keywords in 
both of the answers are similar. However, A_1 
covers the queried keywords in more important 
attributes than A_2, and it should be considered 
more relevant to the user’s query. This priority 
cannot be detected by the second group of 
methods because realizing it needs a semantic 
analysis on the text information of nodes up to 
the attribute level. One of our purpose in this 
paper is to present a scoring function which is 
able to differentiate answers with a high degree 
of distinction.

In this paper, two greedy-based keyword 
systems are proposed, which use a new scoring 
function during the search process to retrieve 
top-k answers. The proposed systems provide 
answers in an approximate order of their final 
ordering. This ability allows the systems to present 
answers immediately after they are retrieved. As a 
result, it reduces the response time of the systems 
significantly in comparison to those of the other 
systems.

The main contributions of this work are 
summarized as follows:

•	 To provide a more accurate order of 
relevant answers, we propose a new scoring 
function to observe both the content-
based and the structure-based relevance 
of answers to the query. The content-
based relevance of answers is defined 
based on a new notation of term weights 
taking the attribute-level information into 
consideration. Using this level of textual 
information beside using the structural 
information in ranking of answers makes 
the proposed function more powerful to 
distinct answers. 

•	 For effective finding of top-k answers, 
we propose Blind Keyword Search (BKS) 
system which retrieve answers in an 
approximate order of their final ranking. 
This algorithm provides a solution based 
on information spreading technique [19, 
20] to retrieve top-k answers. In addition, 
special nodes (as a new notation) are used 
for an initial pruning on the search space. 

A bounded approximation ratio is proved 
for the result list of this system.

•	 To improve the efficiency of BKS, we 
then propose an enhanced search system 
named Informed Keyword Search (IKS). 
The algorithm estimates the probability 
of answer existence in all paths in order 
to follow the more probable paths earlier 
than the others. It can retrieve the answers 
more efficiently than BKS but has a slight 
lowering in effectiveness.

In the experiments, we show the effectiveness 
of the approximate ranked lists of answers 
presented by the proposed systems in comparison 
to the ranked list of the other systems. In addition, 
we show the efficiency of IKS in retrievement 
of top-k answers in terms of response time 
and execution time. The rest of the paper is 
structured as follows: In Section 2, related works 
are discussed. Then, in Section 3, formal problem 
statements are defined and the proposed scoring 
function are provided. Two query processing 
algorithms for solving keyword search problem 
are introduced in Section 4. The evaluation 
framework and the results of the experiments are 
explained in Section 5. Finally, in Section 6 the 
paper is concluded.

II. RELATED WORKS

Conducted research on keyword search were 
followed in four categories: Keyword search on 
relational databases [2, 4, 8, 9, 21, 22], Keyword 
search on XML databases[23, 24], Keyword 
search on Semantic Web [25-27] and Keyword 
search on schema-free graphs [5, 6, 11, 14, 15, 
28-30]. All the relational, XML and RDF datasets 
are associated with predefined schemas. Using 
the schema facilitates the determination of the 
query meaning and helps the effective search of 
data. Keyword search over schema free graphs 
is facing more challenges because of having less 
prior knowledge about the examined data. In the 
presented paper, we focused on the schema-free 
graphs because there are many graphs for which 
the scheme is not defined. In the following, some 
of the works that are more similar to our work 
are described. In all of these works, the search is 
started from keyword nodes and followed using a 
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traversing strategy to reach answers.
BANKS [13], Bidirectional [14] and BLINKS 

[5] are cluster-based methods which follow 
forward expansion, bidirectional expansion and 
cost-based expansion respectively to find answers. 
BLINKS [5] partitions graph data into some 
blocks and utilizes a bi-level indexing to process 
keyword queries. One group of indexes is used 
to travel between the blocks and another is used 
to access the data within the blocks. In retrieving 
an answer, BLINKs begins from a keyword node 
and searches its block with the help of intra-block 
indexes. If searching for an answer is expanded 
to the neighborhood blocks, it utilizes multiple 
cursors and sends each of them to a neighbor 
block to continue the search in them. According 
to the claim of the authors, BLINKS is m-optimal, 
where m is the number of input keywords. 
BANKS, Bidirectional and BLINKS just retrieve 
star-trees as answers and ignore other ones. In 
addition, these systems could not provide any 
answer until retrieving all the relevant ones. Ease 
which is introduced in [31] defined the concept 
of r-radius sub-graphs on undirected graph and 
retrieved them as answers of a keyword query. It 
used two indexes for storing data, the first index 
saved the structural distance between each pair 
of keywords and the second index stored the 
contained r-radius sub-graphs for each keyword. 
This approach contained a ranking step to sort 
retrieved answers according to their structural 
compression and some IR measures. In this 
method, the size of final answers is limited to 
the size of initial processed sub-graphs. So, 
there may be answers that are never retrieved. 
Virgilio in [32] proposed an approach based on 
the paths which led to the keyword nodes. In 
this approach, a path of graph was selected in 
each step to be added to an incomplete answer. 
The paths were grouped based on their template 
and assigned by a score. The score of paths was 
not only used in the expanding phase, but also in 
the final ranking of answers. In [6], [7], a Lawler-
based method were employed to retrieve answers. 
Kargar and An in [7] focused on finding answers 
in the form of r-cliques. An r-clique is a set of 
nodes which covers all the query keywords and 
whose shortest path between each two nodes is 
not greater than r. r is a user-defined parameter 
and indicates the maximum value of the answer’s 
diameter. Restricting answers to r-clique ones is 

main disadvantage of this system. The authors 
claimed that in the worst case, the weight of an 
answer produced by their algorithm is twice the 
weight of the optimal answer. In [6], the authors 
focused on retrieving top-k non-duplicate 
answers. The duplicate answers are ones covering 
the same set of keyword nodes. Such answers are 
retrieved by dividing the search space into some 
disjoint subspaces and performing an iterative 
search on the subspaces. The best answer in each 
subspace is obtained and used to produce the best 
global answer. The subspace which produces the 
best global answer is further divided into sub-
subspaces and the best answer among its sub-
subspaces is used to compete with the best answers 
in other sub-spaces in the previous level in order 
to find the next best global answer. Although 
Lawler-based methods are highly effective, the 
need for expansive repetitive searches makes 
them practically inapplicable on large graphs.

Nguyen and Cao [33] presented an approach 
that selected the top-k data sources from 
potentially numerous data sources. Their method 
derives information patterns from each data source 
as succinct synopses that act as representatives 
of the corresponding data sources. The patterns 
(sub-graphs) are then scored based on their 
relevance to the given query using a structural-
aware ranking function. As mentioned earlier, 
ranking answers based solely on their structural 
features is one of the main disadvantages of such 
methods. The papers [16, 34] proposed a virtual 
document-based method to retrieve answers. In 
this method, any subgraph is mapped to a virtual 
document (VD) by concatenating the textual 
content of its nodes. Therefore, the problem of 
searching on the graph data is reduced to the 
problem of searching on a set of documents. These 
papers use language models to score retrieved 
answers.  Although the search on documents 
could perform effectively, the size of answers 
is restricted to the size of virtual documents. In 
addition, an extra memory is needed to build a 
layer of documents. A new type of keyword search 
query, ROU-query, was defined in [35]. It utilized 
input keywords in three categories: required, 
optional, and unwanted, and returned nodes 
of the underlying graph whose neighborhood 
satisfied the keyword requirements. It applied a 
new data structure named query induced partite 
graph (QuIP) to capture the constraints related to 
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the neighborhood size and unwanted keywords. 
Due to the limitation of the result list to a specific 
form of answers, this system has achieved good 
efficiency but its effectiveness has decreased. The 
authors proposed a family of algorithms which 
took advantage of the information in QuIP for 
efficient evaluation of ROU-queries. Park and 
Lim in [11] proposed an approach to aggregate 
best keyword nodes gained from a pre-computed 
process in order to produce top-k relevant 
answers in an approximate order. They used a 
queuing system over the data extracted from an 
extended inverted index. The employed inverted 
index stores comprehensive neighborhood 
information between nodes. Using this index, 
the answers of a keyword query are retrieved by 
sharing the neighborhood information of nodes. 
The examined method results in low execution 
time but high space complexity because of the 
high volume of indexing. On the other hand, 
it prefers more extended and relevant answers 
having more coverage of keywords instead of 
minimal answers.

In the presented paper, a keyword search 
method is introduced by considering both the 
time and space complexities, which retrieves 
minimal answers without any restrictions on the 
shape of the answers.

III. PROBLEM STATEMENT AND 
PRELIMINARIES

Suppose an un-directed un-weighed graph 
G=(N,E) where N is a set of nodes and E is a set of 
edges. Each node njdN includes a list of attribute-
value pairs as nj={(A1,vj1),…,(An,vjn)},n≥1, where 
Ai shows an attribute and vji shows the value of 
attribute Ai in node nj. The edges represent the 
semantic relationships between pairs of nodes. 
Such graphs are used to model different types of 
unstructured, semi-structured, and structured 
datasets. 

The problem of keyword search on the graph 
is stated as follows. Given a graph-structured 
database G and a query Q={q1,q2,…,q|Q|}, retrieve 
top-k answers from G in response to the query in 
a ranked order. 

Definition 1 (Answer) Consider a keyword 
query Q, over graph G. An answer in response 

to Q is a minimal subgraph ag from G such that 
for every keyword of the query there is at least 
one node in ag covering the keyword. Minimality 
requires an answer not to have a proper sub-graph 
that also covers all the query keywords. 

The answers are ranked based on their 
relevance score to the query, and the top-k 
ranked answers are presented to the user. Even 
for a simple definition of the scoring function f, 
an efficient enumeration of answers might not be 
possible. A formal notion of enumeration in an 
approximate order is defined as follows [36].

Definition 2 (θ-approximate order) Let answer 
ag with less f(ag ) is considered as the better answer. 
Enumerating answers in an θ-approximate order 
means that if answer ag precedes answer ag', then 
ag  is worse than ag'  by at most a factor of θ. More 
formally, the sequence of all answers a1,a2,...,an 
will be in θ-approximate order if f(ai)≤θ. f(aj) for 
all 1≤ i ≤ j ≤n.

An algorithm that enumerates the answers in a 
θ-approximate order can find a θ-approximation 
of the top-k answers by terminating the process 
after outputting the k-th answer. 

1. Scoring function
The search results of a keyword query are a 

collection of graphs. To rank these answers, the 
graph topology beside the textual content of nodes 
should be considered. The topology of a graph 
shows how the container nodes of keywords are 
close together. One of the most common ways of 
answer scoring in keyword search works is using 
the Steiner-based weights [4, 22, 37]. However, 
these weights are not suitable for measuring 
the closeness of answer nodes when the answer 
is in the form of a subgraph. That's because, in 
a subgraph, adding one edge leads to increasing 
the relationships between nodes and will bring 
them closer. It is while adding an edge increases 
the Steiner-based weight and subsequently causes 
the resulted answer is ranked at a lower level. In 
the presented work, we measure the closeness of 
nodes through two factors: the number of nodes 
and the diameter of the answer subgraph. The 
diameter of a subgraph is the greatest distance 
between any pair of nodes. Accordingly, the 
structural relevance of answer a_g is defined as 
follows,

𝑆𝑆𝑆𝑆������ � ����� � ���������                 (1)
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Where |ag | shows the number of nodes of ag 
and d(ag) denoted the diameter of ag. Besides, α is 
a parameter to tune the impact of the two factors.

On the other hand, we define a content-based 
relevance score for any answer to be used together 
with a structural relevance score to improve the 
accuracy of the final ranking of answers. The 
keywords in a node are organized under a set of 
attributes with various levels of importance. The 
relevance of a node to a keyword depends on both 
the importance of the node attributes to which 
the keyword belongs and the importance of the 
keyword in those attributes value. The importance 
of a keyword w in a text value v has been studied 
extensively in the IR methods. In the proposed 
scoring function, the pivoted normalization 
weighting [8] is used which has been defined as 
follows,

𝐶𝐶𝐶𝐶��𝑤𝑤𝑤 𝑤𝑤� � � � ���� � 𝑑𝑑���𝑑𝑑��𝑤𝑤���
�� � �� � � � 𝑑𝑑𝑑𝑑�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

� �� � 𝑁𝑁�
𝑑𝑑𝑑𝑑��𝑤𝑤� � �� 

					             (2)

here tfv(w) shows raw frequency of keyword 
w in the text v, dlv denotes the length of v, avgdl 
represents the average length of attribute values, 
Nv denotes the total number of text values and 
dfv(w) shows the number of text values in which 
w exists. Parameter s is a constant and is usually 
set to 0.2. 

The importance of attributes is measured 
by assigning a weight to any attribute. These 
weights are context-dependent ones which 
could be determined by an expertise analysis or 
by a domain expert. Considering the weights of 
attributes, the relevance of node nj to keyword w 
is defined as follows: 

CR���� ��� �  ∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�𝐴𝐴�� ���∈𝔸𝔸
                              𝐶𝐶𝐶𝐶���� 𝐴𝐴���                                              

					          (3)

where 𝔸𝔸  shows the set of attributes known in 

the corpus and vjt denotes the value belonging to 
the domain of At in node nj. It should be noted 

that � 𝐴𝐴�����������������𝐴𝐴�� � �
��∈𝔸𝔸

 .

According to the score of nodes, the content-
based relevance score of answer ag concerning 
query Q is defined as follows:

𝐶𝐶𝐶𝐶�������� � � ��������
𝐶𝐶𝐶𝐶����, 𝑛𝑛��

�����,����
 

					           (4)

The overall relevance score of answer ag with 
regard to query Q is defined as a combination 
of its textual and structural relevance scores as 
follows:

 

					            (5)

Where SRsg(ag|Q) and CRsg(ag|Q) shows 
the structural and textual relevance score of the 
answer concerning query Q, respectively.

IV. PROPOSED SEARCH ALGORITHMS

In this section, two search algorithms are 
proposed to retrieve top-k answers of a keyword 
query. These algorithms employ a smoothed form 
of the scoring function (proposed in section 3.1) 
to present answers in an approximate order of 
their final ranked order.

1. Blind Keyword Search (BKS)
Blind Keyword Search is a query processing 

model developed based on the information 
spreading technique to retrieve relevant answers 
to a given query. In this model, the spread of 
information is initialized from some query-
dependent seed nodes. The information is diffused 
in the graph in a breadth-first stepwise manner 
until some nodes receive all the information 
needed to cover the query. The information of 
each node participating in the search process 
is packed to a holding list (HList) containing a 
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union of the queried keywords saved in the node 
or received from the other nodes. A keyword in a 
holding list is stored along with its weight in the 
original node and the ID of the node from which 
it was received. 

 In any step ith (1 ≤ i  ≤r) of the search process, 
a priority queue (queuei) is considered that stores 
the list of nodes that should be activated in step 
ith. When a node is activated, the information of 
its holding list (mines the information which is 
received in step ith) is spread to adjacent nodes.

The holding list of any adjacent node is 
updated based on the received information so 
that if it includes a keyword and again gets it 
from an active node, the alternative weight and 
ID of the active node are saved for the existing 
keyword. Otherwise, the received keyword along 
with its associated weight and the active node ID 
is saved as a new entry in the HList of the hosting 
node. An active node would be deactivated 
after spreading information although it could 
be activated again later. The union of receiver 
nodes in step ithcomprises the entries of the 
next step priority queue (queuei+1). A transition 
between the steps occurs whenever all the nodes 
in the lower step have spread their information. 
The search process continues until k answers 
are retrieved or a predefined number of steps is 
reached. This number which is named as retrieval 
depth(r) is set to the maximum radius of the 
expected answers. Two steps of query processing 
by BKS are shown in Fig 2. The activated node is 
highlighted in this figure.

An answer is detected by a query processor 
if all the queried keywords are observed in the 
holding list of a node. This node is tagged as a 
detector node. The answer related to a detector 
node is retrieved by starting at the detector node 
and following the node IDs saved in the holding 

list of consecutive nodes in a backward manner. 
After retrieving an answer, the holding list of its 
detector node is re-updated and all information 
received from the other answer nodes is tagged 
as archive information. Archive information of 
a holding list will never be spread to the other 
nodes. This prevents to re-generate the retrieved 
answers in the other nodes. 

Now suppose a node that has been previously 
tagged as a detector node receives new 
information. In this case, any combination of new 
information with the archived ones forms a new 
answer. Such answers are detected and added to 
the result set. The new information received in 
the detector node is then added to the archive 
part of the holding list.

Using sequential priority queues in BKS 
algorithm helps to maintain an activation order 
among nodes according to their distance to the 
seed nodes. It is a way to observe an approximate 
retrieval order of answers by increasing their 
radius. This order could be improved by taking 
the content-based relevance score of answers into 
account. The holding list of a node represents 
summarized information of the subgraph leading 
to the node. Therefore, to maintain a content-
based order among the traversed subgraphs, a 
score named prestige is defined for each node, and 
the nodes of each priority queue are sorted based 
on decreasing order of their prestige. Prestige is 
a query-dependent score which is computed for 
every node nd  considering query Q as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑛𝑛�|𝑄𝑄� � �
|�|�� �|𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻�𝑛𝑛�|𝑄𝑄�| �

                   ∏ max
������𝑛𝑛�, 𝑞𝑞��𝑄𝑄�

𝐶𝐶𝐶𝐶��𝑞𝑞�, 𝑛𝑛�������������|� �,���� �   

					           (6)

 
Fig 2. Two steps of processing Q={IR,AI,ML,PL} by BKS (n_1 is a seed node).
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where HList(nd|Q) denotes the set of unique 
keywords of Q which are covered by the holding 
list of nd and HList(nd,qi|Q) shows the set of 
entries for keyword qidQ in the holding list of 
nd. Using the max function causes any keyword 
to contribute only once and with its best score in 
the calculation. 

Suppose β denotes the average branching 
factor of nodes and τ(qs) shows the number of 
seed nodes. To retrieve all answers with a radius 
equal to or lower than r, the BKS algorithm has a 
time complexity of O(τ (qs ).β r+1).

Theorem 1: BKS enumerates answers in the 
exact order of their radiuses and in 

-approximate  order of their diameters.

Proof: an answer is detected when the 
information of the farthest keyword node reaches 
the center node of the answer. The information of 
the farthest keyword node to the center node of 
an answer with radius r reaches the center node in 
step rth. It implies that any answer with radius r is 
detected in the corresponding step of spreading. 
Since in BKS, spreading is performed in a regular 
stepwise manner, the answers would be generated 
in the exact order of their radiuses.

Among the answers with the same radius, the 
minimum and maximum diameters are (2r-1) 
and 2r, respectively. Therefore, in the situation 
where the arrangement of answers is discussed 
based on their diameters, observing a 
displacement of 2𝑟𝑟

2𝑟𝑟 � �  among the answers with 

the same radius would be expected. Since among 
the answers of different groups, the arrangement 
of answers based on their diameter is true, it 
could be said that BKS presents answers in 

-approximate  order of their diameters.

Special nodes
In many keyword search algorithms, keyword 

nodes are considered as starter nodes and 
expanded until reach answers. The runtime of 
this strategy is from O(τ (qs ).β r+1) to retrieve all 
the answers with a radius equal to or lower than 
r over graph G with average branching factor β. 
However, many of these nodes may never lead to 
an answer within a limited range of expansion. 

As an example, suppose query Q={q1,q2,q3}. Let q1 
and q2 be frequent keywords that have occurred in 
more than a thousand nodes, while q3 is a special 
keyword in a professional background that has 
just appeared in some nodes. Commonly, the 
search begins from all the keyword nodes (more 
than two thousand) and continues by expanding 
all of them until detecting top-k answers. 
However, each comprehensive answer should 
cover at least one node containing q3. Therefore, 
it would be faster if the search is done only in the 
neighborhood of the nodes containing q3. 

Definition 4 (Special node) Suppose query Q 
and graph G. A node is named special if it covers 
a keyword of query Q and if the frequency of that 
keyword in the nodes of G is not larger than those 
of other queried keywords in the same graph. 

The second strategy is to consider special 
nodes as seed nodes. In this strategy, the search 
will proceed unilaterally and the same set of 
answers will be identified after 2r steps. In this 
case, the runtime complexity of BKS will be from 
O(τ (qsp ).β 2r+1) where τ(qsp) shows the number of 
special nodes. In the proposed algorithms, an 
optimal strategy is followed to set the seed nodes. 
For every query, if the frequency of one queried 
keyword is much lower than those of the other 
queried keywords such that 

𝜏𝜏�𝑞𝑞���. 𝛽𝛽���� �� 𝜏𝜏�𝑞𝑞��
���

��������
. 𝛽𝛽��� ,the special 

nodes will be selected as the starter nodes for 
processing the query. Otherwise, the keyword 
nodes will be employed as starter nodes. Using 
this strategy causes an early pruning of the search 
space.

2. The Modified Search Algorithm (Informed 
Keyword Search)

The baseline model described in Section 
4.1 performs a comprehensive search at the 
neighborhood of seed nodes. This model is not 
efficient since the number of contributing nodes 
in the search process increases exponentially 
by incrementing the depth of search. Informed 
keyword search (IKS), concerning the efficiency of 
the baseline method, is a more intelligent version 
of BKS which follows a purposive search to the 
paths having more potential to reach an answer. 
Fig 3 shows a schematic overview of BKS and IKS 
processes in detecting the first answer. The nodes 
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of this answer are shown by filled circles and the 
nodes which have been activated at least once are 
shown by bold circles. The breadth-first manner 
of BKS in the traversing graph is evident in Fig 3 
while IKS searches graph in a best-first manner. 

In IKS, the query processor heuristically 
follows the paths with more signs of the existence 
of answers instead of following all the paths until 
a specified level. Since the information of a path is 
saved in the HList of the path nodes, a calculation 
on the content and position of nodes could be 
properly used in determining the priority of 
paths. Therefore, the problem of specifying a 
priority order among some paths is reduced to 
the problem of determining an activation order 
among the path’s nodes. In IKS model, there is 
only one priority queue to determine the order 
of nodes to activate. This queue is initialized with 
a set of seed nodes that are sorted in decreasing 
order of their prestige.

The unique priority queue provides an overall 
view over all candidate nodes to activate and 

makes it possible to select every node in each 
level to be activated.  The prestige score is the only 
affecting factor in determining the activation 
order of nodes. So, it should properly reflect the 
content and position of nodes. The existence of 
more query keywords during a path increases 
the possibility of reaching an answer. Therefore, 
the prestige of a node is defined in direct 
proportion to the number of keywords covered 
by the HList of the node. However, to observe an 
approximation order on the final list of answers, 
it is essential that the more compact answers with 
shorter paths are detected earlier. This implies 
that the progress toward special paths (although 
promising) is controlled by an upper bound. 
The control on the length of traversed paths is 
achieved by contributing the level of nodes in the 
prestige calculation. By assuming that the initial 
prestige of any seed node is calculated by (6), the 
prestige of any receiver node n_d is calculated as 
follows:

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑛𝑛�|𝑄𝑄� � max�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑛𝑛�|𝑄𝑄�,
|��𝑃𝑃𝑃𝑃𝑃𝑃�𝑛𝑛�|𝑄𝑄�| � ∏ max��������,��|��

𝐶𝐶𝐶𝐶����, 𝑛𝑛�������������|���,����
�|𝑄𝑄| � �� � ���������� � 

												            (7)

IKSBKS

 
Fig 3. An example of finding the first answer by BKS and IKS methods. 
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where |Q| shows the number of queried 

keywords and α represents a fixed parameter 
that is set to 2 in the experiments. As a node can 
receive information from multiple seed nodes 
and its prestige can be reduced by receiving 
new information, the prestige has been defined 
by means of a max function. The existence of 
αLevel(nd) in the denominator of (7) results in an 
exponential decrease in the prestige score with 
increasing the level of spread. It also controls 
the spreading level and prevents long progress 
towards very remote nodes. In order to have an 
efficient implementation, the level of nodes is 
saved during the query process. The initial level 
of any node is set to zero. This value is updated 
for any node n_d  after receiving new information 
from an active node nc by means of (8).

 

  (8)

The details of query processing by IKS is 
similar to that of the baseline method (BKS). In 
IKS, the next node is selected for activation from 
the unique priority queue and the new receiver 
nodes are added to the same queue. An answer 
is detected in a detector node and it is retrieved 
by executing a backward search started at the 
detector node. After retrieving an answer, the 
process to find the other answers continues with 
the existing nodes in the priority queue until k 
answers are retrieved or all nodes with a level 
lower than the retrieval depth are activated at 
least once. The pseudo-code of IKS is shown in 
Algorithm 1. The function ReduceAnswer in line 
18 of the algorithm is used to convert an answer 
to a minimal one by eliminating its additional 
nodes.

To clarify the IKS model, consider the graph in 
Fig 2. The processing of query Q={IR,AI,ML,PL} 
on this graph is initialized by a queue with n1(seed 
node) as its first entry. Node n_1 is the first node 
to activate. The HList of  n1 is sent to n2 and n3. 
After updating the HLists of receiver nodes 
(n2 and n3), their level is updated to 1 and their 
prestige score is calculated. Then, they are added 
to the priority queue. A node in the priority queue 
with the highest prestige is selected as the next 
active node. Therefore, n2 is selected. The content 

of priority queue after activation of a sequence 
of nodes has been presented in Fig 4. Each entry 
shows the Id and prestige of a node. Based on 
this figure, node n4 is activated earlier than node 
n3 even though it is located at a greater distance 
from the seed node n1. 

This activation leads to the early detection of 
an answer in node n5. It should be noted that the 
query coverage is checked after receiving new 
information in a node.

Due to the lack of a level order in the activation 
of nodes, the possibility of displacement of 
answers in the result list of IKS is more than 
that of BKS. However, in all cases, Theorem 2 is 
maintained.

Theorem 2. The distance between each pair 
of nodes in an answer produced by Informed 
keyword search is at most  logα|Q| larger than the 
length of the corresponding optimal path (|Q| 
denotes the number of query keywords).

Proof: Suppose an optimal path from node 
s to node t with the length of d that covers the 
set of keywords Q={q1,q2,...,q|Q|}. Without loss of 
generality, let the seed node s covers the queried 
keyword q1 and the destination node t covers 
the queried keyword q|Q|. It should be noted that 
the two nodes s and t certainly cover at least one 
unique keyword of the query. The worst-case in 
detecting the optimal path occurs when there 
is no positive sign of the presence of an answer 
on this path before reaching the last node. Such 
a situation is shown in the upper path in Fig 5. 
Node y on this path has the worst situation to 
expand.

 

  

(n3,0.14)
(n2,0.23)

(n2,0.08)
(n5,0.10)

(n1,0.28)

n2 is 
activated

n1 is 
activated

(n1,0.12)
(n3,0.14)
(n4,0.16) (n3,0.14)

n4 is 
activated

 
Fig 4. The content of priority queue during the processing 

of Q={IR,AI,ML,PL} by IKS (α=2).
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q1 q2,...,q|Q|

q|Q|-2q2

Path1, length=d

y

x

s t

Path2, length=d’

q|Q|-1q3

 
Fig 5. Two traversed paths in searching keyword set 

Q={q1,q2,...,qn} using Informed Keyword Search.

The lower path in Fig 5 shows an alternative 
path between two nodes s and t covering all the 
queried keywords. This path is the most deceptive 
path between two nodes s and t. By spreading 
information from each of the two nodes x and y, 
an answer will be detected. Path2 in Fig 5 with 
greater length will be traversed earlier than the 
optimal path, if node x will be activated before 
node y. This happens when: 

 

Prestige��|𝑄𝑄�<Prestige�𝑥𝑥|𝑄𝑄� ⇒ ��������𝑥��
�|�|�������� �

�|�|����∏ ���
������𝑥𝑥𝑥 𝑥𝑥��𝑄𝑄�

������𝑥��|�|��
���

�|�|���������

.⇒  𝛼𝛼���� �
�|�|����∏ ���

������𝑥𝑥𝑥 𝑥𝑥��𝑄𝑄�
������𝑥��|�|��

���

�������𝑥��
���𝑥��

��������𝑥����������������� 𝑑𝑑� � 𝑑𝑑 � ����|𝑄𝑄|

It means that if d'<d+logα|Q|, the wrong path 
will be traversed earlier than the optimal path. As 
this path is the most deceptive one, the maximum 
length of a wrong path is at most logα|Q| larger 
than the length of the optimal path.

Input: the input graph G; the query 𝑄𝑄 � �𝑞𝑞�, 𝑞𝑞�, … , 𝑞𝑞|�|�; the number of answers k; the retrieval depth r. 
Output: the set of top-k ordered answers. 
1. 𝑆𝑆 𝑆 seed nodes of G related to Q  
2. for each 𝑛𝑛𝑖𝑖 ∈ 𝑆𝑆 in descending order of 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑛𝑛�|𝑄𝑄� do   //equation (7) 
3.         if (� � ��is��n��� ���� 
4.               Answers ← A, print(A) 
5.               if (#Answers � �) then return Answers 
6.       else 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞  enqueue(ni) 
7. end for 
8. while (𝑞𝑞𝑞𝑞𝑝𝑝𝑞𝑞𝑝𝑝 � �) do 
9.        𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 ←dequeue(𝑞𝑞𝑞𝑞𝑝𝑝𝑞𝑞𝑝𝑝� 
10.        if (𝐿𝐿𝑝𝑝𝐿𝐿𝑝𝑝𝐿𝐿�𝑛𝑛���� � 𝑝𝑝� then continue 
11.        ��𝑛𝑛���� 𝑆 direct neighbors of 𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 
12.        send �𝐿𝐿𝑖𝑖𝑝𝑝𝑝𝑝�𝑛𝑛���� to ��𝑛𝑛���� 
13.        for each 𝑛𝑛𝑗𝑗 ∈ ��𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎� do 
14.               update �𝐿𝐿𝑖𝑖𝑝𝑝𝑝𝑝�𝑛𝑛�� and insert new entries 
15.               𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝑛𝑛𝑗𝑗� ← 𝑚𝑚𝑚𝑚𝑚𝑚�𝐿𝐿𝑝𝑝𝐿𝐿𝑝𝑝𝐿𝐿�𝑛𝑛𝑗𝑗�, 𝐿𝐿𝑝𝑝𝐿𝐿𝑝𝑝𝐿𝐿�𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 � ��� 
16.               if (𝑄𝑄 � �𝐿𝐿𝑖𝑖𝑝𝑝𝑝𝑝�𝑛𝑛��� then 
17.                      𝐴𝐴 ←retrieve the answer detected by 𝑛𝑛𝑗𝑗 by a backward manner 
18.                      𝐴𝐴 ←ReduceAnswer(A) 
19.                      𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  𝐴𝐴, print(A) 
20.                      update �𝐿𝐿𝑖𝑖𝑝𝑝𝑝𝑝�𝑛𝑛�� and delete used entries 
21.                      if (#𝐴𝐴𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝 � �) then return 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
22.               else 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 enqueue(𝒏𝒏𝒋𝒋� in descending order of 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝�𝑛𝑛�|𝑄𝑄�  //equation (8) 
23.        end for 
24. end while 
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V. EXPERIMENTS

1.Datasets and Queries
Coffman and Weaver [1, 38] developed an 

evaluation framework for testing the effectiveness 
of keyword search systems over data graphs. This 
framework consists of three real-world data 
sets: Mondial, Wikipedia, and IMDb. IMDb and 
Wikipedia have relatively large blocks of text as 
they describe quotes from movies and contents 
of pages, respectively. The text of Mondial is 
restricted to the names of countries, mountains, 
etc., but its graph has a complex structure in 
comparison to the other two datasets. Some 
information about the datasets is listed in Table 1.

In the evaluation framework, fifty queries with 
their exact relevant answers have been provided 
for each of these datasets. The average number of 
keywords per query is 2.91, while there are some 
queries having more than five keywords. The 
average number of relevant answers per query is 
4.49. An answer is in the form of a single node 
or a connected sub-graph consisting of several 
nodes.

2. System Implementation
In the proposed work, any dataset of the 

evaluation framework has been modeled as a 
graph and the text has been only associated with 
its nodes. The text of each node contains some 
attributes including name, title, content, and any 
other information about the related entity. Due 
to the different importance levels of attributes, a 
weight has been calculated for each attribute. The 
attributes weight has been applied in determining 
the content-based relevance score of answers. Any 
node in the graph has a unique search Id. These 
Ids have been used to build an inverted index to 
the keywords and nodes in the graph. Stemming 
and stop-word removal have been applied to the 
text of nodes before indexing them.

Table 1. Characteristics of the evaluation datasets.
  

Dataset |𝑵𝑵𝑵a |𝑬𝑬𝑬b |𝑻𝑻𝑻c 
Mondial 17000 56000 12000 

Wikipedia 206000 785000 750000 

IMDb 1673000 6075000 1748000 
           aNodes.    bEdges.     cUnique keywords. 
 

Each entry of the inverted index is a 
stemmed keyword which points to a list of nodes 
containing it; this list is ordered by the content-
based relevance score of nodes to the keyword. 
Using the inverted index, the nodes covering any 
queried keyword qi could be efficiently retrieved. 

The BKS and IKS algorithms have been 
implemented on Java using the JGraphT library  
which has been designed to scale to millions 
of vertices and edges. The retrieved results by 
the implemented systems have been shown 
in the same manner as in [38] to make them 
comparable with the results of the state of the 
art systems reported in [1, 38]. To evaluate the 
precision of the systems, three IR metrics of MAP 
(Mean Average Precision), top-1 (the accuracy of 
answers according to the first correct answer) and 
MRR (Mean Reciprocal Rank) have been used.

VI. EXPERIMENTAL RESULTS

The MAPs measured across various search 
methods and datasets are shown in Fig 6. The 
value of k (the number of retrieved answers) in 
this experiment was set to 100, although this 
value is very large for a lots of tested queries.

BANKS [13] and Bidirectional [14] are 
cluster-based search methods that rank answers 
using a notion of proximity coupled with a notion 
of the prestige of nodes based on in-links. DPBF 
[4] is a subgraph-based search system and Dup-
free is a Lawler-based one. Both of these systems 
rank answers based on Steiner-tree semantic. 
Ranking answers solely based on their structural 
characteristics makes these systems unable to 
distinguish answers with similar structures but 
different semantics. The Effective method [8] 
uses IR scoring schemes coupled with proximity 
weighting to rank answers.

The comparison results in Fig 6 show that 
DBPF achieved the best performance on the 
Mondial dataset while it failed over the Wikipedia 
dataset. This method scores answers based 
on the semantics that: “if a relation has more 
neighbors, an edge that is incident on it reflects 
a weaker relationship between tuples” [4]. This 
belief was effective on the Mondial dataset which 
consists of a large number of tables with complex 
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relationships, but it failed on the Wikipedia 
dataset which is a low dense graph. The MAP of 
this system on the IMDb dataset is not reported 
because of Memory exceptions. Most of the 
queries on Wikipedia have the answers with 
the same structure. Therefore, the results of the 
proximity-based systems on Wikipedia are not 
satisfactory. The Effective system also had a 
disappointing result on Wikipedia. This is due 
to the underlying property of IR-style ranking 
schemes: they prefer larger answers that contain 
additional instances of the queried keywords 
instead of smaller answers that satisfy the query 
[37]. The low MAP of Dup-Free system is related 
to removing the duplicate answers from the 
result set. However, the duplicate answers usually 
reflect different semantics, and the presence of all 
of them in the result set is essential. Fig 6 shows 
that the MAPs of the proposed systems without 
using a separate ranking phase are comparable 
with the MAPs of other state-of-the-art systems. 
The use of content-based scoring with preserving 
the structural priorities makes our systems more 
effective than some examined systems. As was 
expected, BKS is more effective than IKS over all 
datasets because of its exhaustive search on the 
data.

Fig 7 shows the MRR of systems for queries 
targeting exactly one relevant tuple (node). Such 
queries are the most common type of queries 
posed to existing search engines. Twenty queries 
on Mondial and IMDb datasets and fifteen 
queries on Wikipedia dataset are of this type. As 
the initial nodes are scored similarly in the two 
proposed systems, they get the same MRR in this 
experiment. Fig 7 shows the proper quality of our 
systems in comparison with the other systems. 

To have a comparison in equal situations, the 
retrieved results by the proposed method are 
scored and ranked based on Eq. (5). It is because 
that the MAPs of the other systems have been 
reported based on the ranked results. 

Fig 8 shows the MAPs of BKS and IKS after 
ranking answers using the proposed scoring 
function (presented in section 3.1) in comparison 
to the MAPs of the state-of-the-art systems. The 
superiority of the proposed systems shows the 
effectiveness of employed factors (the number 
of nodes, the diameter of the subgraph, and the 
pivoted normalization weighting) in the scoring 
of answers.

In the following experiment, the impact of 
retrieval volume on the MAP of systems before 
the ranking of results is examined. The value of k 
(the number of top answers) varied from 1 to 100, 
and the MAPs of three datasets have been reported 
in Fig 9. The diagram shows that both of the 
proposed systems can identify all the detectable 
relevant answers within the first 50 retrieved 
answers. This result is important because it shows 
that retrieving a limited number of answers is 
sufficient to be considered in the ranking phase. 
As evidenced by the diagrams, the MAP trends of 
the systems are relatively similar. BKS reasonably 
outperforms IKS in terms of MAP because of its 
more regularity in retrieving answers.

In Fig 10, the impact of retrieval depth (r) 
on the effectiveness of the proposed systems has 
been examined. In this experiment, 100 answers 
were retrieved for each query. Not surprisingly, 
effectiveness was improved by increasing the 
retrieval depth until all of the answers were 
retrieved. As the smaller r leads to lower execution 
time, the retrieval depth of Mondial, Wikipedia, 
and IMDb were set to 5, 3, and 2, respectively, in 
all the experiments. 

 
One of the metrics to evaluate the performance 

of systems is execution time. We reported the total 
execution time of the proposed systems for all 
the queries by varying the value of k in Fig 11. It 
should be noted that the experiments were run on 
an Intel(R) Core(TM) i7 QM 2.50 GHz computer 
with 12GB of RAM. The outperformance of IKS 
over BKS in terms of execution time is evident in 
this experiment.

The impact of retrieval depth on the total 
execution time of queries has been shown in Fig 
12. In this experiment, 100 answers were retrieved 
in each depth. Advancing up to higher retrieval 
depths provides the possibility of retrieving 
answers with more radiuses. The exponential 
increase trend in execution times of queries when 
the retrieval depth is increased is observed in 
the diagrams of Fig 12. Nevertheless, based on 
the results shown in Fig 10, the effectiveness of 
systems over large datasets does not improve by 
increasing the retrieval depth to more than 2.

The second metric for performance evaluation 
is response time which is defined as the time 
elapsed from issuing the query until the first 
answer is returned by the system. The average 
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Fig 6. The comparison on MAP of the proposed systems before ranking results with MAP of the state-of-the-art systems.

 

 
Fig 7. The comparison on MRR of different systems for queries which are associated with single-node answers.

  
Fig 8. The comparison on MAP of the proposed systems after ranking results with MAP of the state-of-the-art systems.

  
Fig 9. The overall search effectiveness of the proposed systems by varying k.
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response times of the proposed systems over all 
queries for the three datasets are shown in Table 
2. In this table, P@k represents mean precision 
across all queries where the number of top 
answers is limited to k. The data provided in 
Table 2 show “interactive” response time (on the 
order of a few seconds) [1] for each system. All 
of the systems are able to deliver the first answer 
of queries in less than one second, indicating that 
the proposed systems are practical.

VII. DISCUSSION AND CONCLUSION

In this paper, we proposed two heuristic 
algorithms based on the information spreading 
technique to retrieve relevant answers in response 
to interactive keyword queries. In Blind Keyword 
Search, the information is spread in a regular 
manner to all in-range nodes while in Informed 
Keyword Search the information is spread to 
the nodes having more potential to be present 
in an answer. IKS substantially improved the 
performance of BKS with just a minor impact 
on its Mean Average Precision (i.e., quality of 
answers).

 
Fig 10. The overall search effectiveness of the proposed systems by varying retrieval depth.

 

 
Fig 11. The total execution time of the proposed systems by varying k.

  
Fig 12. The total execution time of the proposed systems by varying retrieval depth.
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Table 2. A comparison between BKS and IKS systems.

  

 

 IKS BKS 

Dataset Resp. (s)a Exec. (s)b 𝑷𝑷𝑷𝑷𝑷 Resp. (s) Exec. (s) 𝑷𝑷𝑷𝑷𝑷 

Mondial 0.021 0.1646 0.52 0.0152 5.4692 0.56 

Wikipedia 0.0048 10.272 0.48 0.0071 23.747 0.51 

IMDb 0.0644 20.876 0.22 0.591 118.074 0.24 

aMean response time (in second). 
bMean execution time to retrieve 100 answers (in second). 
 
 
 
 The experimental results on a wide range of 

queries show that the effectiveness of the proposed 
systems is comparable with that of state-of-the-art 
systems utilizing a ranking phase to sort retrieved 
answers. This achievement is the result of the 
proper use of conceptual factors during the search 
process. With regard to efficiency, the response 
time of the proposed systems is very lower than 
their execution time on various queries because 
the answers are presented immediately after they 
are retrieved. Another advantage of IKS and 
BKS is that their processing time is independent 
of the size of the base graph. This leads to 
relatively similar average processing times of the 
proposed systems over two datasets of Mondial 
and Wikipedia though they have different sizes. 
However, the dependence of the processing times 
on the branching factor of the graphs makes these 
systems efficient just on sparse graphs.

Among the algorithms proposed in this paper, 
BKS is easily extensible to be used in distributed 
environments. To this end, an auxiliary database 
would be used to store the content of nodes. The 
graph structure and the Id of nodes would be 
maintained in the main memory and the content 
of nodes would be saved in the database. The 
required information would be fetched to the 
main memory after the first activation of a node. 
To distribute keyword search, the structure of 
the graph is saved on all the servers and they are 
connected to the database to fetch the needed 
information. Each server is responsible to 
retrieve a group of answers related to a specified 
seed node. The data of the nodes close to some 
seed nodes may be fetched several times from the 
database by different servers. It is not necessary 
for each server to inform the other servers about 
the changes of common nodes because each 
group of answers related to a seed node would be 
retrieved independently from the other answers. 
To execute BKS, the steps of the algorithm should 

be simultaneously started by all the servers to 
preserve the approximate order of answers. In 
future works, the distributed form of keyword 
search will be followed.
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