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Abstract: This paper employs Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict water 
level that leads to flood in coastal areas. ANFIS combines the verbal power of fuzzy logic and 
numerical power of neural network for its action. Meteorological and astronomical data of Santa 
Monica, a coastal area in California, U. S. A., were obtained. A portion of the data was used to train 
the ANFIS network, while other portions were used to check and test the generalization ability of 
the ANFIS model. Water level predictions were made for 24 hours, 48 hours and 72 hours, in which 
training, checking and testing of the model were performed for each of the prediction periods. The 
model results from the training, checking and testing data groups show that 48 hours prediction has 
the least Root Mean Square Error (RMSE) of 0.05426, 0.06298 and 0.05355 for training, checking 
and testing data groups respectively, showing that the prediction is most accurate for 48 hours.
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I. INTRODUCTION

Water level prediction provides an 
important means of environmental 

protection and flood hazard prevention [1]. 
Resulting from its closeness to the ocean, 
coastal area has been discovered as one of the 
areas that are most vulnerable to the effects 
of sudden rise and fall of water level resulting 
into flood; which has led to various degrees 
of damage of properties and loss of lives [2]. 
However, for one reason or the other, people 
find themselves in places closed to the ocean 
which put them at high risk of the effects of 
sudden rise and fall of water level in those 
areas. Remarkable loss which include lives 

and properties have been claimed due to 
lack of proper and timely awareness of these 
occurrences. To have proper and timely 
awareness of any excessive or abnormal rise 
in water level, accurate, efficient, low-cost, and 
easy-to-use prediction system is essentially 
paramount. Therefore, this paper focuses on 
using Adaptive Neuro-Fuzzy Inference System 
(ANFIS) to predict water levels in coastal 
areas. Reliable water level forecasts enable 
the use of early warning systems to alert the 
populace to take every necessary preventive 
measure against dangerous effects [1].

Meanwhile, water level is a dependent 
phenomenon in that it depends on a set of 
factors (parameters) which are not linearly 
related. Thus, its prediction is generally tedious, 
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inaccurate, and unreliable without employing an 
appropriate model or interface. Also, it is glaring 
that complex real-world problems can be solved 
with the help of intelligent systems that combine 
knowledge, techniques and methodologies from 
various sources. These intelligent systems have 
been discovered to possess humanlike expertise 
within a specific domain, adapt themselves and 
learn to do better in changing environments. 

So, in confronting real-world computing 
problems, it would be advantageous to use 
several computing techniques synergistically 
rather than exclusively, resulting in construction 
of complementary hybrid intelligent systems 
[3].  The perfect example of intelligent system 
of this kind is the ANFIS, which combines the 
strength of Artificial Neural Networks (ANN), 
which reliably increases its performance when 
more detailed information is used, and Fuzzy 
Logic, which performs better when the physical 
phenomena considered are synthesized by both a 
limited number of variables and IF-THEN logic 
statements [4], [5]. So, in this work, ANFIS-based 
model is chosen for its reliability, convenience, 
efficiency and accuracy. Using a properly trained 
ANFIS network, the model yields satisfactory 
results in predicting the water levels of different 
locations as may be applied. 

Being a multilayer feed-forward network 
which uses neural network learning algorithms 
and fuzzy reasoning to map an input space 
to an output space [6], having the ability to 
combine the verbal power of a fuzzy system 
with the numeric power of a neural system 
adaptive network, ANFIS has been shown to 
be powerful in modeling numerous processes, 
such as motor fault detection and diagnosis [7], 
power systems dynamic load, wind speed, and 
real time reservoir operation [6]. Another major 
advantage of ANFIS is that it eliminates the basic 
problem of defining the membership function 
parameters and obtaining a set of fuzzy if-then 
rules [8]. It possesses good capability of learning, 
constructing, expensing, and classifying. It has the 
advantage of allowing the extraction of fuzzy rules 
from numerical data or expert knowledge and 
adaptively constructs a rule base. Furthermore, 
it can tune the complicated conversion of human 
intelligence to fuzzy systems. 

In this study, Santa Monica, a coastal region 
in California, U.S.A. is used as the case study. 

Historical meteorological data (wind speed and 
barometric pressure) and the astronomical data 
(Tidal level) of the ocean, as well as the water level 
around the coast are used for model training, 
validation and testing. All these data were 
obtained online at one of the National Ocean and 
Atmospheric Administration (NOAA) websites, 
http://www.tidesandcurrents.noaa.gov, and were 
used only for research purpose. 

II. OVERVIEW OF COASTAL AREAS

A coastline or seashore is the area where land 
meets the sea or ocean [9]. The term "coastal 
zone" is a region where interaction of the sea 
and land processes occurs [10]. Climate change 
could affect coastal areas in a variety of ways. 
Coasts are sensitive to sea level rise, changes in 
the frequency and intensity of storms, increases 
in precipitation, and warmer ocean temperatures. 
Coasts are considered as places to live, work, and 
play. Forty percent of the world’s population lives 
on the coastal fringe, and that number is steadily 
growing [11]. Vacationers eager to lie on white 
sandy beaches and swim in clear waters generate 
tourism revenue annually. The need for humans 
to achieve their socio-economic objectives also 
causes them to perform (or locate) their activities 
near to the resources supporting those objectives. 
For example, the coastline of the United States 
is highly populated; of the 25 most densely 
populated U.S. counties, 23 are along a coast 
[12]. Coastal and ocean activities, such as marine 
transportation of goods, offshore energy drilling, 
resource extraction, fish cultivation, recreation, 
and tourism are integral to the nation's economy 
[13]. Meanwhile, some vulnerable cities along 
coastline, especially in the U.S. already experience 
the impacts of sea level rise to their natural 
resources, critical assets, and infrastructure [14]. 
So, there is need for efficient and easy-to-access 
prediction method.

III. ANFIS METHODOLOGY

The architecture of the three-inputs-six-rules 
prediction model employed for this work is 
presented in Fig. 1. The fuzzy inference system 

http://www.tidesandcurrents.noaa.gov
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consists of three inputs, w, x and y; the wind 
speed and barometric pressure, and tidal levels  of 
the of the ocean in a targeted location respectively  
and one output, z, which is the future water 
level relative to the input time. The variables are 
chosen because they are the meteorological and 
astronomical factors on which coastal water 
level depends. These variables w, x and y being 
natural occurrences may vary naturally and have 
combined effect on the output.  The degree of 
belongingness (‘low’ or ‘high’) of the inputs are 
based on the numerical values obtained from the 
data as classified by the membership functions.
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Fig. 1.  Architecture of the ANFIS-Based prediction 
model with three inputs and six rules.

(1) Layer 1 (Input Nodes): Every node   in this 
layer is an 

   adaptive node with a node function: 
              

 𝑂𝑂�,� � 𝜇𝜇���𝑤𝑤�,   𝜇𝜇𝜇𝜇��𝑥𝑥� 𝑜𝑜𝑜𝑜 𝜇𝜇𝑜𝑜�;         (1)

i = 1, 2,…, 6;  l = 1, 2, 3;  m = 1; n = 1, 2
 
Where A, and B, and C are linguistic labels 

(such as   "low", "moderate" or “high”) associated 
with the nodes respectively.

(2) Layer 2 (Rule Nodes): Every node in this 
layer is a fixed one, whose output is the product 
of all the incoming signals:

𝑂𝑂��� � �� � 𝜇𝜇���𝑤𝑤� 𝜇𝜇𝜇𝜇��𝑥𝑥� 𝜇𝜇𝜇𝜇� (2)

Each node output represents the firing 
strength of a rule. In general, any other T-norm 
operators that perform fuzzy AND can be used as 
the node function in this layer.

(3) Layer 3 (Average Nodes): Every node in 
this layer is a fixed node labeled N. The ith node 
calculates the ratio of the ith rule's firing strength 
to the sum of all rules' firing strenghts:

     𝑂𝑂��� � ��� � ��
���������� ;      𝑖𝑖=1-6            (3)

(4) Layer 4 (Consequent Nodes): Every node 
i in this layer is an adaptive node with a node 
function:

 𝑂𝑂��� � ���𝑓𝑓� � ������� � ��� � ���� ������   𝑖𝑖=1-6 

          (4)

where pi, qi, ri, and si are the parameter sets of 
this node. Parameters in this layer are referred to 
as consequent parameters.

(5) Layer 5 (Output Node): The single node 
in this layer is a fixed node, which computes the 
overall output as the summation of all incoming 
signals:

𝑂𝑂��� � � 𝜔𝜔��𝑓𝑓�   
�

���
�  ∑ 𝜔𝜔�𝑓𝑓�����

∑ 𝜔𝜔�����
                   (5)

Based on a first-order Sugeno fuzzy model, the 
six fuzzy if-then rules for this work is expressed 
as:

Rule 1: If w is A1 and x is B1 and y is C1 then
z1 = p1w + q1x +r1y + s1
Rule 2: If w is A1 and x is B1 and y is C2 then
z2 = p2w + q2x +r2y + s2
Rule 3: If w is A2 and x is B1 and y is C1 then
z3 = p3w + q3x +r3y + s3
Rule 4: If w is A2 and x is B1 and y is C2 then
z4 = p4w + q4x +r4y + s4
Rule 5: If w is A3 and x is B1 and y is C1 then
z5 = p5w + q5x +r5y + s5
Rule 6: If w is A3 and x is B1 and y is C2 then
 z6 = p6w + q6x +r6y + s6
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where pi, qi, ri and si (i=1-6) are linear 
parameters in the then-part (consequent part) of 
the first-order Sugeno fuzzy model.

Due to its accuracy and precision, trapezoidal 
membership functions were chosen as the 
input membership functions while constant 
membership functions were chosen for the 
output. The trapezoidal curve is a function of a 
vector, x, and depends on four scalar parameters 
a, b, c, and d, as given by (6).

𝑓𝑓�𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥� �
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⎨
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⎧ �𝑥 𝑥𝑥 � 𝑥𝑥𝑥𝑥 � 𝑥𝑥
𝑥𝑥 � 𝑥𝑥 𝑥 𝑥𝑥 � 𝑥𝑥 � 𝑥𝑥
�𝑥 𝑥𝑥 � 𝑥𝑥 � 𝑥𝑥

𝑥𝑥 � 𝑥𝑥
𝑥𝑥 � 𝑥𝑥 𝑥 𝑥𝑥 � 𝑥𝑥 � 𝑥𝑥
�𝑥 𝑥𝑥 � 𝑥𝑥 ⎭
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⎬
⎪⎪
⎫

 

         (6)

or more compactly by:

𝑓𝑓�𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥� � �������� �𝑥𝑥 � 𝑥𝑥
𝑥𝑥 � 𝑥𝑥 𝑥 1𝑥

𝑥𝑥 � 𝑥𝑥
𝑥𝑥 � 𝑥𝑥 𝑥 0�� 

     (7)

The parameters a and d locate the "feet" of the 
trapezoid and the parameters b and c locate the 
"shoulders."

This network was trained based on supervised 
learning, which aimed at training adaptive 
networks to be able to approximate unknown 
functions given by training data and then find 
the precise value of the above parameters. The 
distinguishing characteristic of the approach is 
that ANFIS applies a hybrid-learning algorithm, 
the gradient descent method and the least-squares 
method, to update parameters. The gradient 
descent method is employed to tune premise 
non-linear parameters (a, b, c, d) while the least-
squares method is used to identify consequent 
linear parameters (p, q, r, s).

The task of the learning procedure has two 
steps: In the first step, the least square method 

was used to identify the consequent parameters, 
while the antecedent parameters (membership 
functions) are assumed to be fixed for the current 
cycle through the training set. Then, the error 
signals propagate backward. Gradient descent 
method was used, in the second step, to update 
the premise parameters, through minimizing 
the overall quadratic cost function, while the 
consequent parameters remain fixed.

Predictions were made for 24 hours, 48 hours 
and 72 hours coastal water levels at the same 
location (Santa Monica, California, U.S.A.) 
using distinctive hourly data sets. Trapezoidal 
membership functions were used for the input 
variables throughout the experiments: three for 
input-1, one for input-2, and two for input-3, 
which are wind speed, barometric pressure, and 
tidal level respectively. Using grid partitioning 
technique, hybrid learning algorithm and epoch 
size of 60, the model training, checking and 
testing were carried out and the root mean square 
error (RMSE) were generated by using (8)

���� � �1𝑛𝑛���� � ����
�

���
           (8)

where Qi and Pi are the observed and predicted 
output values respectively; n = number of the 
predicted values. 

IV. RESULTS AND DISCUSSION

1. Model Training, Checking and Testing for 
24-Hour Prediction

Fig. 2 shows the model training with the 
training error indicated with plus (*) plotted 
against number of epochs. Checking error 
shown in diamond (◊) is included on the plot to 
determine the point of overfitting. It would be 
noticed that overfitting takes place towards the 
end of the training process: around 57th epoch 
when the checking error begins to rise. Hourly 
data for one day was used for model training and 
the training error observed here is 0.061289.  

Fig. 3 is the plot of the fuzzy inference system 
(FIS) output, that is, the trained model output 



Olatunji H. Adigun et al. /Coastal Water Level Prediction Model Using Adaptive Neuro-Fuzzy Inference System.

15                      J. ADV COMP ENG TECHNOL, 5(1) Winter 2019

compared with the checking data output. The FIS 
output is shown in red star (*) with the checking 
data output in blue plus (+). The checking error 
produced here is 0.063137.

Yet another set of data entirely different from 
the training and checking data was used to check 
the generalization ability of the model; this data 
set is termed Testing data. The plot generated by 
testing this data output against the FIS output 
is shown in Fig. 4 with 0.12538 obtained as the 
testing error.

Fig. 5 shows the structure of the three-input-
six-rules prediction model: the first three and 
the last one black nodes are the crisp inputs and 
output respectively. The two layers with six white 
nodes each represent the input and the output 
membership functions respectively. The middle 
layer with blue nodes represents the rules.

 

 
Fig. 2.  Training error against epochs for the 24-hour 

coastal water level prediction. (*) = Training Error,
(◊) = Checking error.

 

 
Fig. 3.  FIS output against the checking data for the 24-

hour coastal water level prediction. (*) = FIS output; 
(+) = checking data output.

  
Fig. 4.  FIS output against the testing data for the 24-

hour coastal water level prediction. (*) = FIS output;
(◊) = Testing data output.

 

 
Fig. 5. Structure of the three-input-six-rule prediction 

model.

2. Model Training, Checking and Testing for 
48-Hour Prediction

The same procedures were followed in 
predicting 48-hours coastal water levels relative to 
the input time. The results were obtained for the 
training, checking and testing data set as shown 
in Figs. 6, 7, and 8 respectively; their respective 
errors are 0.054264, 0.062975 and 0.053553.
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Fig. 6.  Training error against epochs for the 48-hour 

coastal water level prediction. (*) = Training Error,
(◊) = Checking error

 

 
Fig. 7.  FIS output against the checking data for the 48-

hour coastal water level prediction. (*) = FIS output;
(+) = checking data output

 

 
Fig. 8.  FIS output against the testing data for the 48-

hour coastal water level prediction. (*) = FIS output;
(◊) = Testing data output.

3. Model Training, Checking and Testing for 
72-Hour Prediction

The model was trained, checked and tested 
using another sets of data to predict 72-hour 

coastal water levels in the selected location. The 
obtained results are showed in Figs. 9, 10 and 
11 for training, checking and testing data sets 
respectively; then the corresponding RMSE 
obtained are 0.096501, 0.20500 and 0.38705.

  
Fig. 9.  Training error against epochs for the 72-hour 

coastal water level prediction. (+) = Training Error,
(◊) = Checking error.

 

 
Fig. 10.  FIS output against the checking data for the 72-

hour coastal water level prediction. (*) = FIS output;
(+) = checking data output.

 
Fig. 11.  FIS output against the testing data for the 72-

hour coastal water level prediction. (*) = FIS output;
(◊) = Testing data output.
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Table I summarizes the results of the 
developed three-inputs-six-rules coastal water 
level prediction model. The lowest root mean 
square errors (training, checking and testing) 
are obtained from the 48-hours prediction 
model. It is inferred from here that the input 
variables have effects on the coastal water level 
at around 24-hours after their occurrences but 
more predominantly at about 48-hours’ time. The 
performance of the model becomes poor as the 
period goes beyond two days. 

V. CONCLUSION
In this paper, wind speed, barometric 

pressure, and tidal levels of the ocean, as well as 
the coastal water level data were obtained and 
arranged into training, checking and testing 
data groups. Prediction model was developed 
using ANFIS. The model was applied separately 
on each data group with 24 hours, 48 hours, and 
72 hours prediction times. The output of the 
model showed that the 48 hours prediction time 
resulted in lowest RMSE for training, checking, 
and testing data as compared to the 24 hours and 
72 hours prediction time respectively. Therefore, 
water level in coastal area is best predicted with 
ANFIS at 48 hours before time.

TABLE I
  24-HOUR PREDICTION 48-HOUR PREDICTION 72-HOUR PREDICTION 

 Data Epoch RMSE Data Epoch RMSE Data Epoch RMSE 
Training 24 60 0.06129 48 60 0.05426 72 80 0.09650 
Checking 24 60 0.06314 48 60 0.06298 72 80 0.20500 
Testing 24 60 0.12538 48 60 0.05355 72 80 0.38705 
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