
 J. ADV COMP ENG TECHNOL, 6(2) Spring 2020

 This work is licensed under the Creative Commons Attribution 4.0 International Licence.

To view a copy o this licence, visit https://creativecommons.org/licenses/by/4.0/

Using a Neural Network instead of IKM in 2R
Planar Robot to follow a rectangular path

First A. Ali Ahmad Ali1

1- Mechatronics , Mechanical and Electrical Engineering , Tishreen University , Lattakia , Syria.
(ali.ali.journals@gmail.com)

Received (2019-09-23) Accepted (2020-04-12)

Abstract: An educational platform is presented here for the beginner students in the Simulation
and Artificial Intelligence sciences. It provides with a start point of building and simulation of the
manipulators, especially of 2R planar Robot. It also displays a method to replace the inverse
kinematic model (IKM) of the Robot with a simpler one, by using a Multi-Layer Perceptron Neural
Network (MLP-NN), to make the end-effector able to track a specific path, which has a rectangular
shape (in this article), and allocated in the robot's workspace. The method is based on Back-
Propagation Levenberg Marquardt algorithm. This paper also suggests a good strategy for the
simulation of the robot's motion in Matlab to tell the beginners how the operation could be done
quite closely to the built-in Matlab functions. The control part was ignored here for the simplicity.
So we can classify this paper as a manual in the robotic world.

Keywords: Back-Propagation(BP), Denavit Hartenberg (DH), Direct Kinematic Model (DKM),
Inverse Kinematic Model (IKM), Neural Network (NN).

I. INTRODUCTION

With the development of the robotic
sciences, the importance and exciting

of robots have grown up day by day. We can
provide them with an Artificial Intelligence
techniques to be able to mimic the human's
performance in many fields such as industry,
agriculture, domestic robots, etc. [2, 1, 3].
They can be a big assistance for the person
in his daily life. One common type of those
manipulators is 2R planar robot. It has two
links (i.e. two degrees of freedom). Actually
it is very similar to the human arm, but this
robotic arm works only in 2D plane, it can also
be used as a plotter machine in some cases
[4]. This work splits into two main sections:
Simulation, and the robot's IKM solution
based on a Neural Network. The results of, and

the used figures and tables in this manual are
exited in sections five and six respectively. The
seventh section is specified for conclusions. In
other words this article could be a useful tool
especially for the students in mechatronics
and robotic departments.

II. RELATED WORKS

In April 1991 , Stuart Kieffer, Vassilios
Morellas and Max Donath published their
paper : "Neural Network Learning of the
Inverse Kinematics Relationships for a
Robot Arm", in which a Widrow-Hoff based
Kohonen's (SOM) neural network is learnt the
inverse kinematic model of a 2 DOF robotic
arm , and the results show that the suggested
approximation is indeed successful [6].

In 2007 "Simulation of Robotic Arm using

How to cite this article:
First A. Ali Ahmad Ali. Using a Neural Network instead of IKM in 2R Planar Robot to follow a rectangular path. J. ADV COMP
ENG TECHNOL, 6(2) Spring 2020 : 71-78

https://creativecommons.org/licenses/by/4.0/

First A. Ali Ahmad Ali./ Using a Neural Network instead of IKM in 2R Planar Robot to follow a rectangular path

72 J. ADV COMP ENG TECHNOL, 6(2) Spring 2020

Genetic Algorithm & AHP" article suggested a
method to reduce the cost of a 3 DOF robotic arm's
motion using Genetic Algorithm and Analytical
Hierarchy Process by V. K. Banga, Y. Singh, and
R. Kumar. This paper simulated and tested the
inverse kinematics, fitness value evaluation and
binary encoding like tasks . Movement, friction
and least settling time (or min. vibration) are
used for finding the fitness function / fitness
values [7].

Wong Guan Hao, Yap Yee Leck and Lim
Chot Hun edited their paper "6-Dof pc-based
robotic arm (PC-ROBOARM) with efficient
trajectory planning and speed control" in 2011
, which introduces the design and development
of 6-DOF (degree of freedom) PC-Based Robotic
Arm (PC-ROBOARM) . The robotic arm design
and control solution is implemented by self-
developed computer software which is called
SMART ARM . It allows user to model or design
virtual robotic arm before building the real one.
Therefore, the user can estimate the optimum
size of actual robotic arm at the beginning so
as to minimize the building cost and suite the
practical environment. Furthermore, once the
actual robotic arm has been built, the user can
reuse the software to control the actual robotic
arm in an effortless way without wasting time in
constructing new control solution [8].

A novel learning-based multiscale modelling
approach is proposed in [5] to address the
efficiency and accuracy issues through a
combination of models with different levels
of fidelity. Specifically, low-fidelity models are
formulated using the Kernel Ridge Regression
(KRR), which has a much lower computational
cost compared with kinematic approximation
models. Additionally, in order to eliminate
position singularity of a serial manipulator, high-
fidelity models are based on the Long Short Term
Memory (LSTM) neural network are also created
to calibrate fidelity by training the significant
fidelity samples.

III. SIMULATION OF THE ROBOTIC ARM

1. The Model of The Arm
In this section, the model of the robot is built.

Firstly, we establish the joint coordinates frames.
Frame(0) is for the first link and it is allocated

exactly at the center of the joint one. Frame(1) is
of the second link, and it is centered exactly at the
joint two. Frame(2) is centered at the grip joint.
According to the right-hand rule we can conclude
that Z0, Z1 and Z2 axes are perpendicular on
(X0-Y0), (X1-Y1) and (X2-Y2) planes, outside of
the paper. So the frames of the robot will be like
those in figure (1).

Secondly, We need to fill the DH Parameters
Table (Look at table 1), Where:

ai: is the distance between Zi-1 and Zi axes
along Xi axes.

αi: is the angle between Zi-1 and Zi axes along
Xi axes.

di: is the distance between Xi-1 and Xi axes
along Zi-1 axes.

Ѳi: is the angle between Xi-1 and Xi axes along
Zi-1 axes.

Thirdly, we write DH Transformation Matrix:

Ti
i-1 = Rotz , Ѳi .Trans z , di .Trans x , ai . Rotx , αi [9]

1000
0

...

...

1
iii

ii

iiiii

i
i

dCS
SaSCCCS
CaSSCSC

T iiiii

ii

 (1)

1000
0100
.0
.0

1111

1111

1
0

SLCS
CLSC

T (2)

1000
0100
.0
.0

2222

2222

2
1

SLCS
CLSC

T (3)

2
1

1
0

2
0 TTT (4)

1000
0100

..0
..0

111221212

111221212

2
0

SLSLCS
CLCLSC

T

 (5)

First A. Ali Ahmad Ali./ Using a Neural Network instead of IKM in 2R Planar Robot to follow a rectangular path

 J. ADV COMP ENG TECHNOL, 6(2) Spring 2020 73

Where:
C1 = Cos(Ѳ1), S2= Sin(Ѳ2),
C12 = Cos (Ѳ1+Ѳ2), S12 = Sin (Ѳ1+Ѳ2).

2. The Direct Kinematic Model of The Robot
DKM is used to calculate the (X-Y-Z)

coordinates of the grip depending on the values
of the links angles. From the last column in (5),
we obtain:

X = L1.cos(θ1) + L2.cos(θ1+ θ2) (6)
Y = L1.sin(θ1) + L2.sin(θ1+ θ2) (7)
Z = 0 (8)

Those three equations form " Direct Kinematic
Model of Two-link planar manipulator (DKM) ".

From (5) , The Rotation Matrix is:

ZzYzXz
ZyYyXy
ZxYxXx

CS
SC

R
100
0
0

1212

1212

 (9)

Euler Parameters [9]:

If Zz ≠ ±1, then
 Θ = acos(Zz) (10)
 Φ = atan2 (Zx,-Zy) (11)
 Ψ = atan2(Xz ,Yz) (12)

Roll – Pitch – Yaw Parameters [9] :

β = atan2(‐Xz,± �𝑋𝑋𝑋𝑋� � 𝑋𝑋��) (13)

If β ≠ ± π/2, then
 α = atan2(Xy ,Xx) (14)
 γ = atan2(Yz ,Zz) (15)

3. The Inverse Kinematic Model of The Robot
IKM is used to calculate the links angles

depending on the values of (X-Y-Z) coordinates.
From (6) and (7), we can generate Ѳ1 and Ѳ2
equations:

(6)2 + (7)2 =

X2 + Y2 = 𝐿𝐿𝐿� � 𝐿𝐿�� � �� 𝐿𝐿𝐿� 𝐿𝐿� � ��� ����

So:

������2� � 𝑋𝑋� � ��� � �𝐿𝐿𝐿� � �𝐿𝐿2�
2𝐿𝐿𝐿𝐿 𝐿𝐿2 (16)

It is a standard formula of a trigonometric
equation of the form:

cos�𝜃𝜃𝜃� � �
We can solve it as the follow:

 (17)

After calculating Ѳ2 values, we replace Ѳ2 in
(7):

Y = L2.sin(θ2).cos(θ1) + (l1+L2. cos(θ2)).sin(θ1)
Y = a . cos(θ1) + b . sin(θ1) (18)

We can solve it as the following:

�� � 𝑎𝑎�𝑎𝑎�� ��� � � ��𝑎𝑎� � �� � ���� � 𝑎𝑎�𝑎𝑎���𝑎𝑎� �� (19)

That was the basic model of the 2R planar
robot. It contains DKM in which we know the
values of the links' angles and then we conclude
the (X-Y-Z) Coordinates of the grip, and there is
IKM in which we know the (X-Y-Z) Coordinates
and we want to calculate the angles of the two
links.

4. Simulation Algorithm
In this section the simulation of the 2R Planar

Robot is presented using basic programming
instructions. I need to design a function to
determine the workspace of the robot. It just
takes the lengths (l1 and l2) of the links, and
returns two circles where the workspace of the
robot is between them, Fig (3). Next there is a
function used to calculate the T02 matrix called
"total_Tran". Another one called "Tran" is used to
calculate T01 and T12 matrices respectively.

Next, two functions called: "Euler" and
"R_P_Y" are designed to calculate Euler and
Roll-Pitch-Yaw parameters. From (9) we can
note that Zz equals to (1). So (Theta = 0) and

First A. Ali Ahmad Ali./ Using a Neural Network instead of IKM in 2R Planar Robot to follow a rectangular path

74 J. ADV COMP ENG TECHNOL, 6(2) Spring 2020

(Phi=Psi=Nan) in all cases.
Now it is necessary to show the motion of

the robot. Hence I suggest a method to animate
this motion Depending on the successive image
display (image by image). The animation steps
of the link one will be explained reaching to a
defined point in the workspace, and the other
link uses the same steps. First, the whole rotation
angle of the link one is acquired (Ѳ1) in radian,
then it is segmented into smaller angles each
segment is equaled to (t1) therefore, a step value
for the motion should be defined in advance – the
step value will be better if it is as small as possible
to make the animation process smooth – . At each
segment/frame the position of the second joint
should be calculated using "Tran" function which
has two parameters (the updated frame angle,
and the fixed length of the first link), Note that
"Tran" function gets the updated angle (angle of
previous frame plus the step t1) towards the goal
point.

This method is good if the arm moves from
the origin point to another one counterclockwise,
but if we want to move the arm in a clockwise
direction, then we should subtract the step (t1)
from the previous frame angle. So, for one link
there are two cases of motion (CW and CCW),
but there will be four possible cases for two links:
(Look at table 2).

The second link animation is done by the
same algorithm. It should be mentioned that
the number of segments/ frames of the total
animation is determined by the maximum
integer number of the frames of both links. You
can see the animation algorithm box diagram in
figure (2) .

In this section the algorithm used to simulate
the 2R Planar Robot is designed and explained.

IV. THE ARCHITECTURE OF THE
NEURAL NETWORK

Now, I will illustrate how to build the neural
network used in the application of this article.
I suppose the path we want to follow has a
rectangular shape. we should mention that the
path must be allocated in the workspace of the
Robot, else the Robot may face singularity cases.
I use a Multi-Layer Perceptron (MLP), and Back
Propagation algorithm (BP) to train the network.

The main purpose of using the Neural Network
in this manual is: controlling of the end effector
to follow a specific path without using IKM or
even DKM. This thing is important for the Robot
controlling process, because of the grip can follow
any path regardless of the mathematical formula
of that path, it just needs to detect the sample
points from the path using some sensors for one
time. And the most exciting thing is: anyone can
control the grip even if he/ she does not have any
mathematical background of trigonometric and
mathematical equations, he just should move the
end effector on the specific path for the first one,
and lets the rest of the operation to the neural
network.

Designing steps of the NN are:
1) Choosing of training patterns.
2) Determining the number of Inputs and

outputs of the network and Identifying them.
3) Specifying the number of hidden layers

neurons.
4) Choosing of the transfer functions used in

the NN.

1. Choosing of training patterns
Training samples are some points acquired

from the rectangular path. The whole sample
points number is equaled to (QW = 148 points), I
will separate them into two groups, the first one
is called "Training Group" , it contains (80.405%)
of QW (i.e. QT = 119 points) and the second
one is called "Generalization Group", it contains
(19.595%) of QW (i.e. QG = 29 points). This group
is used to test the NN's ability to generalize. We
can choose the elements of QT and QG groups
as the following: (starting from the first element
in QW Group, then counting four elements of it.
Put all of the last elements in the QT Group, then
Put the fifth element in the QG Group. Repeat the
same steps until reaching to the final element in
the QW).

2. Determining the number of inputs and
outputs of the NN and identifying them

Since we want to replace the IKM of the Robot
by NN, so the inputs of the network are (X ,Y ,Z)
coordinates of the sample points, and the outputs
are the rotation angles of both links (Ѳ1, Ѳ2). I will
ignore Z coordinates, because it is always equaled
to zero. Hence the number of the NN's inputs is
two, and the number of the NN's outputs is also

First A. Ali Ahmad Ali./ Using a Neural Network instead of IKM in 2R Planar Robot to follow a rectangular path

 J. ADV COMP ENG TECHNOL, 6(2) Spring 2020 75

two.

3. Specifying the number of hidden layer
neurons

Actually it is an experimental issue, depending
on trial and error, but there is a constraint should
not be exceeded. It is about the Generalization
problem which is: "the parameters of the NN
should be equal to or even smaller than the
training patterns QT" [10] .

I depend on this rule to limit the hidden
layer neurons number. In this article, I use three
layers (Input – Hidden – Output) for the NN.
The parameters number of the NN is distributed
as the following: In the first layer there are two
inputs (i.e. R=2). In the Hidden layer there are S1
neurons and b1 biases (one bias for each neuron).
Finally in the output layer there are two neurons
(S2 = 2), and also two bias (b2 = 2). The parameters
of the NN involves the weights and biases used in
the network. The weight matrix between the input
and hidden layers has a [S1. R] size. The biases
of the hidden layer has a [S1.1] size. The weight
matrix between the hidden and output layers has
a [S2.S1] size. The biases of the output layer has a
[S2.1] size,

Here is the previous constraint mathematical
expression:

W1 + b1 + W2 + b2 ≤ QT (20)
[S1.R] + [S1.1] + [S2.S1] + [S2.1] ≤ 119
2.S1 + S1 + 2.S1 + 2 ≤ 119
So : S1 ≤ 23 (21)

I tried multiple scenarios by changing S1 and
epoch values, and the results are illustrated in the
figure (4) representing the relationship between
Ѳ1 and Ѳ2 at the same inputs. The blue color in
that figure refers to desired output of the NN, the
red one refers to the actual output of the network,
and the black one represents the NN response
to the generalization group elements (testing
points).

We can note in figure (4), that all the scenarios
have a hidden neurons number less than (23). It
is also obvious that the best result from the same
figure is (d). which have only one big error.

At the upper left corner of figure (4) we
have scenario(a), in which (S1=10 neurons,
epochs=1,000). On the right of (a) sub-figure
there is the scenario(b), in which (S1 = 10

neurons, epochs = 50,000); (c): (S1 = 10 neurons,
epochs = 1,000,000); and so on.

We continue the same method until we reach
to an acceptable result. I choose this one: (S1 = 11,
and epochs = 50,000).

4. Choosing the transfer functions used in the
NN

We can conclude that our problem is a function
approximation matter. In figure (4) we have a blue
curve presenting one function (the relationship
between Ѳ1 and Ѳ2), and we want to make the
neural network converge it. Actually, "we can
converge any function using Back Propagated
based Neural Network contains one hidden layer
with sigmoid transfer function, and one output
layer with linear transfer function, if there are
enough neurons in the hidden layer" [10] . So
that, the hidden transfer function is sigmoid:

𝒇𝒇�𝒏𝒏� � � 𝟏𝟏
𝟏𝟏 � ��𝒏𝒏 (22)

And the output transfer function is linear:

𝒇𝒇�𝒏𝒏� � 𝒏𝒏 (23)

V. THE RESULTS

To speed up the convergence process I
used Levenberg Marquardt method by using
"trainlm" function in Matlab with initial value
of µ = 0.001, and the last value of µ is 1.00e-07
[10]. The performance function is Mean Squared
Error (the goal error=0, the actual performance=
1.90e-05), train time = 0:00:01, iterations = 244,
Gradient =0.00221, cost of the NN-based solution
of Robot's IKM is 2.047888s. We should tell about
one more thing: since the robot displays only one
solution for IKM in all cases, so if Ѳ1 is equal
to or even smaller than (180o), the link (1) will
rotate counter clockwise CCS, but if Ѳ1 is bigger
than (180o), the link will rotate with clock wise
CS. To avoid that reflection especially when the
robot follows a continues path, I add (+360o) to
the value of Ѳ1 angle if it is more than (180o); (i.e.
I use the complementary of Ѳ1 to 3600 when the
angle/ rotation is negative).

First A. Ali Ahmad Ali./ Using a Neural Network instead of IKM in 2R Planar Robot to follow a rectangular path

76 J. ADV COMP ENG TECHNOL, 6(2) Spring 2020

System setup: (Intel® Core™2 Duo CPU T6500
@ 2.10 GHZ – RAM 4GB – Windows 64 bits),
Matlab version: (R2016a).

The training process produced these values
for the parameters of the NN:

1.5949-1.7696
 3.59543.9916-

1.73122.6133-
5.62924.1951
2.5262.8344-
6.51164.6931

 0.27999 1.4341
2.2423-10.9511-

1.605 0.56371
3.86-19.8769-

 2.4519 44.7945

1W

T

W

7.3821.1154-
1.2515-1.0744-

1.16646.1304
0.064457-2.0416-
2.5575-4.875-

0.0648661.4487
11.7411-4.9961
0.082484-0.39188

9.3342 0.075889-
 0.287487.6798

0.1287820.4074

2

3.5222
2.7754-
0.45523-

1.3632
0.29026
1.4264

1.9259-
10.0613
2.0273
25.0821

 48.9365-

1b

10.8979-
 5819 7.-2b

VI. FIGURES AND TABLES

Figure (3) shows the final application Graphical
User Interface and DKM of the two-link Planar
manipulator. You can see the workspace of the
Robot between two red circles. We type the values
of Ѳ1 and Ѳ2, then the application calculates the
X-Y-Z coordinates. You can also note that the
application calculates both of Euler and R-P-Y
parameters, as expected (Teta = 0) and (Phi = Psi
= NaN) in all cases.

Figure (5) shows the grip of the Robot
following a rectangular blue path; We can note how
accurate the result is. The approximation result of
the training process with (S1 = 11 neurons in the
hidden layer, and epochs = 50,000) is illustrated
in figure (6). We can note that the convergence is
acceptable. Figure (7) shows the end effector of
the Robot following the same specific rectangular
path using the neural network.

VII. CONCLUSIONS

This work is a manual for the students. It
shows the IKM solution using a neural network
trained by Levenberg Marquardt algorithm. It
also suggests a practical method to simulate the
motion of the 2R Planar Robot with Programming
from scratch. The controlling results of the grip
with and without IKM are largely Identical. We
saw some acceptable aliasing in NN result in fig.
(7), while the IKM result is so straight fig. (5).
Using NN instead of IKM makes the following
task easier regardless the mathematical formula
of the path, or even the student's mathematical
background, but it costs more time than IKM
(2.047888s for NN vs. 0.676140s for IKM). The
used NN is valid only for the last rectangular path,
but if we want to use another path, we should take
a new sample points from it, and repeat the same
stages to train the NN again.

ACKNOWLEDGMENT
“F. A. Ali thanks both of Dr. Tammam haydar

(Tishreen university) for his supervision to
create this work, and Dr. Fadi Motawej (Tishreen
university) for his supportive efforts to review
this work before submission.”

First A. Ali Ahmad Ali./ Using a Neural Network instead of IKM in 2R Planar Robot to follow a rectangular path

 J. ADV COMP ENG TECHNOL, 6(2) Spring 2020 77

Fig. 2. The animation algorithm.

Fig. 3. The DKM of the 2R Robot in the final application.

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

Fig . 4. Using trial and error to detect the number of the
hidden neurons. [o: training, +: generalization, o: target]
patterns.

Fig. 5. The rectangular path followed by the end effector
of the manipulator using IKM.

Fig. 6. The Convergence final result (the relationship
between Ѳ1 and Ѳ2).
* Horizontal axes is Ѳ1, and Vertical axes is Ѳ2.

Fig. 7. Tracking a rectangular Path using the NN.

TABLE I
DENAVIT HARTENBERG PARAMETERS

Link
ai αi di Ѳi

1 L1 0 0 Ѳ1
*

2 L2 0 0 Ѳ2
*

First A. Ali Ahmad Ali./ Using a Neural Network instead of IKM in 2R Planar Robot to follow a rectangular path

78 J. ADV COMP ENG TECHNOL, 6(2) Spring 2020

TABLE II

POSSIBLE ROTATION DIRECTIONS FOR
TWO LINKS

L1 's

motion
L2 's

motion
CW
CW

CCW
CCW

CW
CCW
CW

CCW

VIII. REFERENCES

1. Dorsey, N. Top 5 Robotic Systems to Watch in
Agriculture. 2018 [cited 2019 19 September]; Available
from: https://www.precisionag.com/in-field-technologies/
top-5-robotic-systems-to-watch-in-agriculture/.

2. Bouchard, S. Industrial robots: What are the different
types? 2014 [cited 2019 19 September]; Available from:
https://blog.robotiq.com/bid/63528/what-are-the-different-
types-of-industrial-robots.

3. Household robots. [cited 2019 19 September];
Available from: http://www.allonrobots.com/household-
robots.html.

4. [cited 2019 19 September]; Available from: https://
www.youtube.com/watch?v=ZWZGfWU8_p0.

5. Zhao, J., et al., A learning-based multiscale modelling
approach to real-time serial manipulator kinematics
simulation. Neurocomputing, 2019; Available from:
https://www.sciencedirect.com/science/article/abs/pii/
S0925231219314456.

6. Kieffer, S., V. Morellas, and M. Donath. Neural
network learning of the inverse kinematic relationships
for a robot arm. in Proceedings. 1991 IEEE International
Conference on Robotics and Automation. 1991. IEEE.

7. Banga, V., Y. Singh, and R. Kumar, Simulation of
robotic arm using genetic algorithm & AHP. World Academy
of Science, Engineering and Technology, 2007. 25(1): p. 95-
101; Available from: https://pdfs.semanticscholar.org/cbef/
ee29e571ec3a50637e8de3c6f6ce56d00338.pdf.

8. Hao, W.G., Y.Y. Leck, and L.C. Hun. 6-DOF PC-Based
Robotic Arm (PC-ROBOARM) with efficient trajectory
planning and speed control. in 2011 4th International
Conference on Mechatronics (ICOM). 2011. IEEE.

9. Spong, M.W., S. Hutchinson, and M. Vidyasagar,
Robot modeling and control. 2020: John Wiley & Sons.

10. Beale, H.D., H.B. Demuth, and M. Hagan, Neural
network design. Pws, Boston, 1996; Available from: https://
pdfs.semanticscholar.org/6a81/22861b80842ee6f406acdeec
35aec913f1b8.pdf.

https://www.precisionag.com/in-field-technologies/top-5-robotic-systems-to-watch-in-agriculture/
https://www.precisionag.com/in-field-technologies/top-5-robotic-systems-to-watch-in-agriculture/
https://blog.robotiq.com/bid/63528/what-are-the-different-types-of-industrial-robots
https://blog.robotiq.com/bid/63528/what-are-the-different-types-of-industrial-robots
http://www.allonrobots.com/household-robots.html
http://www.allonrobots.com/household-robots.html
https://www.youtube.com/watch?v=ZWZGfWU8_p0
https://www.youtube.com/watch?v=ZWZGfWU8_p0
https://www.sciencedirect.com/science/article/abs/pii/S0925231219314456
https://www.sciencedirect.com/science/article/abs/pii/S0925231219314456
https://pdfs.semanticscholar.org/cbef/ee29e571ec3a50637e8de3c6f6ce56d00338.pdf
https://pdfs.semanticscholar.org/cbef/ee29e571ec3a50637e8de3c6f6ce56d00338.pdf
https://pdfs.semanticscholar.org/6a81/22861b80842ee6f406acdeec35aec913f1b8.pdf
https://pdfs.semanticscholar.org/6a81/22861b80842ee6f406acdeec35aec913f1b8.pdf
https://pdfs.semanticscholar.org/6a81/22861b80842ee6f406acdeec35aec913f1b8.pdf

	Using a Neural Network instead of IKM in 2R Planar Robot to follow a rectangular path
	Abstract
	I. INTRODUCTION
	II. RELATED WORKS
	III. SIMULATION OF THE ROBOTIC ARM
	1. The Model of The Arm
	2. The Direct Kinematic Model of The Robot
	3. The Inverse Kinematic Model of The Robot
	4. Simulation Algorithm

	IV. THE ARCHITECTURE OF THE NEURAL NETWORK
	1. Choosing of training patterns
	2. Determining the number of inputs and outputs of the NN and identifying them
	3. Specifying the number of hidden layer neurons
	4. Choosing the transfer functions used in the NN

	V. THE RESULTS
	VI. FIGURES AND TABLES
	VII. CONCLUSIONS
	ACKNOWLEDGMENT
	VIII. REFERENCES

