
 	 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020

 This work is licensed under the Creative Commons Attribution 4.0 International Licence.

To view a copy o this licence, visit https://creativecommons.org/licenses/by/4.0/

An Effective Path-aware Approach for Keyword
Search over Data Graphs

Asieh Ghanbarpour1, Hassan Naderi2, Soheil Zaremotlagh3

1- Computer Engineering Department, University of Sistan and Baluchestan, Zahedan, IRAN. (ghanbarpour@ece.usb.ac.ir)
2- Computer Engineering Department, Iran University of Science and Technology, Theran, IRAN.
3- University of Sistan and Baluchestan, Zahedan, IRAN.

Received (2020-03-13) Accepted (2020-08-05)

Abstract: Keyword Search is known as a user-friendly alternative for structured languages
to retrieve information from graph-structured data. Efficient retrieving of relevant answers to a
keyword query and effective ranking of these answers according to their relevance are two main
challenges in the keyword search over graph-structured data. In this paper, a novel scoring function
is proposed, which utilizes both the textual and structural features of answers in order to produce
a more accurate order of answers. In addition, a query processing algorithm is developed based
on information spreading technique to enumerate answers in approximate order. This algorithm
is further improved by allowing a skewed development toward more promising paths and enables
a more efficient processing of keyword queries. Performance evaluation through extensive
experiments on a standard benchmark of three real-world datasets shows the effectiveness and
efficiency of the proposed algorithms.

Keywords: Information retrieval, Database, Keyword search, Relevant answers, Information
spreading.

I. INTRODUCTION

In recent years, keyword search has attracted
the attention of researchers as an effective

method to retrieve information from different
datasets which could be modeled as a graph.
The success of keyword search is rooted in
its simplicity in expressing a query (a set
of keywords). It enables the user to search
for his/her needed information without
knowing a specialized query language (e.g.
SQL, SPARQL or XQuery) or having a
prior knowledge about the underlying data
structure (e.g. tables, docs or properties)
[1]. An answer to a keyword query is a set
of nodes connected as a sub-tree or a sub-
graph covering all the keywords of the query.
It represents how the nodes containing query

keywords are interconnected in the dataset [2].
For example, consider Fig 1. This figure shows
a part of a geographical database modeled as
a graph. Any node in this graph represents
a tuple in the dataset, and any edge shows a
connection made between the connected
tuples by foreign keys. Suppose a user queries
the dataset by Q={Turkmenistan,Uzbek} to
know the relationship between the two queried
keywords. These keywords are not covered
together in any of the graph nodes. Instead,
two minimal collections of nodes cover the
wanted keywords as they are shown in Fig 1.
Collection A1 is an answer to query Q and
means “Uzbek is the name of an Ethnic group
in Turkmenistan including 9% of the total
population”. Collection A2 is another answer
to the query and means “Turkmenistan is
bordered by a country named Uzbekistan in
which Uzbek is the official language”.

How to cite this article:
Asieh Ghanbarpour, Hassan Naderi, Soheil Zaremotlagh. An Effective Path-aware Approach for Keyword Search over Data
Graphs. J. ADV COMP ENG TECHNOL, 6(3) Summer 2020 : 169-186

https://creativecommons.org/licenses/by/4.0/

Asieh Ghanbarpour. et al./ An Effective Path-aware Approach for Keyword Search over Data Graphs.

170							 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020

A keyword search system consists of two
main subsystems: a search subsystem to retrieve
relevant answers to given query, and a ranking
subsystem to rank the retrieved answers.

The search subsystem has an effective impact
on the efficiency of the system. According to a
comprehensive study, the search methods which
were proposed on the schema-free graphs can
be divided into four categories: cluster-based
methods, subgraph-based methods, Lawler-based
methods and virtual document-based methods.
In the cluster-based methods, the keyword nodes
are grouped into some initial clusters according
to the keywords they covered. These clusters are
expanded based on different strategies to reach
common nodes. Detected answers by this way are
in the form of star-trees in which leaves contain
keyword nodes of different types. BANK [13],
bidirectional [14] and BLINKS [5] are samples
of such methods. Although these systems are fast
in detecting answers, they are unable to retrieve
non-star answers. Therefore, they present an
incomplete list of answers to the user.

In the subgraph-based method, the search is

initiated by the keyword nodes. In this method,
the low-weights subgraphs are incrementally
merged until reach answers. DBPF [4] is a
dynamic programming implementation of this
method. In DBPF, each edge is just observed in
one answer. Therefore, a large number of answers
are lost.

The Lawler-based methods produce a
complete set of answers [6, 7]. In these methods,
all the search space is first searched (by a system
such as DBPF) to find the lowest weight answer.
The search space is then divided to subspaces and

each subspace is searched separately to find the
next answer. Since the generated subspaces may
differ only in one edge with each other and with
the base graph, the search on them is done with
the same upper bound complexity as the search
on the overall graph. These expansive repetitive
searches make Lawler-based methods empirically
inapplicable on the large graphs.

In the virtual document-based methods more
focus is on the text processing of subgraphs. In
these methods, the nodes of graph are mapped
to virtual documents and then processed with
existing text processing methods. Graph-LM
[16] and KESOSASD [17] are samples of such
methods. Relying on the text retrieval processes
which have been evolved a lot over the years
[18], the virtual document-based methods could
retrieve answers very quickly and accurately.
However, these methods need an extra memory
to save virtual documents. In addition, the radius
of answers generated by these methods is limited
to the size of considered virtual documents.

In response to a query, numerous answers may
be retrieved by the search subsystem. Therefore, a
ranking step is necessary to provide more relevant
answers to the user.

A ranking function is usually used to evaluate
the relevance of answers to a given query [3].
Some of the proposed ranking functions in the
literature use only the structural attributes of
answers to rank them [4-7]. It is obvious that
these functions are unable to differentiate among
the answers with the same structure but different
content. A group of methods tried to solve this
problem by considering the IR-style features
(commonly TFIDF) in addition to the structural
features of answers in the ranking efforts [8-12].

Fig1. A modified part of Mondial dataset and two answers in response to query Q={Turkmenistan,Uzbek}.

Asieh Ghanbarpour. et al./ An Effective Path-aware Approach for Keyword Search over Data Graphs.

 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020 				 	 	 	 171

Although these methods are usually more
successful than the first group, they are still unable
to detect some differences between answers. For
example, consider two answers shown in Fig 1.
These answers are structurally similar. On the
other hand, the TFIDF of the two keywords in
both of the answers are similar. However, A_1
covers the queried keywords in more important
attributes than A_2, and it should be considered
more relevant to the user’s query. This priority
cannot be detected by the second group of
methods because realizing it needs a semantic
analysis on the text information of nodes up to
the attribute level. One of our purpose in this
paper is to present a scoring function which is
able to differentiate answers with a high degree
of distinction.

In this paper, two greedy-based keyword
systems are proposed, which use a new scoring
function during the search process to retrieve
top-k answers. The proposed systems provide
answers in an approximate order of their final
ordering. This ability allows the systems to present
answers immediately after they are retrieved. As a
result, it reduces the response time of the systems
significantly in comparison to those of the other
systems.

The main contributions of this work are
summarized as follows:

•	 To provide a more accurate order of
relevant answers, we propose a new scoring
function to observe both the content-
based and the structure-based relevance
of answers to the query. The content-
based relevance of answers is defined
based on a new notation of term weights
taking the attribute-level information into
consideration. Using this level of textual
information beside using the structural
information in ranking of answers makes
the proposed function more powerful to
distinct answers.

•	 For effective finding of top-k answers,
we propose Blind Keyword Search (BKS)
system which retrieve answers in an
approximate order of their final ranking.
This algorithm provides a solution based
on information spreading technique [19,
20] to retrieve top-k answers. In addition,
special nodes (as a new notation) are used
for an initial pruning on the search space.

A bounded approximation ratio is proved
for the result list of this system.

•	 To improve the efficiency of BKS, we
then propose an enhanced search system
named Informed Keyword Search (IKS).
The algorithm estimates the probability
of answer existence in all paths in order
to follow the more probable paths earlier
than the others. It can retrieve the answers
more efficiently than BKS but has a slight
lowering in effectiveness.

In the experiments, we show the effectiveness
of the approximate ranked lists of answers
presented by the proposed systems in comparison
to the ranked list of the other systems. In addition,
we show the efficiency of IKS in retrievement
of top-k answers in terms of response time
and execution time. The rest of the paper is
structured as follows: In Section 2, related works
are discussed. Then, in Section 3, formal problem
statements are defined and the proposed scoring
function are provided. Two query processing
algorithms for solving keyword search problem
are introduced in Section 4. The evaluation
framework and the results of the experiments are
explained in Section 5. Finally, in Section 6 the
paper is concluded.

II. RELATED WORKS

Conducted research on keyword search were
followed in four categories: Keyword search on
relational databases [2, 4, 8, 9, 21, 22], Keyword
search on XML databases[23, 24], Keyword
search on Semantic Web [25-27] and Keyword
search on schema-free graphs [5, 6, 11, 14, 15,
28-30]. All the relational, XML and RDF datasets
are associated with predefined schemas. Using
the schema facilitates the determination of the
query meaning and helps the effective search of
data. Keyword search over schema free graphs
is facing more challenges because of having less
prior knowledge about the examined data. In the
presented paper, we focused on the schema-free
graphs because there are many graphs for which
the scheme is not defined. In the following, some
of the works that are more similar to our work
are described. In all of these works, the search is
started from keyword nodes and followed using a

Asieh Ghanbarpour. et al./ An Effective Path-aware Approach for Keyword Search over Data Graphs.

172							 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020

traversing strategy to reach answers.
BANKS [13], Bidirectional [14] and BLINKS

[5] are cluster-based methods which follow
forward expansion, bidirectional expansion and
cost-based expansion respectively to find answers.
BLINKS [5] partitions graph data into some
blocks and utilizes a bi-level indexing to process
keyword queries. One group of indexes is used
to travel between the blocks and another is used
to access the data within the blocks. In retrieving
an answer, BLINKs begins from a keyword node
and searches its block with the help of intra-block
indexes. If searching for an answer is expanded
to the neighborhood blocks, it utilizes multiple
cursors and sends each of them to a neighbor
block to continue the search in them. According
to the claim of the authors, BLINKS is m-optimal,
where m is the number of input keywords.
BANKS, Bidirectional and BLINKS just retrieve
star-trees as answers and ignore other ones. In
addition, these systems could not provide any
answer until retrieving all the relevant ones. Ease
which is introduced in [31] defined the concept
of r-radius sub-graphs on undirected graph and
retrieved them as answers of a keyword query. It
used two indexes for storing data, the first index
saved the structural distance between each pair
of keywords and the second index stored the
contained r-radius sub-graphs for each keyword.
This approach contained a ranking step to sort
retrieved answers according to their structural
compression and some IR measures. In this
method, the size of final answers is limited to
the size of initial processed sub-graphs. So,
there may be answers that are never retrieved.
Virgilio in [32] proposed an approach based on
the paths which led to the keyword nodes. In
this approach, a path of graph was selected in
each step to be added to an incomplete answer.
The paths were grouped based on their template
and assigned by a score. The score of paths was
not only used in the expanding phase, but also in
the final ranking of answers. In [6], [7], a Lawler-
based method were employed to retrieve answers.
Kargar and An in [7] focused on finding answers
in the form of r-cliques. An r-clique is a set of
nodes which covers all the query keywords and
whose shortest path between each two nodes is
not greater than r. r is a user-defined parameter
and indicates the maximum value of the answer’s
diameter. Restricting answers to r-clique ones is

main disadvantage of this system. The authors
claimed that in the worst case, the weight of an
answer produced by their algorithm is twice the
weight of the optimal answer. In [6], the authors
focused on retrieving top-k non-duplicate
answers. The duplicate answers are ones covering
the same set of keyword nodes. Such answers are
retrieved by dividing the search space into some
disjoint subspaces and performing an iterative
search on the subspaces. The best answer in each
subspace is obtained and used to produce the best
global answer. The subspace which produces the
best global answer is further divided into sub-
subspaces and the best answer among its sub-
subspaces is used to compete with the best answers
in other sub-spaces in the previous level in order
to find the next best global answer. Although
Lawler-based methods are highly effective, the
need for expansive repetitive searches makes
them practically inapplicable on large graphs.

Nguyen and Cao [33] presented an approach
that selected the top-k data sources from
potentially numerous data sources. Their method
derives information patterns from each data source
as succinct synopses that act as representatives
of the corresponding data sources. The patterns
(sub-graphs) are then scored based on their
relevance to the given query using a structural-
aware ranking function. As mentioned earlier,
ranking answers based solely on their structural
features is one of the main disadvantages of such
methods. The papers [16, 34] proposed a virtual
document-based method to retrieve answers. In
this method, any subgraph is mapped to a virtual
document (VD) by concatenating the textual
content of its nodes. Therefore, the problem of
searching on the graph data is reduced to the
problem of searching on a set of documents. These
papers use language models to score retrieved
answers. Although the search on documents
could perform effectively, the size of answers
is restricted to the size of virtual documents. In
addition, an extra memory is needed to build a
layer of documents. A new type of keyword search
query, ROU-query, was defined in [35]. It utilized
input keywords in three categories: required,
optional, and unwanted, and returned nodes
of the underlying graph whose neighborhood
satisfied the keyword requirements. It applied a
new data structure named query induced partite
graph (QuIP) to capture the constraints related to

Asieh Ghanbarpour. et al./ An Effective Path-aware Approach for Keyword Search over Data Graphs.

 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020 				 	 	 	 173

the neighborhood size and unwanted keywords.
Due to the limitation of the result list to a specific
form of answers, this system has achieved good
efficiency but its effectiveness has decreased. The
authors proposed a family of algorithms which
took advantage of the information in QuIP for
efficient evaluation of ROU-queries. Park and
Lim in [11] proposed an approach to aggregate
best keyword nodes gained from a pre-computed
process in order to produce top-k relevant
answers in an approximate order. They used a
queuing system over the data extracted from an
extended inverted index. The employed inverted
index stores comprehensive neighborhood
information between nodes. Using this index,
the answers of a keyword query are retrieved by
sharing the neighborhood information of nodes.
The examined method results in low execution
time but high space complexity because of the
high volume of indexing. On the other hand,
it prefers more extended and relevant answers
having more coverage of keywords instead of
minimal answers.

In the presented paper, a keyword search
method is introduced by considering both the
time and space complexities, which retrieves
minimal answers without any restrictions on the
shape of the answers.

III. PROBLEM STATEMENT AND
PRELIMINARIES

Suppose an un-directed un-weighed graph
G=(N,E) where N is a set of nodes and E is a set of
edges. Each node njdN includes a list of attribute-
value pairs as nj={(A1,vj1),…,(An,vjn)},n≥1, where
Ai shows an attribute and vji shows the value of
attribute Ai in node nj. The edges represent the
semantic relationships between pairs of nodes.
Such graphs are used to model different types of
unstructured, semi-structured, and structured
datasets.

The problem of keyword search on the graph
is stated as follows. Given a graph-structured
database G and a query Q={q1,q2,…,q|Q|}, retrieve
top-k answers from G in response to the query in
a ranked order.

Definition 1 (Answer) Consider a keyword
query Q, over graph G. An answer in response

to Q is a minimal subgraph ag from G such that
for every keyword of the query there is at least
one node in ag covering the keyword. Minimality
requires an answer not to have a proper sub-graph
that also covers all the query keywords.

The answers are ranked based on their
relevance score to the query, and the top-k
ranked answers are presented to the user. Even
for a simple definition of the scoring function f,
an efficient enumeration of answers might not be
possible. A formal notion of enumeration in an
approximate order is defined as follows [36].

Definition 2 (θ-approximate order) Let answer
ag with less f(ag) is considered as the better answer.
Enumerating answers in an θ-approximate order
means that if answer ag precedes answer ag', then
ag is worse than ag' by at most a factor of θ. More
formally, the sequence of all answers a1,a2,...,an
will be in θ-approximate order if f(ai)≤θ. f(aj) for
all 1≤ i ≤ j ≤n.

An algorithm that enumerates the answers in a
θ-approximate order can find a θ-approximation
of the top-k answers by terminating the process
after outputting the k-th answer.

1. Scoring function
The search results of a keyword query are a

collection of graphs. To rank these answers, the
graph topology beside the textual content of nodes
should be considered. The topology of a graph
shows how the container nodes of keywords are
close together. One of the most common ways of
answer scoring in keyword search works is using
the Steiner-based weights [4, 22, 37]. However,
these weights are not suitable for measuring
the closeness of answer nodes when the answer
is in the form of a subgraph. That's because, in
a subgraph, adding one edge leads to increasing
the relationships between nodes and will bring
them closer. It is while adding an edge increases
the Steiner-based weight and subsequently causes
the resulted answer is ranked at a lower level. In
the presented work, we measure the closeness of
nodes through two factors: the number of nodes
and the diameter of the answer subgraph. The
diameter of a subgraph is the greatest distance
between any pair of nodes. Accordingly, the
structural relevance of answer a_g is defined as
follows,

𝑆𝑆𝑆𝑆������ � ����� � ��������� (1)

Asieh Ghanbarpour. et al./ An Effective Path-aware Approach for Keyword Search over Data Graphs.

174							 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020

Where |ag | shows the number of nodes of ag
and d(ag) denoted the diameter of ag. Besides, α is
a parameter to tune the impact of the two factors.

On the other hand, we define a content-based
relevance score for any answer to be used together
with a structural relevance score to improve the
accuracy of the final ranking of answers. The
keywords in a node are organized under a set of
attributes with various levels of importance. The
relevance of a node to a keyword depends on both
the importance of the node attributes to which
the keyword belongs and the importance of the
keyword in those attributes value. The importance
of a keyword w in a text value v has been studied
extensively in the IR methods. In the proposed
scoring function, the pivoted normalization
weighting [8] is used which has been defined as
follows,

𝐶𝐶𝐶𝐶��𝑤𝑤𝑤 𝑤𝑤� � � � ���� � 𝑑𝑑���𝑑𝑑��𝑤𝑤���
�� � �� � � � 𝑑𝑑𝑑𝑑�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

� �� � 𝑁𝑁�
𝑑𝑑𝑑𝑑��𝑤𝑤� � ��

					 (2)

here tfv(w) shows raw frequency of keyword
w in the text v, dlv denotes the length of v, avgdl
represents the average length of attribute values,
Nv denotes the total number of text values and
dfv(w) shows the number of text values in which
w exists. Parameter s is a constant and is usually
set to 0.2.

The importance of attributes is measured
by assigning a weight to any attribute. These
weights are context-dependent ones which
could be determined by an expertise analysis or
by a domain expert. Considering the weights of
attributes, the relevance of node nj to keyword w
is defined as follows:

CR���� ��� � ∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�𝐴𝐴�� ���∈𝔸𝔸
 𝐶𝐶𝐶𝐶���� 𝐴𝐴���

					 (3)

where 𝔸𝔸 shows the set of attributes known in

the corpus and vjt denotes the value belonging to
the domain of At in node nj. It should be noted

that � 𝐴𝐴�����������������𝐴𝐴�� � �
��∈𝔸𝔸

 .

According to the score of nodes, the content-
based relevance score of answer ag concerning
query Q is defined as follows:

𝐶𝐶𝐶𝐶�������� � � ��������
𝐶𝐶𝐶𝐶����, 𝑛𝑛��

�����,����

					 (4)

The overall relevance score of answer ag with
regard to query Q is defined as a combination
of its textual and structural relevance scores as
follows:

					 (5)

Where SRsg(ag|Q) and CRsg(ag|Q) shows
the structural and textual relevance score of the
answer concerning query Q, respectively.

IV. PROPOSED SEARCH ALGORITHMS

In this section, two search algorithms are
proposed to retrieve top-k answers of a keyword
query. These algorithms employ a smoothed form
of the scoring function (proposed in section 3.1)
to present answers in an approximate order of
their final ranked order.

1. Blind Keyword Search (BKS)
Blind Keyword Search is a query processing

model developed based on the information
spreading technique to retrieve relevant answers
to a given query. In this model, the spread of
information is initialized from some query-
dependent seed nodes. The information is diffused
in the graph in a breadth-first stepwise manner
until some nodes receive all the information
needed to cover the query. The information of
each node participating in the search process
is packed to a holding list (HList) containing a

Asieh Ghanbarpour. et al./ An Effective Path-aware Approach for Keyword Search over Data Graphs.

 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020 				 	 	 	 175

union of the queried keywords saved in the node
or received from the other nodes. A keyword in a
holding list is stored along with its weight in the
original node and the ID of the node from which
it was received.

 In any step ith (1 ≤ i ≤r) of the search process,
a priority queue (queuei) is considered that stores
the list of nodes that should be activated in step
ith. When a node is activated, the information of
its holding list (mines the information which is
received in step ith) is spread to adjacent nodes.

The holding list of any adjacent node is
updated based on the received information so
that if it includes a keyword and again gets it
from an active node, the alternative weight and
ID of the active node are saved for the existing
keyword. Otherwise, the received keyword along
with its associated weight and the active node ID
is saved as a new entry in the HList of the hosting
node. An active node would be deactivated
after spreading information although it could
be activated again later. The union of receiver
nodes in step ithcomprises the entries of the
next step priority queue (queuei+1). A transition
between the steps occurs whenever all the nodes
in the lower step have spread their information.
The search process continues until k answers
are retrieved or a predefined number of steps is
reached. This number which is named as retrieval
depth(r) is set to the maximum radius of the
expected answers. Two steps of query processing
by BKS are shown in Fig 2. The activated node is
highlighted in this figure.

An answer is detected by a query processor
if all the queried keywords are observed in the
holding list of a node. This node is tagged as a
detector node. The answer related to a detector
node is retrieved by starting at the detector node
and following the node IDs saved in the holding

list of consecutive nodes in a backward manner.
After retrieving an answer, the holding list of its
detector node is re-updated and all information
received from the other answer nodes is tagged
as archive information. Archive information of
a holding list will never be spread to the other
nodes. This prevents to re-generate the retrieved
answers in the other nodes.

Now suppose a node that has been previously
tagged as a detector node receives new
information. In this case, any combination of new
information with the archived ones forms a new
answer. Such answers are detected and added to
the result set. The new information received in
the detector node is then added to the archive
part of the holding list.

Using sequential priority queues in BKS
algorithm helps to maintain an activation order
among nodes according to their distance to the
seed nodes. It is a way to observe an approximate
retrieval order of answers by increasing their
radius. This order could be improved by taking
the content-based relevance score of answers into
account. The holding list of a node represents
summarized information of the subgraph leading
to the node. Therefore, to maintain a content-
based order among the traversed subgraphs, a
score named prestige is defined for each node, and
the nodes of each priority queue are sorted based
on decreasing order of their prestige. Prestige is
a query-dependent score which is computed for
every node nd considering query Q as follows:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑛𝑛�|𝑄𝑄� � �
|�|�� �|𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻�𝑛𝑛�|𝑄𝑄�| �

 ∏ max
������𝑛𝑛�, 𝑞𝑞��𝑄𝑄�

𝐶𝐶𝐶𝐶��𝑞𝑞�, 𝑛𝑛�������������|� �,���� �

					 (6)

Fig 2. Two steps of processing Q={IR,AI,ML,PL} by BKS (n_1 is a seed node).

Asieh Ghanbarpour. et al./ An Effective Path-aware Approach for Keyword Search over Data Graphs.

176							 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020

where HList(nd|Q) denotes the set of unique
keywords of Q which are covered by the holding
list of nd and HList(nd,qi|Q) shows the set of
entries for keyword qidQ in the holding list of
nd. Using the max function causes any keyword
to contribute only once and with its best score in
the calculation.

Suppose β denotes the average branching
factor of nodes and τ(qs) shows the number of
seed nodes. To retrieve all answers with a radius
equal to or lower than r, the BKS algorithm has a
time complexity of O(τ (qs).β r+1).

Theorem 1: BKS enumerates answers in the
exact order of their radiuses and in

-approximate order of their diameters.

Proof: an answer is detected when the
information of the farthest keyword node reaches
the center node of the answer. The information of
the farthest keyword node to the center node of
an answer with radius r reaches the center node in
step rth. It implies that any answer with radius r is
detected in the corresponding step of spreading.
Since in BKS, spreading is performed in a regular
stepwise manner, the answers would be generated
in the exact order of their radiuses.

Among the answers with the same radius, the
minimum and maximum diameters are (2r-1)
and 2r, respectively. Therefore, in the situation
where the arrangement of answers is discussed
based on their diameters, observing a
displacement of 2𝑟𝑟

2𝑟𝑟 � � among the answers with

the same radius would be expected. Since among
the answers of different groups, the arrangement
of answers based on their diameter is true, it
could be said that BKS presents answers in

-approximate order of their diameters.

Special nodes
In many keyword search algorithms, keyword

nodes are considered as starter nodes and
expanded until reach answers. The runtime of
this strategy is from O(τ (qs).β r+1) to retrieve all
the answers with a radius equal to or lower than
r over graph G with average branching factor β.
However, many of these nodes may never lead to
an answer within a limited range of expansion.

As an example, suppose query Q={q1,q2,q3}. Let q1
and q2 be frequent keywords that have occurred in
more than a thousand nodes, while q3 is a special
keyword in a professional background that has
just appeared in some nodes. Commonly, the
search begins from all the keyword nodes (more
than two thousand) and continues by expanding
all of them until detecting top-k answers.
However, each comprehensive answer should
cover at least one node containing q3. Therefore,
it would be faster if the search is done only in the
neighborhood of the nodes containing q3.

Definition 4 (Special node) Suppose query Q
and graph G. A node is named special if it covers
a keyword of query Q and if the frequency of that
keyword in the nodes of G is not larger than those
of other queried keywords in the same graph.

The second strategy is to consider special
nodes as seed nodes. In this strategy, the search
will proceed unilaterally and the same set of
answers will be identified after 2r steps. In this
case, the runtime complexity of BKS will be from
O(τ (qsp).β 2r+1) where τ(qsp) shows the number of
special nodes. In the proposed algorithms, an
optimal strategy is followed to set the seed nodes.
For every query, if the frequency of one queried
keyword is much lower than those of the other
queried keywords such that

𝜏𝜏�𝑞𝑞���. 𝛽𝛽���� �� 𝜏𝜏�𝑞𝑞��
���

��������
. 𝛽𝛽��� ,the special

nodes will be selected as the starter nodes for
processing the query. Otherwise, the keyword
nodes will be employed as starter nodes. Using
this strategy causes an early pruning of the search
space.

2. The Modified Search Algorithm (Informed
Keyword Search)

The baseline model described in Section
4.1 performs a comprehensive search at the
neighborhood of seed nodes. This model is not
efficient since the number of contributing nodes
in the search process increases exponentially
by incrementing the depth of search. Informed
keyword search (IKS), concerning the efficiency of
the baseline method, is a more intelligent version
of BKS which follows a purposive search to the
paths having more potential to reach an answer.
Fig 3 shows a schematic overview of BKS and IKS
processes in detecting the first answer. The nodes

Asieh Ghanbarpour. et al./ An Effective Path-aware Approach for Keyword Search over Data Graphs.

 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020 				 	 	 	 177

of this answer are shown by filled circles and the
nodes which have been activated at least once are
shown by bold circles. The breadth-first manner
of BKS in the traversing graph is evident in Fig 3
while IKS searches graph in a best-first manner.

In IKS, the query processor heuristically
follows the paths with more signs of the existence
of answers instead of following all the paths until
a specified level. Since the information of a path is
saved in the HList of the path nodes, a calculation
on the content and position of nodes could be
properly used in determining the priority of
paths. Therefore, the problem of specifying a
priority order among some paths is reduced to
the problem of determining an activation order
among the path’s nodes. In IKS model, there is
only one priority queue to determine the order
of nodes to activate. This queue is initialized with
a set of seed nodes that are sorted in decreasing
order of their prestige.

The unique priority queue provides an overall
view over all candidate nodes to activate and

makes it possible to select every node in each
level to be activated. The prestige score is the only
affecting factor in determining the activation
order of nodes. So, it should properly reflect the
content and position of nodes. The existence of
more query keywords during a path increases
the possibility of reaching an answer. Therefore,
the prestige of a node is defined in direct
proportion to the number of keywords covered
by the HList of the node. However, to observe an
approximation order on the final list of answers,
it is essential that the more compact answers with
shorter paths are detected earlier. This implies
that the progress toward special paths (although
promising) is controlled by an upper bound.
The control on the length of traversed paths is
achieved by contributing the level of nodes in the
prestige calculation. By assuming that the initial
prestige of any seed node is calculated by (6), the
prestige of any receiver node n_d is calculated as
follows:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑛𝑛�|𝑄𝑄� � max�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑛𝑛�|𝑄𝑄�,
|��𝑃𝑃𝑃𝑃𝑃𝑃�𝑛𝑛�|𝑄𝑄�| � ∏ max��������,��|��

𝐶𝐶𝐶𝐶����, 𝑛𝑛�������������|���,����
�|𝑄𝑄| � �� � ���������� �

												 (7)

IKSBKS

Fig 3. An example of finding the first answer by BKS and IKS methods.

Asieh Ghanbarpour. et al./ An Effective Path-aware Approach for Keyword Search over Data Graphs.

178							 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020

where |Q| shows the number of queried

keywords and α represents a fixed parameter
that is set to 2 in the experiments. As a node can
receive information from multiple seed nodes
and its prestige can be reduced by receiving
new information, the prestige has been defined
by means of a max function. The existence of
αLevel(nd) in the denominator of (7) results in an
exponential decrease in the prestige score with
increasing the level of spread. It also controls
the spreading level and prevents long progress
towards very remote nodes. In order to have an
efficient implementation, the level of nodes is
saved during the query process. The initial level
of any node is set to zero. This value is updated
for any node n_d after receiving new information
from an active node nc by means of (8).

 (8)

The details of query processing by IKS is
similar to that of the baseline method (BKS). In
IKS, the next node is selected for activation from
the unique priority queue and the new receiver
nodes are added to the same queue. An answer
is detected in a detector node and it is retrieved
by executing a backward search started at the
detector node. After retrieving an answer, the
process to find the other answers continues with
the existing nodes in the priority queue until k
answers are retrieved or all nodes with a level
lower than the retrieval depth are activated at
least once. The pseudo-code of IKS is shown in
Algorithm 1. The function ReduceAnswer in line
18 of the algorithm is used to convert an answer
to a minimal one by eliminating its additional
nodes.

To clarify the IKS model, consider the graph in
Fig 2. The processing of query Q={IR,AI,ML,PL}
on this graph is initialized by a queue with n1(seed
node) as its first entry. Node n_1 is the first node
to activate. The HList of n1 is sent to n2 and n3.
After updating the HLists of receiver nodes
(n2 and n3), their level is updated to 1 and their
prestige score is calculated. Then, they are added
to the priority queue. A node in the priority queue
with the highest prestige is selected as the next
active node. Therefore, n2 is selected. The content

of priority queue after activation of a sequence
of nodes has been presented in Fig 4. Each entry
shows the Id and prestige of a node. Based on
this figure, node n4 is activated earlier than node
n3 even though it is located at a greater distance
from the seed node n1.

This activation leads to the early detection of
an answer in node n5. It should be noted that the
query coverage is checked after receiving new
information in a node.

Due to the lack of a level order in the activation
of nodes, the possibility of displacement of
answers in the result list of IKS is more than
that of BKS. However, in all cases, Theorem 2 is
maintained.

Theorem 2. The distance between each pair
of nodes in an answer produced by Informed
keyword search is at most logα|Q| larger than the
length of the corresponding optimal path (|Q|
denotes the number of query keywords).

Proof: Suppose an optimal path from node
s to node t with the length of d that covers the
set of keywords Q={q1,q2,...,q|Q|}. Without loss of
generality, let the seed node s covers the queried
keyword q1 and the destination node t covers
the queried keyword q|Q|. It should be noted that
the two nodes s and t certainly cover at least one
unique keyword of the query. The worst-case in
detecting the optimal path occurs when there
is no positive sign of the presence of an answer
on this path before reaching the last node. Such
a situation is shown in the upper path in Fig 5.
Node y on this path has the worst situation to
expand.

(n3,0.14)
(n2,0.23)

(n2,0.08)
(n5,0.10)

(n1,0.28)

n2 is
activated

n1 is
activated

(n1,0.12)
(n3,0.14)
(n4,0.16) (n3,0.14)

n4 is
activated

Fig 4. The content of priority queue during the processing

of Q={IR,AI,ML,PL} by IKS (α=2).

Asieh Ghanbarpour. et al./ An Effective Path-aware Approach for Keyword Search over Data Graphs.

 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020 				 	 	 	 179

q1 q2,...,q|Q|

q|Q|-2q2

Path1, length=d

y

x

s t

Path2, length=d’

q|Q|-1q3

Fig 5. Two traversed paths in searching keyword set

Q={q1,q2,...,qn} using Informed Keyword Search.

The lower path in Fig 5 shows an alternative
path between two nodes s and t covering all the
queried keywords. This path is the most deceptive
path between two nodes s and t. By spreading
information from each of the two nodes x and y,
an answer will be detected. Path2 in Fig 5 with
greater length will be traversed earlier than the
optimal path, if node x will be activated before
node y. This happens when:

Prestige��|𝑄𝑄�<Prestige�𝑥𝑥|𝑄𝑄� ⇒ ��������𝑥��
�|�|�������� �

�|�|����∏ ���
������𝑥𝑥𝑥 𝑥𝑥��𝑄𝑄�

������𝑥��|�|��
���

�|�|���������

.⇒ 𝛼𝛼���� �
�|�|����∏ ���

������𝑥𝑥𝑥 𝑥𝑥��𝑄𝑄�
������𝑥��|�|��

���

�������𝑥��
���𝑥��

��������𝑥����������������� 𝑑𝑑� � 𝑑𝑑 � ����|𝑄𝑄|

It means that if d'<d+logα|Q|, the wrong path
will be traversed earlier than the optimal path. As
this path is the most deceptive one, the maximum
length of a wrong path is at most logα|Q| larger
than the length of the optimal path.

Input: the input graph G; the query 𝑄𝑄 � �𝑞𝑞�, 𝑞𝑞�, … , 𝑞𝑞|�|�; the number of answers k; the retrieval depth r.
Output: the set of top-k ordered answers.
1. 𝑆𝑆 𝑆 seed nodes of G related to Q
2. for each 𝑛𝑛𝑖𝑖 ∈ 𝑆𝑆 in descending order of 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑛𝑛�|𝑄𝑄� do //equation (7)
3. if (� � ��is��n��� ����
4. Answers ← A, print(A)
5. if (#Answers � �) then return Answers
6. else 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 enqueue(ni)
7. end for
8. while (𝑞𝑞𝑞𝑞𝑝𝑝𝑞𝑞𝑝𝑝 � �) do
9. 𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 ←dequeue(𝑞𝑞𝑞𝑞𝑝𝑝𝑞𝑞𝑝𝑝�
10. if (𝐿𝐿𝑝𝑝𝐿𝐿𝑝𝑝𝐿𝐿�𝑛𝑛���� � 𝑝𝑝� then continue
11. ��𝑛𝑛���� 𝑆 direct neighbors of 𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎
12. send �𝐿𝐿𝑖𝑖𝑝𝑝𝑝𝑝�𝑛𝑛���� to ��𝑛𝑛����
13. for each 𝑛𝑛𝑗𝑗 ∈ ��𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎� do
14. update �𝐿𝐿𝑖𝑖𝑝𝑝𝑝𝑝�𝑛𝑛�� and insert new entries
15. 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝑛𝑛𝑗𝑗� ← 𝑚𝑚𝑚𝑚𝑚𝑚�𝐿𝐿𝑝𝑝𝐿𝐿𝑝𝑝𝐿𝐿�𝑛𝑛𝑗𝑗�, 𝐿𝐿𝑝𝑝𝐿𝐿𝑝𝑝𝐿𝐿�𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 � ���
16. if (𝑄𝑄 � �𝐿𝐿𝑖𝑖𝑝𝑝𝑝𝑝�𝑛𝑛��� then
17. 𝐴𝐴 ←retrieve the answer detected by 𝑛𝑛𝑗𝑗 by a backward manner
18. 𝐴𝐴 ←ReduceAnswer(A)
19. 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐴𝐴, print(A)
20. update �𝐿𝐿𝑖𝑖𝑝𝑝𝑝𝑝�𝑛𝑛�� and delete used entries
21. if (#𝐴𝐴𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝 � �) then return 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
22. else 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 enqueue(𝒏𝒏𝒋𝒋� in descending order of 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝�𝑛𝑛�|𝑄𝑄� //equation (8)
23. end for
24. end while

Asieh Ghanbarpour. et al./ An Effective Path-aware Approach for Keyword Search over Data Graphs.

180							 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020

V. EXPERIMENTS

1.Datasets and Queries
Coffman and Weaver [1, 38] developed an

evaluation framework for testing the effectiveness
of keyword search systems over data graphs. This
framework consists of three real-world data
sets: Mondial, Wikipedia, and IMDb. IMDb and
Wikipedia have relatively large blocks of text as
they describe quotes from movies and contents
of pages, respectively. The text of Mondial is
restricted to the names of countries, mountains,
etc., but its graph has a complex structure in
comparison to the other two datasets. Some
information about the datasets is listed in Table 1.

In the evaluation framework, fifty queries with
their exact relevant answers have been provided
for each of these datasets. The average number of
keywords per query is 2.91, while there are some
queries having more than five keywords. The
average number of relevant answers per query is
4.49. An answer is in the form of a single node
or a connected sub-graph consisting of several
nodes.

2. System Implementation
In the proposed work, any dataset of the

evaluation framework has been modeled as a
graph and the text has been only associated with
its nodes. The text of each node contains some
attributes including name, title, content, and any
other information about the related entity. Due
to the different importance levels of attributes, a
weight has been calculated for each attribute. The
attributes weight has been applied in determining
the content-based relevance score of answers. Any
node in the graph has a unique search Id. These
Ids have been used to build an inverted index to
the keywords and nodes in the graph. Stemming
and stop-word removal have been applied to the
text of nodes before indexing them.

Table 1. Characteristics of the evaluation datasets.

Dataset |𝑵𝑵𝑵a |𝑬𝑬𝑬b |𝑻𝑻𝑻c
Mondial 17000 56000 12000

Wikipedia 206000 785000 750000

IMDb 1673000 6075000 1748000
 aNodes. bEdges. cUnique keywords.

Each entry of the inverted index is a
stemmed keyword which points to a list of nodes
containing it; this list is ordered by the content-
based relevance score of nodes to the keyword.
Using the inverted index, the nodes covering any
queried keyword qi could be efficiently retrieved.

The BKS and IKS algorithms have been
implemented on Java using the JGraphT library
which has been designed to scale to millions
of vertices and edges. The retrieved results by
the implemented systems have been shown
in the same manner as in [38] to make them
comparable with the results of the state of the
art systems reported in [1, 38]. To evaluate the
precision of the systems, three IR metrics of MAP
(Mean Average Precision), top-1 (the accuracy of
answers according to the first correct answer) and
MRR (Mean Reciprocal Rank) have been used.

VI. EXPERIMENTAL RESULTS

The MAPs measured across various search
methods and datasets are shown in Fig 6. The
value of k (the number of retrieved answers) in
this experiment was set to 100, although this
value is very large for a lots of tested queries.

BANKS [13] and Bidirectional [14] are
cluster-based search methods that rank answers
using a notion of proximity coupled with a notion
of the prestige of nodes based on in-links. DPBF
[4] is a subgraph-based search system and Dup-
free is a Lawler-based one. Both of these systems
rank answers based on Steiner-tree semantic.
Ranking answers solely based on their structural
characteristics makes these systems unable to
distinguish answers with similar structures but
different semantics. The Effective method [8]
uses IR scoring schemes coupled with proximity
weighting to rank answers.

The comparison results in Fig 6 show that
DBPF achieved the best performance on the
Mondial dataset while it failed over the Wikipedia
dataset. This method scores answers based
on the semantics that: “if a relation has more
neighbors, an edge that is incident on it reflects
a weaker relationship between tuples” [4]. This
belief was effective on the Mondial dataset which
consists of a large number of tables with complex

Asieh Ghanbarpour. et al./ An Effective Path-aware Approach for Keyword Search over Data Graphs.

 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020 				 	 	 	 181

relationships, but it failed on the Wikipedia
dataset which is a low dense graph. The MAP of
this system on the IMDb dataset is not reported
because of Memory exceptions. Most of the
queries on Wikipedia have the answers with
the same structure. Therefore, the results of the
proximity-based systems on Wikipedia are not
satisfactory. The Effective system also had a
disappointing result on Wikipedia. This is due
to the underlying property of IR-style ranking
schemes: they prefer larger answers that contain
additional instances of the queried keywords
instead of smaller answers that satisfy the query
[37]. The low MAP of Dup-Free system is related
to removing the duplicate answers from the
result set. However, the duplicate answers usually
reflect different semantics, and the presence of all
of them in the result set is essential. Fig 6 shows
that the MAPs of the proposed systems without
using a separate ranking phase are comparable
with the MAPs of other state-of-the-art systems.
The use of content-based scoring with preserving
the structural priorities makes our systems more
effective than some examined systems. As was
expected, BKS is more effective than IKS over all
datasets because of its exhaustive search on the
data.

Fig 7 shows the MRR of systems for queries
targeting exactly one relevant tuple (node). Such
queries are the most common type of queries
posed to existing search engines. Twenty queries
on Mondial and IMDb datasets and fifteen
queries on Wikipedia dataset are of this type. As
the initial nodes are scored similarly in the two
proposed systems, they get the same MRR in this
experiment. Fig 7 shows the proper quality of our
systems in comparison with the other systems.

To have a comparison in equal situations, the
retrieved results by the proposed method are
scored and ranked based on Eq. (5). It is because
that the MAPs of the other systems have been
reported based on the ranked results.

Fig 8 shows the MAPs of BKS and IKS after
ranking answers using the proposed scoring
function (presented in section 3.1) in comparison
to the MAPs of the state-of-the-art systems. The
superiority of the proposed systems shows the
effectiveness of employed factors (the number
of nodes, the diameter of the subgraph, and the
pivoted normalization weighting) in the scoring
of answers.

In the following experiment, the impact of
retrieval volume on the MAP of systems before
the ranking of results is examined. The value of k
(the number of top answers) varied from 1 to 100,
and the MAPs of three datasets have been reported
in Fig 9. The diagram shows that both of the
proposed systems can identify all the detectable
relevant answers within the first 50 retrieved
answers. This result is important because it shows
that retrieving a limited number of answers is
sufficient to be considered in the ranking phase.
As evidenced by the diagrams, the MAP trends of
the systems are relatively similar. BKS reasonably
outperforms IKS in terms of MAP because of its
more regularity in retrieving answers.

In Fig 10, the impact of retrieval depth (r)
on the effectiveness of the proposed systems has
been examined. In this experiment, 100 answers
were retrieved for each query. Not surprisingly,
effectiveness was improved by increasing the
retrieval depth until all of the answers were
retrieved. As the smaller r leads to lower execution
time, the retrieval depth of Mondial, Wikipedia,
and IMDb were set to 5, 3, and 2, respectively, in
all the experiments.

One of the metrics to evaluate the performance

of systems is execution time. We reported the total
execution time of the proposed systems for all
the queries by varying the value of k in Fig 11. It
should be noted that the experiments were run on
an Intel(R) Core(TM) i7 QM 2.50 GHz computer
with 12GB of RAM. The outperformance of IKS
over BKS in terms of execution time is evident in
this experiment.

The impact of retrieval depth on the total
execution time of queries has been shown in Fig
12. In this experiment, 100 answers were retrieved
in each depth. Advancing up to higher retrieval
depths provides the possibility of retrieving
answers with more radiuses. The exponential
increase trend in execution times of queries when
the retrieval depth is increased is observed in
the diagrams of Fig 12. Nevertheless, based on
the results shown in Fig 10, the effectiveness of
systems over large datasets does not improve by
increasing the retrieval depth to more than 2.

The second metric for performance evaluation
is response time which is defined as the time
elapsed from issuing the query until the first
answer is returned by the system. The average

Asieh Ghanbarpour. et al./ An Effective Path-aware Approach for Keyword Search over Data Graphs.

182							 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020

Fig 6. The comparison on MAP of the proposed systems before ranking results with MAP of the state-of-the-art systems.

Fig 7. The comparison on MRR of different systems for queries which are associated with single-node answers.

Fig 8. The comparison on MAP of the proposed systems after ranking results with MAP of the state-of-the-art systems.

Fig 9. The overall search effectiveness of the proposed systems by varying k.

Asieh Ghanbarpour. et al./ An Effective Path-aware Approach for Keyword Search over Data Graphs.

 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020 				 	 	 	 183

response times of the proposed systems over all
queries for the three datasets are shown in Table
2. In this table, P@k represents mean precision
across all queries where the number of top
answers is limited to k. The data provided in
Table 2 show “interactive” response time (on the
order of a few seconds) [1] for each system. All
of the systems are able to deliver the first answer
of queries in less than one second, indicating that
the proposed systems are practical.

VII. DISCUSSION AND CONCLUSION

In this paper, we proposed two heuristic
algorithms based on the information spreading
technique to retrieve relevant answers in response
to interactive keyword queries. In Blind Keyword
Search, the information is spread in a regular
manner to all in-range nodes while in Informed
Keyword Search the information is spread to
the nodes having more potential to be present
in an answer. IKS substantially improved the
performance of BKS with just a minor impact
on its Mean Average Precision (i.e., quality of
answers).

Fig 10. The overall search effectiveness of the proposed systems by varying retrieval depth.

Fig 11. The total execution time of the proposed systems by varying k.

Fig 12. The total execution time of the proposed systems by varying retrieval depth.

Asieh Ghanbarpour. et al./ An Effective Path-aware Approach for Keyword Search over Data Graphs.

184							 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020

Table 2. A comparison between BKS and IKS systems.

 IKS BKS

Dataset Resp. (s)a Exec. (s)b 𝑷𝑷𝑷𝑷𝑷 Resp. (s) Exec. (s) 𝑷𝑷𝑷𝑷𝑷

Mondial 0.021 0.1646 0.52 0.0152 5.4692 0.56

Wikipedia 0.0048 10.272 0.48 0.0071 23.747 0.51

IMDb 0.0644 20.876 0.22 0.591 118.074 0.24

aMean response time (in second).
bMean execution time to retrieve 100 answers (in second).

 The experimental results on a wide range of

queries show that the effectiveness of the proposed
systems is comparable with that of state-of-the-art
systems utilizing a ranking phase to sort retrieved
answers. This achievement is the result of the
proper use of conceptual factors during the search
process. With regard to efficiency, the response
time of the proposed systems is very lower than
their execution time on various queries because
the answers are presented immediately after they
are retrieved. Another advantage of IKS and
BKS is that their processing time is independent
of the size of the base graph. This leads to
relatively similar average processing times of the
proposed systems over two datasets of Mondial
and Wikipedia though they have different sizes.
However, the dependence of the processing times
on the branching factor of the graphs makes these
systems efficient just on sparse graphs.

Among the algorithms proposed in this paper,
BKS is easily extensible to be used in distributed
environments. To this end, an auxiliary database
would be used to store the content of nodes. The
graph structure and the Id of nodes would be
maintained in the main memory and the content
of nodes would be saved in the database. The
required information would be fetched to the
main memory after the first activation of a node.
To distribute keyword search, the structure of
the graph is saved on all the servers and they are
connected to the database to fetch the needed
information. Each server is responsible to
retrieve a group of answers related to a specified
seed node. The data of the nodes close to some
seed nodes may be fetched several times from the
database by different servers. It is not necessary
for each server to inform the other servers about
the changes of common nodes because each
group of answers related to a seed node would be
retrieved independently from the other answers.
To execute BKS, the steps of the algorithm should

be simultaneously started by all the servers to
preserve the approximate order of answers. In
future works, the distributed form of keyword
search will be followed.

Asieh Ghanbarpour. et al./ An Effective Path-aware Approach for Keyword Search over Data Graphs.

 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020 				 	 	 	 185

REFERENCES

1.  J. Coffman, A.C. Weaver, An Empirical
Performance Evaluation of Relational Keyword Search
Techniques, IEEE Transactions on Knowledge and
Data Engineering, 26 (2014) 30-42.

2.  J. Park, S.-g. Lee, Keyword search in relational
databases, Knowl Inf Syst, 26 (2011) 175-193.

3.  A. Ghanbarpour, H. Naderi, Survey on Ranking
Functions in Keyword Search over Graph-Structured
Data, Journal of Universal Computer Science, 25
(2019) 361-389.

4.  B. Ding, J.X. Yu, S. Wang, L. Qin, X. Zhang,
X. Lin, Finding Top-k Min-Cost Connected Trees in
Databases, in: 23rd International Conference on Data
Engineering, IEEE, 2007, pp. 836-845.

5.  H. He, H. Wang, J. Yang, P.S. Yu, BLINKS:
ranked keyword searches on graphs, in: Proceedings
of the 2007 ACM SIGMOD international conference
on Management of data, ACM, Beijing, China, 2007,
pp. 305-316.

6.  M. Kargar, A. An, X. Yu, Efficient Duplication
Free and Minimal Keyword Search in Graphs, IEEE
Transactions on Knowledge and Data Engineering, 26
(2013) 1657 - 1669

7.  M. Kargar, A. An, Keyword search in
graphs: finding r-cliques, Proceedings of the VLDB
Endowment, 4 (2011) 681-692.

8.  F. Liu, C. Yu, W. Meng, A. Chowdhury, Effective
keyword search in relational databases, in: Proceedings
of the 2006 ACM SIGMOD international conference
on Management of data, ACM, Chicago, USA, 2006,
pp. 563-574.

9.  M. Miao, J. Wang, S. Wen, J. Ma, Publicly
verifiable database scheme with efficient keyword
search, Information Sciences, 475 (2019) 18-28.

10.  V. Hristidis, L. Gravano, Y. Papakonstantinou,
Efficient IR-style keyword search over relational
databases, in: Proceedings of the 29th international
conference on Very large data bases, VLDB
Endowment, Berlin, Germany, 2003, pp. 850-861.

11.  C.-S. Park, S. Lim, Efficient processing of
keyword queries over graph databases for finding
effective answers, Information Processing &
Management, 51 (2015) 42-57.

12.  X. Yu, Z. Yu, Y. Liu, H. Shi, CI-Rank: Collective
importance ranking for keyword search in databases,
Information Sciences, 384 (2017) 1-20.

13.  A. Hulgeri, C. Nakhe, Keyword Searching and
Browsing in Databases using BANKS, in: Proceedings
of the 18th International Conference on Data
Engineering, IEEE Computer Society, 2002, pp. 431-
440.

14.  V. Kacholia, S. Pandit, S. Chakrabarti, S.
Sudarshan, R. Desai, H. Karambelkar, Bidirectional

expansion for keyword search on graph databases, in:
Proceedings of the 31st international conference on
Very large data bases, VLDB Endowment, Trondheim,
Norway, 2005, pp. 505-516.

15.  J. Vivekavardhan, A.S. Chakravarthy, P.
Ramesh, Search Engines and Meta Search Engines
Great Search for Knowledge: A Frame Work on
Keyword Search for Information Retrieval, in: S.C.
Satapathy, K.S. Raju, K. Shyamala, D.R. Krishna, M.N.
Favorskaya (Eds.) Advances in Decision Sciences,
Image Processing, Security and Computer Vision,
Springer International Publishing, Cham, 2020, pp.
435-443.

16.  Y. Mass, Y. Sagiv, Language models for keyword
search over data graphs, in: Proceedings of the 5th
ACM international conference on Web search and
data mining, ACM, Seattle, Washington, USA, 2012,
pp. 363-372.

17.  J.I. Lopez-Veyna, V.J. Sosa-Sosa, I. Lopez-
Arevalo, A low redundancy strategy for keyword search
in structured and semi-structured data, Information
Sciences, 288 (2014) 135-152.

18.  S. Najafi, F. Soleimanian Gharehchopogh,
A New Hybrid Method for Web Pages Ranking in
Search Engines, Journal of Advances in Computer
Engineering and Technology, 5 (2019) 233-244.

19.  A. Sela, I. Ben-Gal, Information spread in the
age of the internet, in: 2014 IEEE 28th Convention
of Electrical & Electronics Engineers in Israel (IEEEI),
2014, pp. 1-4.

20.  C. Liu, Z.-K. Zhang, Information spreading
on dynamic social networks, Communications in
Nonlinear Science and Numerical Simulation, 19
(2014) 896-904.

21.  S. Bergamaschi, F. Guerra, M. Interlandi, R.
Trillo-Lado, Y. Velegrakis, QUEST: a keyword search
system for relational data based on semantic and
machine learning techniques, Proceedings of the
VLDB Endowment, 6 (2013) 1222-1225.

22.  S. Bergamaschi, F. Guerra, M. Interlandi,
R. Trillo-Lado, Y. Velegrakis, Combining user and
database perspective for solving keyword queries over
relational databases, Information Systems, 55 (2016)
1-19.

23.  T.N. Le, Z. Bao, T.W. Ling, Exploiting semantics
for XML keyword search, Data & Knowledge
Engineering, 99 (2015) 105-125.

24.  P. Dayananda, C.N. Sowmyarani, Review
on Keyword Search and Ranking Techniques for
Semi-Structured Data, in: D.L. Miltiadis, D. Linda,
V. Anna (Eds.) Knowledge-Intensive Economies
and Opportunities for Social, Organizational, and
Technological Growth, IGI Global, Hershey, PA, USA,
2019, pp. 248-270.

25.  M. Rihany, Z. Kedad, S. Lopes, A Keyword
Search Approach for Semantic Web Data, in: E. Métais,

Asieh Ghanbarpour. et al./ An Effective Path-aware Approach for Keyword Search over Data Graphs.

186							 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020

F. Meziane, S. Vadera, V. Sugumaran, M. Saraee
(Eds.) Natural Language Processing and Information
Systems, Springer International Publishing, Cham,
2019, pp. 131-143.

26.  D. Wang, L. Zou, D. Zhao, Top-k queries on
RDF graphs, Information Sciences, 316 (2015) 201-
217.

27.  S.B. Sinha, X. Lu, D. Theodoratos, Personalized
Keyword Search on Large RDF Graphs based on
Pattern Graph Similarity, in: Proceedings of the 22nd
International Database Engineering & Applications
Symposium, ACM, Villa San Giovanni, Italy, 2018, pp.
12-21.

28.  Y. Yuan, G. Wang, L. Chen, H. Wang, Efficient
Keyword Search on Uncertain Graph Data, IEEE
Transactions on Knowledge and Data Engineering, 25
(2013) 2767-2779.

29.  S. Kim, W. Lee, N.R. Arora, T.-C. Jo, S.-H.
Kang, Retrieving keyworded subgraphs with graph
ranking score, Expert Systems with Applications, 39
(2012) 4647-4656.

30.  Y. Yang, D. Agrawal, H.V. Jagadish, A.K.H.
Tung, S. Wu, An Efficient Parallel Keyword Search
Engine on Knowledge Graphs, in: 2019 IEEE 35th
International Conference on Data Engineering
(ICDE), 2019, pp. 338-349.

31.  G. Li, B.C. Ooi, J. Feng, J. Wang, L. Zhou,
EASE: an effective 3-in-1 keyword search method for
unstructured, semi-structured and structured data, in:
Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, ACM, Vancouver,
Canada, 2008, pp. 903-914.

32.  R.D. Virgilio, P. Cappellari, M. Miscione,
Cluster-Based Exploration for Effective Keyword
Search over Semantic Datasets, in: A.F. Laender, S.
Castano, U. Dayal, F. Casati, J. de Oliveira (Eds.)
Conceptual Modeling - ER 2009, Springer Berlin
Heidelberg, 2009, pp. 205-218.

33.  K. Nguyen, J. Cao, Top-K data source selection
for keyword queries over multiple XML data sources,
Journal of Information Science, 38 (2012) 156-175.

34.  Y. Mass, Y. Sagiv, Virtual Documents and
Answer Priors in Keyword Search over Data Graphs,
in: EDBT/ICDT Workshops, 2016.

35.  Y. Pan, Y. Wu, ROU: advanced keyword
search on graph, in: Proceedings of the 22nd ACM
international Conference on information and
knowledge management, ACM, San Francisco,
California, USA, 2013, pp. 1625-1630.

36.  B. Kimelfeld, Y. Sagiv, Finding and
approximating top-k answers in keyword proximity
search, in: Proceedings of the twenty-fifth ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, ACM, Chicago, IL, USA, 2006,
pp. 173-182.

37.  Y. Hao, H. Cao, Y. Qi, C. Hu, S. Brahma, J. Han,

Efficient keyword search on graphs using mapreduce,
in: Big Data (Big Data), 2015 IEEE International
Conference on, IEEE, 2015, pp. 2871-2873.

38.  J. Coffman, A.C. Weaver, A framework for
evaluating database keyword search strategies, in:
Proceedings of the 19th ACM international conference
on Information and knowledge management, ACM,
Toronto, ON, Canada, 2010, pp. 729-738.

	An Effective Path-aware Approach for Keyword Search over Data Graphs
	Abstract
	I. INTRODUCTION
	II. RELATED WORKS
	III. PROBLEM STATEMENT AND PRELIMINARIES
	IV. PROPOSED SEARCH ALGORITHMS
	1. Blind Keyword Search (BKS)
	2. The Modified Search Algorithm (Informed Keyword Search)

	V. EXPERIMENTS
	VI. EXPERIMENTAL RESULTS
	VII. DISCUSSION AND CONCLUSION
	REFERENCES

