
 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020

 This work is licensed under the Creative Commons Attribution 4.0 International Licence.

To view a copy o this licence, visit https://creativecommons.org/licenses/by/4.0/

An Effective Task Scheduling Framework for
Cloud Computing using NSGA-II

Hanieh Ghorashi1, Meghdad Mirabi2

1- Department of Computer Engineering, Islamic Azad University, Central Tehran Branch, Tehran, IRAN.
(hanieh.ghorashi@gmail.com)
2- Department of Computer Engineering, Faculty of Engineering, Islamic Azad University, South Tehran Branch, Tehran,
IRAN.

Received (2020-01-09) Accepted (2020-07-15)

Abstract: Cloud computing is a model for convenient on-demand user’s access to changeable
and configurable computing resources such as networks, servers, storage, applications, and
services with minimal management of resources and service provider interaction. Task scheduling
is regarded as a fundamental issue in cloud computing which aims at distributing the load on the
different resources of a distributed system in order to optimize resource utilization and response
time. In this paper, an optimization-based method for task scheduling is presented in order to
improve the efficiency of cloud computing. In the proposed approach, three criteria for scheduling,
including the task execution time, the task transfer time, and the cost of task execution have been
considered. Our method not only reduces the execution time of the overall tasks but also minimizes
the maximum time required for task execution. We employ the Multi-objective Non-dominated
Sorting Genetic Algorithm (NSGA-II) for solving the scheduling problem. To evaluate the efficiency
of the proposed method, a real cloud environment is simulated, and a similar method based on
Multi-Objective Particle Swarm Optimization is applied. Experimental results show the superiority
of our approach over the baseline technique.

Keywords: Cloud Computing, Task Scheduling, Multi-Objective Optimization, NSGA-II, Load
Balancing.

I. INTRODUCTION

Cloud computing is a model for convenient
on-demand user's access to changeable

and configurable computing resources such
as networks, servers, storage, applications,
and services with minimal management of
resources and service provider interaction [1].
The cloud environment consists of a group of
servers that organize various resources and
provide secure, reliable, fast and transparent
services to the user. One of the most important
problems in cloud computing is load balancing
[2]. Load balancing means distributing loads
between different nodes in a distributed

system to improve resource utilization and
response time. Load balancing techniques
help to distribute the load on all nodes equally.
In the absence of load balancing, a node may
have many tasks and other nodes are idle.
Load balancing results in high utilization of
resources and user satisfaction, which in turn
serves both cloud providers and users. The
goals of load balancing include increasing
efficiency, having a backup program in cases
where the whole or part of the system fails,
maintaining system stability, implementing
future modifications in the system, and
reducing energy consumption to name a
few [3]. Load balancing can be considered
as a four-stage decision-making process.
These stages contain determining the task

How to cite this article:
Hanieh Ghorashi, Meghdad Mirabi. An Effective Task Scheduling Framework for Cloud Computing using NSGA-II. J. ADV
COMP ENG TECHNOL, 6(3) Summer 2020 : 155-168

https://creativecommons.org/licenses/by/4.0/

Hanieh Ghorashi. et al./ An Effective Task Scheduling Framework for Cloud Computing using NSGA-II.

156 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020

migration time, determining the location of the
task migration, determining which processor
requests the migration, and specifying the tasks
to be migrated.

Task scheduling algorithms in distributed
systems generally intend to distribute the load on
processors and maximize their utilization while
reducing the tasks execution time [4]. In the cloud
environment, the number of tasks, as well as the
number of available resources can grow rapidly,
especially when virtual resources are allocated.
Calculating all possible task-resource mappings
in the cloud environment, and then selecting
the optimal mapping is not feasible because
complexity grows exponentially with the number
of tasks and resources. Fortunately, meta-heuristic
algorithms ensures the efficient implementation
of the scheduling algorithm, as they significantly
reduce/limit the search space. There are several
meta-heuristic algorithms such as genetic
algorithm [5], genetic-fuzzy algorithm [6], multi-
objective genetic algorithm [7], particle swarm
optimization [8] and ant colony optimization [9]
for optimizing the load balancing. Generally, they
follow two main objectives: 1) Minimizing the
task execution time, and 2) Minimizing the task
execution cost in the cloud environment.

The majority of the research works in this
domain assume that the objective functions in
a multi-objective task scheduling model are not
in conflict with each other and they have the
same tendency. Therefore, authors have used
single-objective meta-heuristic algorithms to
solve their optimization problem [10]. However,
this is a not a completely valid assumption.
Different objectives have various ranges for cost,
which utilizing a single-objective algorithm for
minimizing the overall cost may not consider
all objectives to an equal extent. In this case, a
possible solution can be optimum only regarding
some dominant objectives. Besides, the existing
optimization frameworks do not take into
account all necessary aspects of the load balancing
problem simultaneously. This may result in a task
assignment that considers some perspectives
such as task execution time while disregards
other aspects like task transfer time.

In this paper, we propose a method for
optimizing the task scheduling to balance the load
and improve the cloud productivity. The devised
approach considers three factors including task

execution time, task transfer time, and cost of
the task execution in order to achieve the optimal
task-resource mapping. In order to minimize the
total task completion time, not only the total tasks
execution time is reduced, but also the maximum
total task execution time is minimized. Therefore,
our method covers all necessary aspects of the
scheduling problem to generate a solution that
fulfills the entire objective set. We employ Non-
dominated Sorting Genetic Algorithm II (NSGA-
II) for solving the optimization problem. There
are several reasons for this choice. Compared to
Multi-Objective Particle Swarm Optimization
(MOPSO), it has the mutation operator which
prevents the algorithm to stick in the local
optimum points. Moreover, the crowding
distance operator in NSGA-II preserves the
population diversity in the different generations
which enhances the exploration of the algorithm,
and accordingly increases the chance for finding
the optimal solution. An effective multi-objective
algorithm like NSGA-II considers every aspects
of the optimization problem equally and produces
a solution that is optimum with respect to each
objective function.

The rest of the paper is organized as follows.
In Section II we provide a review of existing
load balancing techniques for cloud computing.
Section III presents our proposed task scheduling
framework. Simulation results and experiments
are reported in Section VI. Finally, we conclude
the paper in Section V.

II. RELATED WORKS

So far, many algorithms have been proposed
for load balancing in the cloud computing. In
the following, we provide a review of the most
successful approaches:

Active Clustering Algorithm: This
algorithm works by grouping similar nodes [11].
A node starts the process and chooses a node
different from the previous node among its valid
neighbor nodes as the intermediate node. Then,
the intermediate node creates a connection with
the neighbor of the initial node type. Then the
intermediate node interrupts the connection with
the initial node. Above processes are repeated.

Hanieh Ghorashi. et al./ An Effective Task Scheduling Framework for Cloud Computing using NSGA-II.

 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020 157

In this algorithm, the efficiency of the system
increases with resources. As a result, throughput
increases with these resources.

Bee colony Algorithm: This algorithm
examines the load balancing in web servers
based on increasing or decreasing demand [12].
Allocated servers dynamically customize user
requests. These servers are grouped as virtual
servers. Each virtual server has its own virtual
queues. Each server calculates required benefits by
processing a request from the queue. The amount
of these benefits equals to the time consumed
by the processor to process a request. The Bee
dance section is similar to the bulletin board. It
also uses this plane to declare the benefits of the
entire colony. Each of these servers plays the role
of a tracer or a watch. After processing a request,
the server can send benefits to notice boards
with the probability of rp. A server can select a
queue from virtual servers with the probability
of xp (xp represents the behavior of the tracer),
or it can check the notifications (watching dance)
and serve which in that case, demonstrates the
behavior of the Scout. In order to serve a request,
after calculating the benefits and comparing it
with the total colony benefit, a server considers
the value of xp for it. If these benefits were high,
the server would remain on the same current
virtual server and a notification is sent with a
probability of rp. If the benefits are low, the server
will take the role of scout or tracer. This method
achieves the general load balancing through the
activities of local servers. As system diversity
increases, system performance increases. But
operating power does not increase as system
size increases. This algorithm is suitable where a
variety of services are required.

Random Sampling: In this algorithm, a
virtual graph is constructed in which each node
(server as a node) has a connection to represent
the server load [13]. In this graph, each server
is directed to server free resources as a node of
any degree. Whenever a node performs a task,
that node is deleted from the input edges, which
indicates that the access to resources is reduced
and that resource is freed. After completing a task,
the node creates an input edge, which indicates
increased access to the free resource. Adding
and deleting the process is conducted by random

sampling. A neighbor is randomly selected at
the beginning of the path in each node. The last
node is selected for load allocation. There are also
other ways to select the node for load allocation
and specific criteria are used to select the node.
However, the selection and allocation of load can
be for low-load nodes. Finally, a directed graph
is obtained. This method balances load across all
system nodes. System efficiency increases with
increasing the number of resources, resulting
in increased throughput by increasing system
resources. Here, the load balancing plan is
completely decentralized, so it is suitable for large
network systems such as cloud.

CARTON method: In order to control the
application of load balancing and Distributed
Rate Limiting (DRL), CARTON mechanism has
been proposed for the cloud [14]. Load balancing
is used to distribute tasks to different servers,
so the corresponding costs can be reduced.
Distributed Rate Limiting (DRL) is used to ensure
that resources are distributed in a way that fairly
distribution is preserved. This algorithm can be
easily implemented with very low computing and
communication overhead. A unified framework
is where this algorithm is applied for cloud
control. In this algorithm, the overhead and
resources utilization are considered among the
load balancing criteria.

Event-driven method: An event-driven load
balancing algorithm is proposed for multiplayer
online games [15]. After receiving capacity events
as input, this algorithm analyzes its components
in terms of the resources and the general state of
the game's session. Consequently, load balancing
activities generate a game session. This method is
capable of reducing or increasing the scale of a
game session on multiple resources based on the
user variable load. However, there is an occasional
lack of quality of service. In this algorithm, the
resource utilization is considered as one of the
load balancing criteria.

Server-based Load Balancing for Internet
Distributed Services: A new service based load
balancing policy is proposed for web servers
distributed across the world [16]. This policy
helps reduce service times by limiting the number
of paths to a request to the closest remote server

Hanieh Ghorashi. et al./ An Effective Task Scheduling Framework for Cloud Computing using NSGA-II.

158 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020

without overloading them. A middleware is
described for implementation of this protocol.
Also, in order to withstand the load, it uses a
metaheuristic method to help web servers.

Fuzzy logic: A cyclic turn-based load
balancing algorithm is designed in virtual machine
environments in cloud computing in order to
achieve better response time and processing time
[17]. The load balancing algorithm runs before the
processing servers arrive. The task is scheduled
based on various parameters such as processor
speed and load allocated to the virtual machine.
This algorithm keeps the information inside
each virtual machine and the number of current
requests allocated to the virtual machine of the
system. When there is a task for allocation, this
algorithm specifies a machine with a minimum
load, and if there is more than one machine with
this property, this algorithm determines the first
machine. Researchers have tried to implement
a new load balancing technique based on fuzzy
logic. Since fuzzy logic is similar to natural
language, it can formulate its own problems.
In this architecture, the fuzzifier executes the
process of fuzzification, which receives two types
of input data, such as processor speed and load
allocated to the virtual machine, and sends an
output that is the same balanced load. This design
takes into account the processor speed and virtual
machine load as two input parameters in order to
better balance the load in the cloud using fuzzy
logic. These parameters are given as inputs to the
fuzzifier mechanism, which are used to measure
the balanced load as output. The two parameters of
the processor speed and virtual machine allocated
load are used together to evaluate the balanced
load on cloud computing data centers through
fuzzy logic. The results obtained by evaluating
efficiency can achieve load balances by reducing
processing time and improving response time,
which results in maximum resource utilization.
The processor speed and load allocated to the
virtual machine for load balancing in cloud
computing is applied through fuzzy logic.

Message-based Model: In this model, clusters
provide the opportunity to use applications
distributed by different computers across
networks [18]. This issue is related to the clusters
in the network performance, if the total load

on the distribution network is distributed by a
computer, it will slow down the network. In order
to avoid this situation, resource management can
use software criteria to distribute traffic between
stations, so that network performance is preserved
in a high probability. Web services are mainly
used in instant messaging applications, which
is a technology for real-time communications
between different parties. However, the
application's availability is important. In this
algorithm, the response time and efficiency are
considered as two load balancing criteria.

Min-Min Algorithm: This algorithm [19]
starts with a set of unallocated tasks. First of all,
the minimum total completion time is found.
Then, the minimum value is selected among these
minimum times which is the minimum time per
resource. Then, according to the minimum time,
task is scheduled on the corresponding machine.
Afterwards, the runtime for all other tasks on the
machine is updated by adding the running time
of the allocated task to the execution time of the
other tasks on the machine, and the allocated task
is removed from the list of tasks allocated to the
machine. The same procedure is followed up until
all tasks are allocated to the resources. But, this has
a major problem, which it can lead to starving. In
this algorithm, the resource utilization, overhead,
throughput, response time, and efficiency are
considered as the load balancing criteria.

Min-Max Algorithm: The Min-Max
algorithm is almost the same as the Min-
Min algorithm [20], except for the following:
the maximum value is selected after finding
minimal run times which is the maximum
time per resource. Afterwards, according to the
maximum time, the task is scheduled on the
corresponding machine. Then, the runtime for
all other tasks on the machine will be updated
by adding the execution time of allocated task
to the execution time of the other tasks on the
machine and the allocated task is deleted from
the list of tasks allocated to the machine. In this
algorithm, as in the Min-Min algorithm, resource
utilization, overhead, throughput, response time,
and efficiency are considered as load balancing
criteria.

Hanieh Ghorashi. et al./ An Effective Task Scheduling Framework for Cloud Computing using NSGA-II.

 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020 159

OLB + LBMM Two-stage load balancing
algorithms: A two-stage scheduling algorithm
has been suggested that the scheduling algorithms
(OLB load balancing opportunity) and (LBMM
load balancing) are used for better performance
and maintaining the system load balancing [21].
The OLB scheduling algorithm keeps each node
working in order to achieve the load balancing,
and the LBMM scheduling algorithm is used to
reduce the runtime of each task on the node, thus
reducing the total runtime. The three-level cloud
computing networks are where this algorithm
is used, in which the efficiency and resource
utilization criteria are considered. This combined
algorithm helps for efficient resource utilization
and increases throughput. This algorithm offers
better results than Bee colony, random sampling,
and active clustering algorithms.

 Queue-Idle-Join algorithm: This algorithm
provides a large-scale load balancing with
distributed distributors [22]. First, the load
balancing is conducted to make each idle
processor have access to any distributor, and then
allocate tasks to the processors in order to reduce
the average length of the queue of each processor.
After task deletion from the critical paths of
processing requests, this algorithm effectively
reduces system load. No communication
overhead occurs when the tasks arrive and does
not increase the actual response time. Cloud data
center is where this algorithm is used in which the
efficiency, response time, and overhead criteria
are considered.

Central load balancing policy for virtual
machines: In this method, a central load
balancing policy is proposed for virtual machines
that balances load equally in a cloud computing
or distributed virtual machines [23]. This policy
increases overall system performance but does
not consider systems that have an error tolerance.
This method uses general state information for
load balancing decisions and increases efficiency
by more than 20%. Cloud computing is where
this algorithm is used in which the efficiency
and response time, throughput, and resource
utilization are considered.

Distributed Scheduling Hill Climbing
(DSHC): This paper proposes a dynamic
scheduling algorithm that uses hill climbing
algorithm [24]. It tries to minimize completion
time of tasks while maximizing throughput and
utilization of resources. This algorithm allocates
independent tasks to available resources to
achieve load balance. The simulation results show
that the algorithm can achieve load balance and
reduces completion time of tasks.

III. PROPOSED METHOD

In general, task scheduling is considered
as a solution to the load balancing problem in
cloud computing. The most important issue in
task scheduling is the formulation of scheduling
objectives and the model being tested. More
precisely, we must define equations that cover all
the aspects of a scheduling problem and identify
their goals well. Given that finding optimal
mapping is subjected to the minimization of
several different objectives, in this paper, the
multi-objective NSGA-II is applied in order
to find a solution that results in the minimal
value for the three cost functions mentioned
above. In the following, the formulation of three
objective functions is defined, and details of
the optimization algorithm are then presented.
Finally, the routine and flowchart of the proposed
method are expressed.

In order to formulate cost functions, the
following variables and constraints are used:

- n: number of tasks
- T={t1, t2, …, tn}: The set of tasks in the waiting

queue
- NPM: The number of physical machines in the

cloud
- m: The number of virtual machines
- VMj: For a set of m virtual machines, VMj is

the same as the jth virtual machine.
- VMz = {VMdz’th PM, zd{1, 2, …, NPM}}:

The set of VMs allocated to the z’th PM.
- VMp = {VM|VM is allocated to p’th Cloud

provider, Pd{1, 2, …, cp}}: The VMs that are
allocated to the P’th cloud provider.

- Bck: Bandwidth between center and VMk
- cp: The number of cloud providers
- Ĉp: The maximum capacity for the p’th

service provider in the cloud

Hanieh Ghorashi. et al./ An Effective Task Scheduling Framework for Cloud Computing using NSGA-II.

160 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020

- DEik: The amount of data allocated by task i
to VMk

- VMmk: VMk memory size
- VMck: VMk Capacity
- Pcostj: The cost of a VM unit for the j’th

provider (one dollar per hour)
- rp: The total number of VMs provided by the

k provider which performs the tasks at the time
interval pt.

- 𝑥𝑥�� ∈ �0,1�, �� � 1,� , ��������� � 1,� ,�

-

It is noteworthy that in the proposed method
if task i is allocated to VMk, xik=1, otherwise xik=0.

The equation (1) to calculate the task
execution time on a virtual machine k is used in
the proposed method:

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� ��𝑇𝑇�� � 𝐷𝐷𝐷𝐷��
𝑉𝑉𝑉𝑉𝑉𝑉� � 𝑉𝑉𝑉𝑉��

�

���
 (1)

Where Texek refers to task execution time on
VMk.

Using equation (1), the total execution time is
obtained by equation (2):

 (2)

Also, in the proposed method, the task transfer
time can be obtained using equation (3):

������ � ����� � 𝐷𝐷𝐷𝐷��
𝐵𝐵��

�

���

�

���
 (3)

The total execution cost for the cloud provider
(one dollar per hour) is obtained using equation
(4).

���� � ��𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� � �� � � � �����
�����

��
��

���
 (4)

Where rp is determined by equation (5):

𝑟𝑟� � � ���������, 1
�

���
�

�����
 (5)

After modeling the task scheduling problem,
objectives must be specified. The desired
objectives are runtime, transfer time, cloud
provider cost, as defined by (6) - (8):

min 𝑓𝑓�𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� � 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� ���m������� 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸��

 (6)

min 𝑓𝑓�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� � 𝑇𝑇�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (7)

min 𝑓𝑓�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶� � 𝐶𝐶��� (8)

Optimization problems that have more than
one objective function are common in many fields.
In such cases, the objective functions naturally
contradict each other. This means that there is
no single solution for such issues. Therefore, the
goal is to find solutions that make consistency
and consensus between the objectives. A multi-
objective optimization problem is expressed in
terms of equation (9):

min �⃗�𝐹��⃗� � �����⃗�� ����⃗�� � � ����⃗��� (9)

Where �⃗�𝑋 � �𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�� is the vector of

decision variables; are
objective functions. Assuming that the decision
variable �⃗�𝑋 � �𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥�� represents a

solution. The solution �⃗�𝑋� dominates the solution

�⃗�𝑋� if 𝑓𝑓���⃗�� � 𝑓𝑓���⃗�� for all ,

Hanieh Ghorashi. et al./ An Effective Task Scheduling Framework for Cloud Computing using NSGA-II.

 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020 161

and 𝑓𝑓���⃗�� � 𝑓𝑓���⃗�� for at least one

 . An acceptable solution �⃗�𝑋� is a

Pareto optimal (non-dominant) solution if there
is no other acceptable solution �⃗�𝑋� that dominates

it. The set of all objective vectors of ���⃗��
corresponding to Pareto optimal solutions is
called the Pareto front (P*). Therefore, the
objective is to determine the optimal Pareto set
from the set F of all decision variable vectors.

By adding two essential operators to a single-
objective genetic algorithm, this algorithm
has been transformed into a multi-objective
algorithm called Multi-objective NSGA-II [25],
which a group of best solutions which is known as
Pareto front instead of finding the best solution.
These two operators are:

• An operator that assigns a ranking criterion
based on the non-dominated sorting to members
of the population.

• An operator that maintains the diversity
among equal-ranking solutions.

Before the full description of this algorithm, it
is necessary to explain the concept of domination,
non-dominated sorting and the concept of
maintenance of diversity in the solutions.

In a minimization problem with more than
one objective function, X dominates Y if and only
if Y is in no way better than X, and X is at least a
strictly better than Y in at least one aspect. This
concept is mathematically expressed by equation
(10),

𝑋𝑋 � 𝑋𝑋�𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋� ⇔ ∀𝑖𝑖𝑖𝑋𝑋𝑋� � 𝑋𝑋� 𝑋𝑋𝑋∧ 𝑋𝑋𝑋∃𝑖𝑖�𝑖 𝑋𝑋𝑖𝑖� ≺ 𝑋𝑋𝑖𝑖�

 (10)

When discussing a single-objective algorithm,
the criterion of the superiority of solutions relative
to each other is very simple and obvious. Because
only one objective function is considered, and
if the problem is a minimization problem, the
solution that has the minimal value of the objective
function is desirable and is superior to other
solutions. But, when a multi-objective algorithm

is used to solve a problem, it means that at least
two objective functions are considered, and it is
no longer possible to easily determine some of
the solutions. In most cases, points are found
that none is superior to the other, and cannot
be compared using the concept of domination.
Therefore, in order to obtain the best solutions,
they should be sorted according to a certain
standard. In this algorithm, a Rank is assigned
to each solution, which is based on the number
of dominations compared to the other points. At
the end of the algorithm, the points with the best
rank, that is 1, are selected as the set of solutions
or points of the Pareto front. This is described
in Fig. 1, which is an example of a minimization
problem with two objective functions.

As shown in Fig. 1, the number of points in
the space for each possible solution is specified,
each of which has two values of F1 and F2 for
the objective function. Here, point 3 is checked
compared to other points. Point 3 is superior
to all points in space A. That is, F1 and F2 for
this point are less than F1 and F2 for all points
on plane A. So this point always dominates the
points on plane A. Also, all points in space C are
superior to point 3. That is, the F1 and F2 are
lower for these points than F1 and F2 for point 3.
So point 3 is always dominated by points in space
C. For example, point 3 dominates point 6 and
is dominated by points in space A. However, it
cannot be directly judged as to the position of the
superiority or non-superiority of points in space
B and D relative to point 3. Because the points
on plane B are better than 3 in terms of F1 and
worse in terms of the F2, also for the points in the
space D, they are better in F2 than F1. So in this
direct comparison, one cannot say which point
dominates the other. In such cases, the presence
of other members of the population is used to
judge. First, let assume that there is no point in
space C. We want to make a comparison between
points 3 and point 2 in space B. As noted, each
has a better situation and a worse situation. In
this situation, we must see if there is another point
that is better than both of these points. Point 1 is
better than point 2, then point 1 dominates points
2, but there is no point that is better than point
3 in both functions. Point 2 was then dominated
by other members of the population, but point 3
has never been dominated. As a result, between
these two points point 3has a better situation.

Hanieh Ghorashi. et al./ An Effective Task Scheduling Framework for Cloud Computing using NSGA-II.

162 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020

For points 4 and 3, the situation is the same. That
is, point 4 is dominated by point 5, but point 3
is not dominated by any point. So Point 3 is
better than point 4. But for points 1 and 5, we
cannot comment on point 3 because they are not
dominated by any point, and each has superiority
and non-superiority over each other. So points 1,
5 and 3, which have never been dominated and
ranked 1, are part of the Pareto Front.

Fig. 1. Some points of the solution space of a hypothetical

problem [25].

A remarkable point is that it is sometimes
necessary to compare the members of a set
with the same rank and some of them should
be deleted. This is done using the concept of
maintenance of the diversity of solutions. This
means that, in deleting multiple members of a
set, it tries to act in such a way that the set has
a solution from each interval regularly. This is
illustrated by an example.

Suppose that the points in Fig. 2 belong to the
same rank set. It is necessary to remove a point
from these points. Therefore, we try to select
that point so that the diversity of solutions is
maintained to some extent. For example, between
points 3 and 5, point 3 is a better choice for
deletion. Because, by deleting the point 5, there is
no representative solution in the large interval of
the F1 and F2 axes, respectively, that is between
d and g and between n and p. But, if point 2 is
selected for deletion, the solutions diversity does
not diminish, because there are other solutions
near this point.

Fig. 2. The hypothetical points related to a set with an

equal rank [25].

Fig. 3. Operators in the stage of solutions selection in the

multi-objective NSGA-II [25]

The reason for application of these two
operators in the multi-objective NSGA-II refers
to the selection stage that some chromosomes
should be selected from parents and children's
chromosomes to begin the next stage and remove
some of the solutions. This algorithm can be
described in Fig. 3.

As shown in Fig. 3, the Pt+1 members should
be selected from the Pt ∪ Qt members based on
their rank and the rest should be eliminated. As
shown in Figure 3, members with ranks 1 and 2
are all selected, but for members with a rank 3,
some are deleted and the rest must be selected.
As is evident, they all have the same rank and
another criterion must be applied for selection,
which is the same criterion for maintenance of
the diversity of solutions. The operator of this
stage is known as the Crowding distance. The
concept of this operator is described above and
its mathematical expression for point i in a two-
objective problem is given in Fig. 4 as follows.

Hanieh Ghorashi. et al./ An Effective Task Scheduling Framework for Cloud Computing using NSGA-II.

 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020 163

𝑑𝑑�� �
�𝑓𝑓���� � 𝑓𝑓�����
𝑓𝑓���� � 𝑓𝑓���� (11)

𝑑𝑑�� � �𝑓𝑓���� � 𝑓𝑓�����
𝑓𝑓���� � 𝑓𝑓���� (12)

 (13)

In equations (11) - (13), the values of
𝑓𝑓���� ، 𝑓𝑓����،𝑓𝑓���� ، 𝑓𝑓����،𝑓𝑓���� ، 𝑓𝑓����،𝑓𝑓���� are specified in

Fig. 4, and is the ratio of the region corresponding
to the domain of point i to the whole area of the
objective function f1, and 𝑑𝑑�� is the ratio of the

region to the domain of the same point to The
whole region of the objective function f2, and D,
which is the sum of these two ratios, represents an
index of the general domain of this point, which
is called the Crowding distance. Therefore, if a
point has a greater crowding distance, it will cover
a greater range and its elimination will result in
the loss of solution diversity across a wide range
of solutions. Therefore, the points of the set of
solutions with a rank of 3 that have lower
crowding distance should be eliminated so that
the initial population is kept constant. Also, the
points of the beginning and end of this set are
important points that must exist between the
solutions and should not be eliminated. The above
equation can be generalized for each problem
with several objective functions.

As described in the multi-objective genetic
algorithm, the difference between this algorithm
and the single-objective genetic algorithm is in
the selection stage for the parents and children
in order to maintain the number of population
at the beginning of each cycle [26]. Therefore,
the implementation steps of a multi-objective
NSGA for the task scheduling problem in cloud
computing is illustrated in the flowchart of Figure
5. In the following, we describe each step in detail.

Fig. 5. Multi-objective NSGA-II Flowchart for the

proposed method.

Hanieh Ghorashi. et al./ An Effective Task Scheduling Framework for Cloud Computing using NSGA-II.

164 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020

Step 1: A specific number of chromosomes
is created as the initial population. In this step,
chromosomes with a length equal to the number
of tasks (each task represents a gene) are randomly
defined which each gene takes a value based on
the number of the virtual machine in the cloud
provider.

Step 2: Then, the cost associated with each of
the chromosomes is determined by the objective
functions defined in equations (6) - (8). Since
three objective functions are considered at each
stage, after each allocation three values are
obtained for each chromosome that refers to the
cost of the chromosome with respect to the three
objective functions.

Step 3: In most cases, there are points that
have no superiority over each other and cannot
be compared with the concept of domination.
Therefore, in order to get the best solution,
they should be sorted according to a certain
standard. In this algorithm, a rank is assigned to
each solution which is based on the number of
dominations over the other points. At the end of
the algorithm, the points with the best rank (i.e.,
1) are selected as the set of solutions or points of
the Pareto front.

Step 4: After determining the cost for all
chromosomes, some of them are randomly
selected for the production of children. Then,
for the crossover operator, two parents must be
selected at each stage. Here, one-point crossover
is used. So that a point is randomly selected in
the chromosomes and the two chromosomes
are swapped based on that location. Some of
the offspring generated after the crossover
are selected for the mutation operation. The
mutation operation is very useful for escaping
from trapping in a local optimum. Of course, it
is necessary to select the mutation rate correctly.
The mutation operation is performed in a way
that first a chromosome is randomly selected for
the operation. Then, one of the genes is selected
and its value is randomly changed.

Step 5: At this step, the initial population, the
population derived from the crossover and the
mutation are combined and form a larger 2N
population.

Step 6: After combining the populations,
chromosomes’ fitness is calculated based on the
three defined cost functions. At this point, some

parents and children should be eliminated so
that the number of the main population remains
constant. Therefore, first, the total population is
sorted according to the rank, and then, according
to the crowding distance, a specific number of the
individuals with a better situation in terms of the
rank and the crowding distance are selected and
the rest will be removed so that the number of the
main population stays constant and the algorithm
continues as before.

Step 7: If the termination criterion is met
(the number of iterations), the algorithm ends,
otherwise it will enter the next cycle.

IV. EXPERIMENTAL RESULTS

In this section, the proposed method is
tested and evaluated. In order to ensure the
efficiency of the proposed method, the results
are compared with the multi-objective particle
swarm optimization algorithm introduced in
[27]. The tests were carried out in MATLAB
simulation environment on a system with a 2.4
GHz Processor and 4GB RAM.

In order to simulate the proposed algorithm, an
environment is designed with 3 cloud providers,
5 virtual machines (VMs), and 10 tasks. It is
assumed that each virtual machine belongs to a
provider. Also, the maximum capacity of each
provider, the cost of a virtual machine unit for
each provider, the number of virtual machines
allocated to each provider, and the set of virtual
machines allocated to each provider varies in
each run.

Data and information on virtual machines is
presented in Table I. The number of tasks used
in the tests is 100, each with a length of {25000,
250000}, a file size of 300, and random output size
of 300 which are randomly generated.

TABLE I

VIRTUAL MACHINE PROPERTIES
 VM's

Number
MIPS Image

size
Memory Bandwidth Number

of CPUS
1 256 10000 512 10000 4
2 300 1000 256 1000 1
3 256 1000 512 10000 2
4 256 1000 512 1000 1
5 256 100 256 10 1

Hanieh Ghorashi. et al./ An Effective Task Scheduling Framework for Cloud Computing using NSGA-II.

 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020 165

The parameters of the multi-objective NSGA-
II have a direct impact on the algorithm's efficiency
and computation time. Through multiple tests, the
best value for the parameters of the algorithm was
obtained in accordance with Table II. By adjusting
the algorithm to the obtained values, the balance
between the convergence rate and the minimized
cost is established and as a result, the solution is
near-optimum in terms of the execution cost and
the execution time.

TABLE II
MULTI-OBJECTIVE NSGA II PARAMETERS

Mutation
rate

Crossover
rate

Number of
population

Maximum
iteration

Parameter

0.4 0.7 20 100 value

The execution time, the transfer time, and
the execution cost plots are shown in Figures
6-8, respectively. The horizontal axis represents
iteration and the vertical axis represents the
time or the cost. Also, the final values of the
cost functions are summarized in Table III for
a precise representation of the output of the
proposed method.

Fig. 6. Total task execution time.

Given the results obtained as well as the
statistical values summarized in Table III, we
can conclude that the proposed method, i.e.
multi-objective NSGA-II is well suited for
allocating tasks to virtual machines. So that the
minimum values are 112.46 for execution time,
2410 for transfer time and 242.94 for execution
cost. Considering the results, it is clear that the

proposed method is far better than the Multi-
objective particle swarm optimization algorithm
with a lower cost at each iteration. Therefore, it
can be said that the proposed method has good
stability. The uniformity of execution in iterations
of the algorithm indicates the stability of the
proposed approach.

Fig. 7. Total task transfer time.

Fig. 8. The total task execution cost.

TABLE III
FINAL VALUES FOR THE OBJECTIVES OF THE

FRAMEWORK
Execution

time
Transfer

time
Execution

cost

120.17 3400 308.3 MOPSO
112.46 2410 242.94 NSGA II

Hanieh Ghorashi. et al./ An Effective Task Scheduling Framework for Cloud Computing using NSGA-II.

166 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a multi-objective
optimization approach for improving the task
scheduling efficiency in the cloud computing. We
considered several aspects of the task scheduling
problem in the form of objective functions.
The state-of-the-art works usually assume the
objectives in the task scheduling problem have the
same tendency, and therefore, proposed a single-
objective solution for the problem. However, we
demonstrated the objectives are in conflict with
each other, which demand a multi-objective
optimization algorithm to establish a trade-off
between them. So, we proposed a framework
consisted of three objectives called Execution
Time, Transfer Time, and Cost, and applied the
NSGA-II evolutionary algorithm to find the
best scheduling assignment for the given tasks.
The obtained results are promising compared
to the baseline, an efficient multi-objective task
scheduling algorithm based on MOPSO. Our
algorithm showed a stable performance with a
significant amount of efficiency. In future work,
we will study the performance of our approach
with respect to scalability.

Hanieh Ghorashi. et al./ An Effective Task Scheduling Framework for Cloud Computing using NSGA-II.

 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020 167

REFERENCES

1. Rittinghouse, J.W. and Ransome, J.F., 2016.
Cloud computing: implementation, management, and
security. CRC press.

2. NRaghava, N.S. and Singh, D., 2014.
Comparative study on load balancing techniques in
cloud computing. Open journal of mobile computing
and cloud computing, 1(1), pp. 31-42.

3. Sidhu, A.K. and Kinger, S., 2013. Analysis
of load balancing techniques in cloud computing.
International Journal of computers & technology, 4(2),
pp.737-741.

4. Razaque, A., Vennapusa, N.R., Soni, N. and
Janapati, G.S., 2016, April. Task scheduling in cloud
computing. In 2016 IEEE Long Island Systems,
Applications and Technology Conference (LISAT)
(pp. 1-5). IEEE.

5. Agarwal, M. and Srivastava, G.M.S., 2016,
April. A genetic algorithm inspired task scheduling in
cloud computing. In 2016 International Conference
on Computing, Communication and Automation
(ICCCA) (pp. 364-367). IEEE.

6. Shojafar, M., Javanmardi, S., Abolfazli, S. and
Cordeschi, N., 2015. FUGE: A joint meta-heuristic
approach to cloud job scheduling algorithm using
fuzzy theory and a genetic method. Cluster Computing,
18(2), pp.829-844.

7. Liu, J., Luo, X.G., Zhang, X.M., Zhang, F. and Li,
B.N., 2013. Job scheduling model for cloud computing
based on multi-objective genetic algorithm.
International Journal of Computer Science Issues
(IJCSI), 10(1), p.134.

8. Akilandeswari P. and Srimathi, H., 2016.
Dynamic Scheduling in Cloud Computing using
Particle Swarm Optimization. Indian Journal of
Science and Technology, 9, pp. 120-127.

9. Gupta, P. and Ghrera, S.P., 2016, February.
Trust and deadline aware scheduling algorithm for
cloud infrastructure using ant colony optimization.
In 2016 International Conference on Innovation and
Challenges in Cyber Security (ICICCS-INBUSH) (pp.
187-191). IEEE.

10. Masdari, M., ValiKardan, S., Shahi, Z. and
Azar, S.I., 2016. Towards workflow scheduling in
cloud computing: a comprehensive analysis. Journal
of Network and Computer Applications, 66, pp.64-82.

11. Al Nuaimi, K., Mohamed, N., Al Nuaimi,
M. and Al-Jaroodi, J., 2012, December. A survey of
load balancing in cloud computing: Challenges and
algorithms. In 2012 second symposium on network
cloud computing and applications (pp. 137-142). IEEE.

12. LD, D.B. and Krishna, P.V., 2013. Honey bee
behavior inspired load balancing of tasks in cloud
computing environments. Applied soft computing,

13(5), pp.2292-2303.
13. Manakattu, S.S. and Kumar, S.M., 2012, August.

An improved biased random sampling algorithm for
load balancing in cloud based systems. In Proceedings
of the International Conference on Advances in
Computing, Communications and Informatics (pp.
459-462).

14. Panwar, R. and Mallick, B., 2015. A
comparative study of load balancing algorithms in
cloud computing. International Journal of Computer
Applications, 117(24).

15. Degtyarev, A. and Gankevich, I., 2016.
Balancing load on a multiprocessor system with event-
driven approach. In Transactions on Computational
Science XXVII (pp. 35-52). Springer, Berlin,
Heidelberg.

16. Nakai, A.M., Madeira, E. and Buzato, L.E.,
2011, April. Load balancing for internet distributed
services using limited redirection rates. In 2011
5th Latin-American Symposium on Dependable
Computing (pp. 156-165). IEEE.

17. Sethi, S., Sahu, A. and Jena, S.K., 2012. Efficient
load balancing in cloud computing using fuzzy logic.
IOSR Journal of Engineering, 2(7), pp.65-71.

18. Ylä-Outinen, P., Latvala, M., Lahtinen, L.,
Tuunanen, H., Westman, I. and Höneisen, B., Nokia
Technologies Oy, 2016. Message-based conveyance of
load control information. U.S. Patent 9,369,498.

19. Etminani, K. and Naghibzadeh, M., 2007,
September. A min-min max-min selective algorihtm
for grid task scheduling. In 2007 3rd IEEE/IFIP
international conference in central Asia on internet
(pp. 1-7). IEEE.

20. Nace, D. and Pióro, M., 2008. Max-min
fairness and its applications to routing and load-
balancing in communication networks: a tutorial.
IEEE Communications Surveys & Tutorials, 10(4),
pp.5-17.

21. Wang, S.C., Yan, K.Q., Liao, W.P. and Wang,
S.S., 2010, July. Towards a load balancing in a
three-level cloud computing network. In 2010 3rd
international conference on computer science and
information technology (Vol. 1, pp. 108-113). IEEE.

22. Lu, Y., Xie, Q., Kliot, G., Geller, A., Larus, J.R.
and Greenberg, A., 2011. Join-Idle-Queue: A novel
load balancing algorithm for dynamically scalable web
services. Performance Evaluation, 68(11), pp.1056-
1071.

23. Bhatt, H.H. and Bheda, H.A., 2015, September.
Enhance load balancing using Flexible load sharing in
cloud computing. In 2015 1st International Conference
on Next Generation Computing Technologies (NGCT)
(pp. 72-76). IEEE.

24. Mohammadi, M. and Rahmani, A.M., 2017.
De-centralised dynamic task scheduling using hill
climbing algorithm in cloud computing environments.

Hanieh Ghorashi. et al./ An Effective Task Scheduling Framework for Cloud Computing using NSGA-II.

168 J. ADV COMP ENG TECHNOL, 6(3) Summer 2020

International Journal of Cloud Computing, 6(1),
pp.79-94.

25. Deb, K., Agrawal, S., Pratap, A. and Meyarivan,
T., 2000, September. A fast elitist non-dominated
sorting genetic algorithm for multi-objective
optimization: NSGA-II. In International conference
on parallel problem solving from nature (pp. 849-858).
Springer, Berlin, Heidelberg.

26. Deb, K., 2015. Multi-objective evolutionary
algorithms. In Springer Handbook of Computational
Intelligence (pp. 995-1015). Springer, Berlin,
Heidelberg.

27. Alkayal, E.S., Jennings, N.R. and Abulkhair,
M.F., 2016, November. Efficient task scheduling
multi-objective particle swarm optimization in cloud
computing. In 2016 IEEE 41st Conference on Local
Computer Networks Workshops (LCN Workshops)
(pp. 17-24). IEEE.

	An Effective Task Scheduling Framework for Cloud Computing using NSGA-II
	Abstract
	I. INTRODUCTION
	II. RELATED WORKS
	Active Clustering Algorithm:
	Bee colony Algorithm:
	Random Sampling:
	CARTON method:
	Event-driven method:
	Server-based Load Balancing for Internet Distributed Services:
	Fuzzy logic:
	Message-based Model:
	Min-Min Algorithm:
	Min-Max Algorithm:
	OLB + LBMM Two-stage load balancing algorithms:
	Queue-Idle-Join algorithm:
	Central load balancing policy for virtual machines:
	Distributed Scheduling Hill Climbing (DSHC):

	III. PROPOSED METHOD
	IV. EXPERIMENTAL RESULTS
	V. CONCLUSION AND FUTURE WORK
	REFERENCES

