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Abstract: Cloud computing is a model for convenient on-demand user’s access to changeable 
and configurable computing resources such as networks, servers, storage, applications, and 
services with minimal management of resources and service provider interaction. Task scheduling 
is regarded as a fundamental issue in cloud computing which aims at distributing the load on the 
different resources of a distributed system in order to optimize resource utilization and response 
time. In this paper, an optimization-based method for task scheduling is presented in order to 
improve the efficiency of cloud computing. In the proposed approach, three criteria for scheduling, 
including the task execution time, the task transfer time, and the cost of task execution have been 
considered. Our method not only reduces the execution time of the overall tasks but also minimizes 
the maximum time required for task execution. We employ the Multi-objective Non-dominated 
Sorting Genetic Algorithm (NSGA-II) for solving the scheduling problem. To evaluate the efficiency 
of the proposed method, a real cloud environment is simulated, and a similar method based on 
Multi-Objective Particle Swarm Optimization is applied. Experimental results show the superiority 
of our approach over the baseline technique.

Keywords: Cloud Computing, Task Scheduling, Multi-Objective Optimization, NSGA-II, Load 
Balancing.

I. INTRODUCTION

Cloud computing is a model for convenient 
on-demand user's access to changeable 

and configurable computing resources such 
as networks, servers, storage, applications, 
and services with minimal management of 
resources and service provider interaction [1]. 
The cloud environment consists of a group of 
servers that organize various resources and 
provide secure, reliable, fast and transparent 
services to the user. One of the most important 
problems in cloud computing is load balancing 
[2]. Load balancing means distributing loads 
between different nodes in a distributed 

system to improve resource utilization and 
response time. Load balancing techniques 
help to distribute the load on all nodes equally. 
In the absence of load balancing, a node may 
have many tasks and other nodes are idle. 
Load balancing results in high utilization of 
resources and user satisfaction, which in turn 
serves both cloud providers and users. The 
goals of load balancing include increasing 
efficiency, having a backup program in cases 
where the whole or part of the system fails, 
maintaining system stability, implementing 
future modifications in the system, and 
reducing energy consumption to name a 
few [3]. Load balancing can be considered 
as a four-stage decision-making process. 
These stages contain determining the task 
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migration time, determining the location of the 
task migration, determining which processor 
requests the migration, and specifying the tasks 
to be migrated.

Task scheduling algorithms in distributed 
systems generally intend to distribute the load on 
processors and maximize their utilization while 
reducing the tasks execution time [4]. In the cloud 
environment, the number of tasks, as well as the 
number of available resources can grow rapidly, 
especially when virtual resources are allocated. 
Calculating all possible task-resource mappings 
in the cloud environment, and then selecting 
the optimal mapping is not feasible because 
complexity grows exponentially with the number 
of tasks and resources. Fortunately, meta-heuristic 
algorithms ensures the efficient implementation 
of the scheduling algorithm, as they significantly 
reduce/limit the search space. There are several 
meta-heuristic algorithms such as genetic 
algorithm [5], genetic-fuzzy algorithm [6], multi-
objective genetic algorithm [7], particle swarm 
optimization [8] and ant colony optimization [9] 
for optimizing the load balancing. Generally, they 
follow two main objectives: 1) Minimizing the 
task execution time, and 2) Minimizing the task 
execution cost in the cloud environment.

The majority of the research works in this 
domain assume that the objective functions in 
a multi-objective task scheduling model are not 
in conflict with each other and they have the 
same tendency. Therefore, authors have used 
single-objective meta-heuristic algorithms to 
solve their optimization problem [10]. However, 
this is a not a completely valid assumption. 
Different objectives have various ranges for cost, 
which utilizing a single-objective algorithm for 
minimizing the overall cost may not consider 
all objectives to an equal extent. In this case, a 
possible solution can be optimum only regarding 
some dominant objectives. Besides, the existing 
optimization frameworks do not take into 
account all necessary aspects of the load balancing 
problem simultaneously. This may result in a task 
assignment that considers some perspectives 
such as task execution time while disregards 
other aspects like task transfer time.  

In this paper, we propose a method for 
optimizing the task scheduling to balance the load 
and improve the cloud productivity. The devised 
approach considers three factors including task 

execution time, task transfer time, and cost of 
the task execution in order to achieve the optimal 
task-resource mapping. In order to minimize the 
total task completion time, not only the total tasks 
execution time is reduced, but also the maximum 
total task execution time is minimized. Therefore, 
our method covers all necessary aspects of the 
scheduling problem to generate a solution that 
fulfills the entire objective set. We employ Non-
dominated Sorting Genetic Algorithm II (NSGA-
II) for solving the optimization problem. There 
are several reasons for this choice. Compared to 
Multi-Objective Particle Swarm Optimization 
(MOPSO), it has the mutation operator which 
prevents the algorithm to stick in the local 
optimum points. Moreover, the crowding 
distance operator in NSGA-II preserves the 
population diversity in the different generations 
which enhances the exploration of the algorithm, 
and accordingly increases the chance for finding 
the optimal solution. An effective multi-objective 
algorithm like NSGA-II considers every aspects 
of the optimization problem equally and produces 
a solution that is optimum with respect to each 
objective function.

The rest of the paper is organized as follows. 
In Section II we provide a review of existing 
load balancing techniques for cloud computing. 
Section III presents our proposed task scheduling 
framework. Simulation results and experiments 
are reported in Section VI. Finally, we conclude 
the paper in Section V. 

II. RELATED WORKS

So far, many algorithms have been proposed 
for load balancing in the cloud computing. In 
the following, we provide a review of the most 
successful approaches:

Active Clustering Algorithm: This 
algorithm works by grouping similar nodes [11]. 
A node starts the process and chooses a node 
different from the previous node among its valid 
neighbor nodes as the intermediate node. Then, 
the intermediate node creates a connection with 
the neighbor of the initial node type. Then the 
intermediate node interrupts the connection with 
the initial node. Above processes are repeated. 
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In this algorithm, the efficiency of the system 
increases with resources. As a result, throughput 
increases with these resources.

Bee colony Algorithm: This algorithm 
examines the load balancing in web servers 
based on increasing or decreasing demand [12]. 
Allocated servers dynamically customize user 
requests. These servers are grouped as virtual 
servers. Each virtual server has its own virtual 
queues. Each server calculates required benefits by 
processing a request from the queue. The amount 
of these benefits equals to the time consumed 
by the processor to process a request. The Bee 
dance section is similar to the bulletin board. It 
also uses this plane to declare the benefits of the 
entire colony. Each of these servers plays the role 
of a tracer or a watch. After processing a request, 
the server can send benefits to notice boards 
with the probability of rp. A server can select a 
queue from virtual servers with the probability 
of xp (xp represents the behavior of the tracer), 
or it can check the notifications (watching dance) 
and serve which in that case, demonstrates the 
behavior of the Scout. In order to serve a request, 
after calculating the benefits and comparing it 
with the total colony benefit, a server considers 
the value of xp for it. If these benefits were high, 
the server would remain on the same current 
virtual server and a notification is sent with a 
probability of rp. If the benefits are low, the server 
will take the role of scout or tracer. This method 
achieves the general load balancing through the 
activities of local servers. As system diversity 
increases, system performance increases. But 
operating power does not increase as system 
size increases. This algorithm is suitable where a 
variety of services are required.

Random Sampling: In this algorithm, a 
virtual graph is constructed in which each node 
(server as a node) has a connection to represent 
the server load [13]. In this graph, each server 
is directed to server free resources as a node of 
any degree. Whenever a node performs a task, 
that node is deleted from the input edges, which 
indicates that the access to resources is reduced 
and that resource is freed. After completing a task, 
the node creates an input edge, which indicates 
increased access to the free resource. Adding 
and deleting the process is conducted by random 

sampling. A neighbor is randomly selected at 
the beginning of the path in each node. The last 
node is selected for load allocation. There are also 
other ways to select the node for load allocation 
and specific criteria are used to select the node. 
However, the selection and allocation of load can 
be for low-load nodes. Finally, a directed graph 
is obtained. This method balances load across all 
system nodes. System efficiency increases with 
increasing the number of resources, resulting 
in increased throughput by increasing system 
resources. Here, the load balancing plan is 
completely decentralized, so it is suitable for large 
network systems such as cloud.

CARTON method: In order to control the 
application of load balancing and Distributed 
Rate Limiting (DRL), CARTON mechanism has 
been proposed for the cloud [14]. Load balancing 
is used to distribute tasks to different servers, 
so the corresponding costs can be reduced. 
Distributed Rate Limiting (DRL) is used to ensure 
that resources are distributed in a way that fairly 
distribution is preserved. This algorithm can be 
easily implemented with very low computing and 
communication overhead. A unified framework 
is where this algorithm is applied for cloud 
control. In this algorithm, the overhead and 
resources utilization are considered among the 
load balancing criteria.

Event-driven method: An event-driven load 
balancing algorithm is proposed for multiplayer 
online games [15]. After receiving capacity events 
as input, this algorithm analyzes its components 
in terms of the resources and the general state of 
the game's session. Consequently, load balancing 
activities generate a game session. This method is 
capable of reducing or increasing the scale of a 
game session on multiple resources based on the 
user variable load. However, there is an occasional 
lack of quality of service. In this algorithm, the 
resource utilization is considered as one of the 
load balancing criteria.

Server-based Load Balancing for Internet 
Distributed Services: A new service based load 
balancing policy is proposed for web servers 
distributed across the world [16]. This policy 
helps reduce service times by limiting the number 
of paths to a request to the closest remote server 
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without overloading them. A middleware is 
described for implementation of this protocol. 
Also, in order to withstand the load, it uses a 
metaheuristic method to help web servers.

Fuzzy logic: A cyclic turn-based load 
balancing algorithm is designed in virtual machine 
environments in cloud computing in order to 
achieve better response time and processing time 
[17]. The load balancing algorithm runs before the 
processing servers arrive. The task is scheduled 
based on various parameters such as processor 
speed and load allocated to the virtual machine. 
This algorithm keeps the information inside 
each virtual machine and the number of current 
requests allocated to the virtual machine of the 
system. When there is a task for allocation, this 
algorithm specifies a machine with a minimum 
load, and if there is more than one machine with 
this property, this algorithm determines the first 
machine. Researchers have tried to implement 
a new load balancing technique based on fuzzy 
logic. Since fuzzy logic is similar to natural 
language, it can formulate its own problems. 
In this architecture, the fuzzifier executes the 
process of fuzzification, which receives two types 
of input data, such as processor speed and load 
allocated to the virtual machine, and sends an 
output that is the same balanced load. This design 
takes into account the processor speed and virtual 
machine load as two input parameters in order to 
better balance the load in the cloud using fuzzy 
logic. These parameters are given as inputs to the 
fuzzifier mechanism, which are used to measure 
the balanced load as output. The two parameters of 
the processor speed and virtual machine allocated 
load are used together to evaluate the balanced 
load on cloud computing data centers through 
fuzzy logic. The results obtained by evaluating 
efficiency can achieve load balances by reducing 
processing time and improving response time, 
which results in maximum resource utilization. 
The processor speed and load allocated to the 
virtual machine for load balancing in cloud 
computing is applied through fuzzy logic.

Message-based Model: In this model, clusters 
provide the opportunity to use applications 
distributed by different computers across 
networks [18]. This issue is related to the clusters 
in the network performance, if the total load 

on the distribution network is distributed by a 
computer, it will slow down the network. In order 
to avoid this situation, resource management can 
use software criteria to distribute traffic between 
stations, so that network performance is preserved 
in a high probability. Web services are mainly 
used in instant messaging applications, which 
is a technology for real-time communications 
between different parties. However, the 
application's availability is important. In this 
algorithm, the response time and efficiency are 
considered as two load balancing criteria.

Min-Min Algorithm: This algorithm [19] 
starts with a set of unallocated tasks. First of all, 
the minimum total completion time is found. 
Then, the minimum value is selected among these 
minimum times which is the minimum time per 
resource. Then, according to the minimum time, 
task is scheduled on the corresponding machine. 
Afterwards, the runtime for all other tasks on the 
machine is updated by adding the running time 
of the allocated task to the execution time of the 
other tasks on the machine, and the allocated task 
is removed from the list of tasks allocated to the 
machine. The same procedure is followed up until 
all tasks are allocated to the resources. But, this has 
a major problem, which it can lead to starving. In 
this algorithm, the resource utilization, overhead, 
throughput, response time, and efficiency are 
considered as the load balancing criteria.

Min-Max Algorithm: The Min-Max 
algorithm is almost the same as the Min-
Min algorithm [20], except for the following: 
the maximum value is selected after finding 
minimal run times which is the maximum 
time per resource. Afterwards, according to the 
maximum time, the task is scheduled on the 
corresponding machine. Then, the runtime for 
all other tasks on the machine will be updated 
by adding the execution time of allocated task 
to the execution time of the other tasks on the 
machine and the allocated task is deleted from 
the list of tasks allocated to the machine. In this 
algorithm, as in the Min-Min algorithm, resource 
utilization, overhead, throughput, response time, 
and efficiency are considered as load balancing 
criteria.
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OLB + LBMM Two-stage load balancing 
algorithms: A two-stage scheduling algorithm 
has been suggested that the scheduling algorithms 
(OLB load balancing opportunity) and (LBMM 
load balancing) are used for better performance 
and maintaining the system load balancing [21]. 
The OLB scheduling algorithm keeps each node 
working in order to achieve the load balancing, 
and the LBMM scheduling algorithm is used to 
reduce the runtime of each task on the node, thus 
reducing the total runtime. The three-level cloud 
computing networks are where this algorithm 
is used, in which the efficiency and resource 
utilization criteria are considered. This combined 
algorithm helps for efficient resource utilization 
and increases throughput. This algorithm offers 
better results than Bee colony, random sampling, 
and active clustering algorithms.

 Queue-Idle-Join algorithm: This algorithm 
provides a large-scale load balancing with 
distributed distributors [22]. First, the load 
balancing is conducted to make each idle 
processor have access to any distributor, and then 
allocate tasks to the processors in order to reduce 
the average length of the queue of each processor. 
After task deletion from the critical paths of 
processing requests, this algorithm effectively 
reduces system load. No communication 
overhead occurs when the tasks arrive and does 
not increase the actual response time. Cloud data 
center is where this algorithm is used in which the 
efficiency, response time, and overhead criteria 
are considered.

Central load balancing policy for virtual 
machines: In this method, a central load 
balancing policy is proposed for virtual machines 
that balances load equally in a cloud computing 
or distributed virtual machines [23]. This policy 
increases overall system performance but does 
not consider systems that have an error tolerance. 
This method uses general state information for 
load balancing decisions and increases efficiency 
by more than 20%. Cloud computing is where 
this algorithm is used in which the efficiency 
and response time, throughput, and resource 
utilization are considered.

Distributed Scheduling Hill Climbing 
(DSHC): This paper proposes a dynamic 
scheduling algorithm that uses hill climbing 
algorithm [24]. It tries to minimize completion 
time of tasks while maximizing throughput and 
utilization of resources. This algorithm allocates 
independent tasks to available resources to 
achieve load balance. The simulation results show 
that the algorithm can achieve load balance and 
reduces completion time of tasks. 

III. PROPOSED METHOD

In general, task scheduling is considered 
as a solution to the load balancing problem in 
cloud computing. The most important issue in 
task scheduling is the formulation of scheduling 
objectives and the model being tested. More 
precisely, we must define equations that cover all 
the aspects of a scheduling problem and identify 
their goals well. Given that finding optimal 
mapping is subjected to the minimization of 
several different objectives, in this paper, the 
multi-objective NSGA-II is applied in order 
to find a solution that results in the minimal 
value for the three cost functions mentioned 
above. In the following, the formulation of three 
objective functions is defined, and details of 
the optimization algorithm are then presented. 
Finally, the routine and flowchart of the proposed 
method are expressed.

In order to formulate cost functions, the 
following variables and constraints are used:

- n: number of tasks
- T={t1, t2, …, tn}: The set of tasks in the waiting 

queue
- NPM: The number of physical machines in the 

cloud
- m: The number of virtual machines
- VMj: For a set of m virtual machines, VMj is 

the same as the jth virtual machine.
- VMz = {VMdz’th PM, zd{1, 2, …, NPM}}: 

The set of VMs allocated to the z’th PM.
- VMp = {VM|VM is allocated to p’th Cloud 

provider, Pd{1, 2, …, cp}}: The VMs that are 
allocated to the P’th cloud provider.

- Bck: Bandwidth between center and VMk
- cp: The number of cloud providers
- Ĉp: The maximum capacity for the p’th 

service provider in the cloud
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- DEik: The amount of data allocated by task i 
to VMk

- VMmk: VMk memory size
- VMck: VMk Capacity 
- Pcostj: The cost of a VM unit for the j’th 

provider (one dollar per hour)
- rp: The total number of VMs provided by the 

k provider which performs the tasks at the time 
interval pt.

- 𝑥𝑥�� ∈ �0,1�, �� � 1,� , ��������� � 1,� ,� 

-  

It is noteworthy that in the proposed method 
if task i is allocated to VMk, xik=1, otherwise xik=0.

The equation (1) to calculate the task 
execution time on a virtual machine k is used in 
the proposed method:

  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� ��𝑇𝑇�� � 𝐷𝐷𝐷𝐷��
𝑉𝑉𝑉𝑉𝑉𝑉� � 𝑉𝑉𝑉𝑉��

�

���
        (1)

Where Texek refers to task execution time on 
VMk.

Using equation (1), the total execution time is 
obtained by equation (2):

  

                             (2)

Also, in the proposed method, the task transfer 
time can be obtained using equation (3):

������ � ����� � 𝐷𝐷𝐷𝐷��
𝐵𝐵��

�

���

�

���
         (3)

The total execution cost for the cloud provider 
(one dollar per hour) is obtained using equation 
(4).

  

���� � ��𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� � �� � � � �����
�����

��
��

���
          (4)

Where rp is determined by equation (5):

𝑟𝑟� � � ���������, 1
�

���
�

�����
              (5)

After modeling the task scheduling problem, 
objectives must be specified. The desired 
objectives are runtime, transfer time, cloud 
provider cost, as defined by (6) - (8):

  
min 𝑓𝑓�𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� � 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� ���m������� 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸�� 

          (6)

min 𝑓𝑓�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� � 𝑇𝑇�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇        (7)

  
min 𝑓𝑓�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶� � 𝐶𝐶���                                  (8)

Optimization problems that have more than 
one objective function are common in many fields. 
In such cases, the objective functions naturally 
contradict each other. This means that there is 
no single solution for such issues. Therefore, the 
goal is to find solutions that make consistency 
and consensus between the objectives. A multi-
objective optimization problem is expressed in 
terms of equation (9):

 

min �⃗�𝐹��⃗� � �����⃗�� ����⃗�� � � ����⃗���    (9)

Where �⃗�𝑋 � �𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥��   is the vector of 

decision variables;  are 
objective functions. Assuming that the decision 
variable �⃗�𝑋 � �𝑥𝑥�, 𝑥𝑥�, … , 𝑥𝑥��  represents a 

solution. The solution �⃗�𝑋�  dominates the solution 

�⃗�𝑋�    if  𝑓𝑓���⃗�� � 𝑓𝑓���⃗��  for all   , 
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and 𝑓𝑓���⃗�� � 𝑓𝑓���⃗��  for at least one 

 . An acceptable solution �⃗�𝑋�  is a 

Pareto optimal (non-dominant) solution if there 
is no other acceptable solution  �⃗�𝑋�  that dominates 

it. The set of all objective vectors of ���⃗��  
corresponding to Pareto optimal solutions is 
called the Pareto front (P*). Therefore, the 
objective is to determine the optimal Pareto set 
from the set F of all decision variable vectors.

By adding two essential operators to a single-
objective genetic algorithm, this algorithm 
has been transformed into a multi-objective 
algorithm called Multi-objective NSGA-II [25], 
which a group of best solutions which is known as 
Pareto front instead of finding the best solution. 
These two operators are:

• An operator that assigns a ranking criterion 
based on the non-dominated sorting to members 
of the population.

• An operator that maintains the diversity 
among equal-ranking solutions.

Before the full description of this algorithm, it 
is necessary to explain the concept of domination, 
non-dominated sorting and the concept of 
maintenance of diversity in the solutions.

In a minimization problem with more than 
one objective function, X dominates Y if and only 
if Y is in no way better than X, and X is at least a 
strictly better than Y in at least one aspect. This 
concept is mathematically expressed by equation 
(10),

  

𝑋𝑋 � 𝑋𝑋�𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋� ⇔ ∀𝑖𝑖𝑖𝑋𝑋𝑋� � 𝑋𝑋� 𝑋𝑋𝑋∧ 𝑋𝑋𝑋∃𝑖𝑖�𝑖 𝑋𝑋𝑖𝑖� ≺ 𝑋𝑋𝑖𝑖� 

           (10)

When discussing a single-objective algorithm, 
the criterion of the superiority of solutions relative 
to each other is very simple and obvious. Because 
only one objective function is considered, and 
if the problem is a minimization problem, the 
solution that has the minimal value of the objective 
function is desirable and is superior to other 
solutions. But, when a multi-objective algorithm 

is used to solve a problem, it means that at least 
two objective functions are considered, and it is 
no longer possible to easily determine some of 
the solutions. In most cases, points are found 
that none is superior to the other, and cannot 
be compared using the concept of domination. 
Therefore, in order to obtain the best solutions, 
they should be sorted according to a certain 
standard. In this algorithm, a Rank is assigned 
to each solution, which is based on the number 
of dominations compared to the other points. At 
the end of the algorithm, the points with the best 
rank, that is 1, are selected as the set of solutions 
or points of the Pareto front. This is described 
in Fig. 1, which is an example of a minimization 
problem with two objective functions.

As shown in Fig. 1, the number of points in 
the space for each possible solution is specified, 
each of which has two values of F1 and F2 for 
the objective function. Here, point 3 is checked 
compared to other points. Point 3 is superior 
to all points in space A. That is, F1 and F2 for 
this point are less than F1 and F2 for all points 
on plane A. So this point always dominates the 
points on plane A. Also, all points in space C are 
superior to point 3. That is, the F1 and F2 are 
lower for these points than F1 and F2 for point 3. 
So point 3 is always dominated by points in space 
C. For example, point 3 dominates point 6 and 
is dominated by points in space A. However, it 
cannot be directly judged as to the position of the 
superiority or non-superiority of points in space 
B and D relative to point 3. Because the points 
on plane B are better than 3 in terms of F1 and 
worse in terms of the F2, also for the points in the 
space D, they are better in F2 than F1. So in this 
direct comparison, one cannot say which point 
dominates the other. In such cases, the presence 
of other members of the population is used to 
judge. First, let assume that there is no point in 
space C. We want to make a comparison between 
points 3 and point 2 in space B. As noted, each 
has a better situation and a worse situation. In 
this situation, we must see if there is another point 
that is better than both of these points. Point 1 is 
better than point 2, then point 1 dominates points 
2, but there is no point that is better than point 
3 in both functions. Point 2 was then dominated 
by other members of the population, but point 3 
has never been dominated. As a result, between 
these two points point 3has a better situation. 



Hanieh Ghorashi. et al./ An Effective Task Scheduling Framework for Cloud Computing using NSGA-II.

162                     J. ADV COMP ENG TECHNOL, 6(3) Summer 2020

For points 4 and 3, the situation is the same. That 
is, point 4 is dominated by point 5, but point 3 
is not dominated by any point. So Point 3 is 
better than point 4. But for points 1 and 5, we 
cannot comment on point 3 because they are not 
dominated by any point, and each has superiority 
and non-superiority over each other. So points 1, 
5 and 3, which have never been dominated and 
ranked 1, are part of the Pareto Front.

 

 
Fig. 1. Some points of the solution space of a hypothetical 

problem [25].

A remarkable point is that it is sometimes 
necessary to compare the members of a set 
with the same rank and some of them should 
be deleted. This is done using the concept of 
maintenance of the diversity of solutions. This 
means that, in deleting multiple members of a 
set, it tries to act in such a way that the set has 
a solution from each interval regularly. This is 
illustrated by an example.

Suppose that the points in Fig. 2 belong to the 
same rank set. It is necessary to remove a point 
from these points. Therefore, we try to select 
that point so that the diversity of solutions is 
maintained to some extent. For example, between 
points 3 and 5, point 3 is a better choice for 
deletion. Because, by deleting the point 5, there is 
no representative solution in the large interval of 
the F1 and F2 axes, respectively, that is between 
d and g and between n and p. But, if point 2 is 
selected for deletion, the solutions diversity does 
not diminish, because there are other solutions 
near this point.

 

 
Fig. 2. The hypothetical points related to a set with an 

equal rank [25].

 
Fig. 3. Operators in the stage of solutions selection in the 

multi-objective NSGA-II [25]

The reason for application of these two 
operators in the multi-objective NSGA-II refers 
to the selection stage that some chromosomes 
should be selected from parents and children's 
chromosomes to begin the next stage and remove 
some of the solutions. This algorithm can be 
described in Fig. 3.

As shown in Fig. 3, the Pt+1 members should 
be selected from the Pt ∪ Qt members based on 
their rank and the rest should be eliminated. As 
shown in Figure 3, members with ranks 1 and 2 
are all selected, but for members with a rank 3, 
some are deleted and the rest must be selected. 
As is evident, they all have the same rank and 
another criterion must be applied for selection, 
which is the same criterion for maintenance of 
the diversity of solutions. The operator of this 
stage is known as the Crowding distance. The 
concept of this operator is described above and 
its mathematical expression for point i in a two-
objective problem is given in Fig. 4 as follows.
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𝑑𝑑�� �
�𝑓𝑓���� � 𝑓𝑓�����
𝑓𝑓���� � 𝑓𝑓����                            (11)

  

𝑑𝑑�� � �𝑓𝑓���� � 𝑓𝑓�����
𝑓𝑓���� � 𝑓𝑓����                          (12)

                                      (13)

In equations (11) - (13), the values of 
𝑓𝑓���� ، 𝑓𝑓����،𝑓𝑓���� ، 𝑓𝑓����،𝑓𝑓���� ، 𝑓𝑓����،𝑓𝑓����  are specified in 

Fig. 4, and   is the ratio of the region corresponding 
to the domain of point i to the whole area of the 
objective function f1, and  𝑑𝑑��  is the ratio of the 

region to the domain of the same point to The 
whole region of the objective function f2, and D, 
which is the sum of these two ratios, represents an 
index of the general domain of this point, which 
is called the Crowding distance. Therefore, if a 
point has a greater crowding distance, it will cover 
a greater range and its elimination will result in 
the loss of solution diversity across a wide range 
of solutions. Therefore, the points of the set of 
solutions with a rank of 3 that have lower 
crowding distance should be eliminated so that 
the initial population is kept constant. Also, the 
points of the beginning and end of this set are 
important points that must exist between the 
solutions and should not be eliminated. The above 
equation can be generalized for each problem 
with several objective functions.

As described in the multi-objective genetic 
algorithm, the difference between this algorithm 
and the single-objective genetic algorithm is in 
the selection stage for the parents and children 
in order to maintain the number of population 
at the beginning of each cycle [26]. Therefore, 
the implementation steps of a multi-objective 
NSGA for the task scheduling problem in cloud 
computing is illustrated in the flowchart of Figure 
5. In the following, we describe each step in detail.

 
Fig. 5. Multi-objective NSGA-II Flowchart for the 

proposed method.
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Step 1: A specific number of chromosomes 
is created as the initial population. In this step, 
chromosomes with a length equal to the number 
of tasks (each task represents a gene) are randomly 
defined which each gene takes a value based on 
the number of the virtual machine in the cloud 
provider.

Step 2: Then, the cost associated with each of 
the chromosomes is determined by the objective 
functions defined in equations (6) - (8). Since 
three objective functions are considered at each 
stage, after each allocation three values are 
obtained for each chromosome that refers to the 
cost of the chromosome with respect to the three 
objective functions.

Step 3: In most cases, there are points that 
have no superiority over each other and cannot 
be compared with the concept of domination. 
Therefore, in order to get the best solution, 
they should be sorted according to a certain 
standard. In this algorithm, a rank is assigned to 
each solution which is based on the number of 
dominations over the other points. At the end of 
the algorithm, the points with the best rank (i.e., 
1) are selected as the set of solutions or points of 
the Pareto front.

Step 4: After determining the cost for all 
chromosomes, some of them are randomly 
selected for the production of children. Then, 
for the crossover operator, two parents must be 
selected at each stage. Here, one-point crossover 
is used. So that a point is randomly selected in 
the chromosomes and the two chromosomes 
are swapped based on that location. Some of 
the offspring generated after the crossover 
are selected for the mutation operation. The 
mutation operation is very useful for escaping 
from trapping in a local optimum. Of course, it 
is necessary to select the mutation rate correctly. 
The mutation operation is performed in a way 
that first a chromosome is randomly selected for 
the operation. Then, one of the genes is selected 
and its value is randomly changed.

Step 5: At this step, the initial population, the 
population derived from the crossover and the 
mutation are combined and form a larger 2N 
population.

Step 6: After combining the populations, 
chromosomes’ fitness is calculated based on the 
three defined cost functions. At this point, some 

parents and children should be eliminated so 
that the number of the main population remains 
constant. Therefore, first, the total population is 
sorted according to the rank, and then, according 
to the crowding distance, a specific number of the 
individuals with a better situation in terms of the 
rank and the crowding distance are selected and 
the rest will be removed so that the number of the 
main population stays constant and the algorithm 
continues as before.

Step 7: If the termination criterion is met 
(the number of iterations), the algorithm ends, 
otherwise it will enter the next cycle.

IV. EXPERIMENTAL RESULTS

In this section, the proposed method is 
tested and evaluated. In order to ensure the 
efficiency of the proposed method, the results 
are compared with the multi-objective particle 
swarm optimization algorithm introduced in 
[27]. The tests were carried out in MATLAB 
simulation environment on a system with a 2.4 
GHz Processor and 4GB RAM.

In order to simulate the proposed algorithm, an 
environment is designed with 3 cloud providers, 
5 virtual machines (VMs), and 10 tasks. It is 
assumed that each virtual machine belongs to a 
provider. Also, the maximum capacity of each 
provider, the cost of a virtual machine unit for 
each provider, the number of virtual machines 
allocated to each provider, and the set of virtual 
machines allocated to each provider varies in 
each run.

Data and information on virtual machines is 
presented in Table I. The number of tasks used 
in the tests is 100, each with a length of {25000, 
250000}, a file size of 300, and random output size 
of 300 which are randomly generated.

 
TABLE I

VIRTUAL MACHINE PROPERTIES
 VM's 

Number 
MIPS Image 

size 
Memory Bandwidth Number 

of CPUS 
1 256 10000 512 10000 4 
2 300 1000 256 1000 1 
3 256 1000 512 10000 2 
4 256 1000 512 1000 1 
5 256 100 256 10 1 
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The parameters of the multi-objective NSGA-
II have a direct impact on the algorithm's efficiency 
and computation time. Through multiple tests, the 
best value for the parameters of the algorithm was 
obtained in accordance with Table II. By adjusting 
the algorithm to the obtained values, the balance 
between the convergence rate and the minimized 
cost is established and as a result, the solution is 
near-optimum in terms of the execution cost and 
the execution time. 

TABLE II
MULTI-OBJECTIVE NSGA II PARAMETERS

Mutation 
rate 

Crossover 
rate 

Number of 
population 

Maximum 
iteration 

Parameter 

0.4 0.7 20 100 value 
 

The execution time, the transfer time, and 
the execution cost plots are shown in Figures 
6-8, respectively. The horizontal axis represents 
iteration and the vertical axis represents the 
time or the cost. Also, the final values of the 
cost functions are summarized in Table III for 
a precise representation of the output of the 
proposed method.

 

 
Fig. 6. Total task execution time.

Given the results obtained as well as the 
statistical values summarized in Table III, we 
can conclude that the proposed method, i.e. 
multi-objective NSGA-II is well suited for 
allocating tasks to virtual machines. So that the 
minimum values are 112.46 for execution time, 
2410 for transfer time and 242.94 for execution 
cost. Considering the results, it is clear that the 

proposed method is far better than the Multi-
objective particle swarm optimization algorithm 
with a lower cost at each iteration. Therefore, it 
can be said that the proposed method has good 
stability. The uniformity of execution in iterations 
of the algorithm indicates the stability of the 
proposed approach.

 

 
Fig. 7. Total task transfer time.

 

 
Fig. 8. The total task execution cost.

TABLE III
FINAL VALUES FOR THE OBJECTIVES OF THE 

FRAMEWORK
Execution 

time 
Transfer 

time 
Execution 

cost 
 

120.17 3400 308.3 MOPSO 
112.46 2410 242.94 NSGA II 
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V. CONCLUSION AND FUTURE WORK

In this paper, we presented a multi-objective 
optimization approach for improving the task 
scheduling efficiency in the cloud computing. We 
considered several aspects of the task scheduling 
problem in the form of objective functions. 
The state-of-the-art works usually assume the 
objectives in the task scheduling problem have the 
same tendency, and therefore, proposed a single-
objective solution for the problem. However, we 
demonstrated the objectives are in conflict with 
each other, which demand a multi-objective 
optimization algorithm to establish a trade-off 
between them. So, we proposed a framework 
consisted of three objectives called Execution 
Time, Transfer Time, and Cost, and applied the 
NSGA-II evolutionary algorithm to find the 
best scheduling assignment for the given tasks. 
The obtained results are promising compared 
to the baseline, an efficient multi-objective task 
scheduling algorithm based on MOPSO. Our 
algorithm showed a stable performance with a 
significant amount of efficiency. In future work, 
we will study the performance of our approach 
with respect to scalability.
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