
 J. ADV COMP ENG TECHNOL, 4(3) Summer 2018

 This work is licensed under the Creative Commons Attribution 4.0 International Licence.

To view a copy o this licence, visit https://creativecommons.org/licenses/by/4.0/

Metadata Enrichment for Automatic Data Entry
Based on Relational Data Models

Meysam Dolatkia1, Sahar Adabi2, Ali Rezaee3

1,3 Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 Department of Computer Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran.
1(mdolatkia@gmail.com)

Received (2017-12-02) Accepted (2018-09-19)

Abstract: The idea of automatic generation of data entry forms based on relational data models
is a common and known idea that has been discussed day by day more than before according
to the popularity of agile methods as well as improvement of programming tools in software
development. One of the requirements of automation methods, whether in commercial products
or relevant research projects, could be the concept of metadata as a mediator between database
and data entry forms. The metadata usually includes some schemas and constraints of target
database, which could be used as a model for automatic generation of data entry forms. However,
the most metadata models proposed in relevant researches have simple and undetailed structure.
In other words, only the initial requirements of data entry are covered in the proposed metadata.
In this study, the main objective is to emphasize the structure of metadata to discuss its enrichment
methods to cover more data entry requirements. In this regard, some parts of a metadata model
are also presented for objectification of the ideas.

Keywords: Data-Entry automation, Data-Entry requirements, Relational database metadata

I. INTRODUCTION

Over the years, automation of data entry
user interfaces based on data models has

been one of the methods of implementing
data entry requirements in software programs.
The main purpose of automation methods
is to accelerate the implementation process
through prevention of taking repetitive works.
In practice, this is done through reuse of
designs and logics leading to database data
entry. The main requirements include UI
design with the capability of CRUD operations
on the entities, validation of input values and
implementation of data transactions queries
in consistence with a target database. In order

to implement the logics, the usual solution
is using metadata as a guideline model
which some parts of it could be perceived
through data dictionary resides in relational
database management system. However, by
considering metadata repository in a DBMS
as the only source, the function of designed
data entry forms would be very simple and
rigidly depended on the physical model of the
database. Hence, the possibility of defining lots
of high level concepts or design details would
be lost. On the contrary, through enrichment
of the metadata, a wider range of data entry
requirements could be covered.

In this study, has been tried to provide
some ideas about the methods of formation,
maintenance and enrichment of the metadata
devoted to data entry requirements. This is

How to cite this article:
Dolatkia M, Adabi S, Rezaee A. Metadata Enrichment for Automatic Data Entry Based on Relational Data Models. J. ADV
COMP ENG TECHNOL, 4(3) Summer 2018 : 193-208

https://creativecommons.org/licenses/by/4.0/

Dolatkia M et al./ Metadata Enrichment for Automatic Data Entry Based on Relational Data Models

194 J. ADV COMP ENG TECHNOL, 4(3) Summer 2018

done through classification of requirements and
discussing methods and examples in response
to these requirements. In this regard, it has also
been tried to decline the dependence of metadata
on implementation technologies of application
level to develop the use of metadata to more
applications and platforms.

II. RELATED WORKS

As this study has emphasized the content of

metadata, to review the relevant works, those
works are selected that have used metadata
as a part of solution to implement data entry
forms. In ref [1], the solution for generation of
web data entry forms using extracted metadata
from database is analyzed; although no specific
structure and format is specified to maintain the
metadata. In ref [2] with almost similar solution
with [1], the idea of storage of metadata in XML
format is discussed. The metadata used in these
solutions is too simple to generate data entry forms
and includes elementary data from independent
structure of each table and its columns. For
example, in the proposed metadata, the details of
relationships, types of relationships and simple
requirements as the possibility of defining value
set for a column are not addressed. In a different
work in ref [3], the same idea of generation of
web forms using metadata is presented. Although
this metadata is presented in form of an Entity-
Relationship model, in addition to simplicity of
concepts, it is significantly depended on technical
requirements of application (in this case HTML
pages).

In general, such applied attitude to metadata
to discriminate the ideas and technologies could
be observed in other works such as [4], [5] and
[6]. In other words, in most researches, the
content of metadata is not exclusively considered
and emphasis has been on the applied role of
metadata to discuss the solutions.

Clearly, with simple or application-depended
metadata, there would be no chance to cover
a broad range of data entry requirements.
Therefore, it would be better to separate the
concerns of metadata generation and the way
of using it through separating the declarative
independence of metadata from decision making
processes consuming the metadata as much as

possible.

III. A SAMPLE DATA MODEL FOR DATA
ENTRY

In this section, for a better understanding
of the ideas presented in this paper and also
providing better examples, a sample ERD model
is presented. This model represents the structure
of a sample database which could be the target
of data entry forms. It should be noted that this
model is not necessarily a reality-based model,
but simply covers various types of data entry
requirements and concepts. This model keeps
track of a company’s employees, departments
and projects. The model is divided into two parts
presented in Fig.1 and Fig.2. In Fig.1, the main
entities of Employee and Department and their
relationships are presented. Each employee has
a many-to-one relationship with the Department
table to determine the related working
department. Each department has also a one-
to-one relationship with the Employee table that
determines the manager of the department. Also,
through an IS-A relationship, each employee
can be specialized into Engineer and Technician
entities. Finally in Fig.1, the ParkingOwner entity
is shown. This entity represents the owners of
parking lots in a company which has a union
relationship with department and employee. In
other words, each parking lot could be owned by
either a department or an employee.

 Fig.1 Sample database ERD model (First part)

In Fig.2, four new tables have been added to
the previous model. First, the Project table that
represents the projects of a department and has a
many-to-one relationship with Department table.

Dolatkia M et al./ Metadata Enrichment for Automatic Data Entry Based on Relational Data Models

 J. ADV COMP ENG TECHNOL, 4(3) Summer 2018 195

Also, this table uses the Employee_Project table
to establish a many-to-many relationship with the
Employee table. In this way, for each department’s
project the employees involved in the project are
identified. Finally, the Location table is presented
which specifies the address of each department
and also has a many-to-one relationship with the
City table.

Fig.2 Sample database ERD model (Second part)

IV. EXTRACTION OF THE INITIAL
ELEMENTS OF METADATA

In order to form the initial elements of
metadata and as the beginning point, the data
dictionary of target database residing in DBMS
could be used. One way to extract the existing
metadata is to query the data dictionary using
the known standards. However, the ways of using
these standards may be different in each RDBMS.
For example, in relational databases of SQL Server
and MySQL, the concept of information schema
is supported; although different concepts are used
in almost similar methods in Oracle database. In
table 1, the way of extraction of tables, columns
and the referential constraints in SQL Server and
MySQL are presented. Similar queries of the same
objects in Oracle are presented in table 2. In ref
[6], [7] and [8], technical documents about the
metadata management of mentioned relational
databases are presented.

Table 1 Using the concept of information schema in
fetching database objects

Instruction Extraction of
Select * from

Information_schema.tables Tables

Select * Information_schema.columns Columns
Select * from

Information_schema.referential_constraints
Referential

Constraints

Table 2 Fetching the same database objects in Oracle
Instruction Extraction of

Select * from user_tables Tables
select * from user_tab_columns Columns

Select * from user_constraints Referential
Constraints

After extracting the desired data from the
database, a structure is needed to maintain the
metadata. In this solution, a relational model is
proposed. The advantages of providing relational
model for the metadata are as follows:

• It is in consistence with the target data
entry relational database.

• It could be visualized through entity-
relationship models.

• If needed it could be converted simply to
other formats like XML using common
available tools.

• Using today’s ORM technologies, the
metadata could be used effectively. In this
way, in addition to separate the technical
concerns of metadata manipulation,
the key requirement of metadata survey
(through entities and relationships) could
be done with more facility.

Finally, the initial extracted objects like tables,
columns and relationships could be illustrated in
an ERD model as figure 3.

Fig.3 Core structure of the metadata

Dolatkia M et al./ Metadata Enrichment for Automatic Data Entry Based on Relational Data Models

 J. ADV COMP ENG TECHNOL, 4(3) Summer 2018 196

Obviously, this entity-relationship metadata
model or the sample data entry model presented
in previous section can be implemented
in any commercial relational database. By
implementation of these two models in SQL
Server and using the commands like Table 1 to
reproduce the sample database model in form
of proposed metadata model, the data of three
tables of Table, Column and Relationship would
be similar to figures 4, 5, and 6.

Fig.4 Data view of Table entity after converting the

sample model to metadata

Fig.5 Data view of Column entity after converting the

sample model to metadata

Fig.6 Data view of Relationship entity after converting
the sample model to metadata

V. METADATA ENRICHMENT

In this section, the methods of extending the
core metadata are discussed. With more coverage
of data entry requirements, a metadata could be
enhanced from a repository of some physical or
structural properties to a source containing higher
level conceptual or behavioral concepts. The
practical method used to enhance the structure of
metadata is modifying its current structure (the
structure extracted from the database in previous
section) through adding entities, relations and
attributes based on some requirement analysis
and inferences. These changes could be the result
of considering some general requirements of
data entry or some specific strategy of data entry.
Firstly, some general requirements (generalizable
to other solutions) are discussed.

General and common requirements

When consuming the physical model of a
relational database to design data entry forms
and logics is discussed, recognized elements such
as tables, columns and relationships come to
mind. Assessing common requirements of these
elements, which can be involved in the designs
decision-makings of data entry forms (directly
or indirectly), could be a good beginning point.
Therefore, for the purpose of better separation
of requirements, they could be divided into
table requirements, column requirements and
relationship requirements.

• Table requirements: for each table, the
following types of general requirements could be
applied in the metadata:

Defining custom alias name for each table;
Determining the table data entry mode in
group or single form (one by one record);
Determining whether a table is a reference
table; For example, the City table in the sample
model is a reference table.
Determining whether a table is an associative
table; For example, the Employee_Project
table in the sample model is an associative
table.
Determining table independent data entry:
this property specifies that whether a table

Dolatkia M et al./ Metadata Enrichment for Automatic Data Entry Based on Relational Data Models

197 J. ADV COMP ENG TECHNOL, 4(3) Summer 2018

can be the beginning point of a data entry
scenario or not and it should be accessed just
through relationship with other entities. For
example, logically the Location table cannot
be used as an independent data entry form
and is considered as a piece of complementary
information along with other entities.

• Column requirements: similarly, the
following characteristics could be counted for
each column:

Defining custom name for each column;
Determining the data entry ability of column;
Determining the search ability of column;
Determining the view ability of column in
result of search operations.

• Relationship requirements: for each
relationship, regardless of type of relationship, the
following characteristics could be defined:

Defining custom name for the relationship;
Determining data entry ability of relationship;
Determining the searching ability of
relationship;
Determining the view ability of relationship;
The mandatory constraint of relationship;
The transferability quality of relationship;
Determining the creation ability of other side
of the relationship; For example, is it possible
to create a new city when entering location
information, or the city item is just selectable?
Capability of creating the other side of
relationship directly in the current form or in
a separate form.

The model after making these modification is
shown in Fig.7.

Fig. 7 Adding attributes to the model elements

Specialization of elements

In previous section, some simple general
requirements were discussed which could be
responded through adding some attributes to
the initial metadata model. However, a desirable
enrichment process of metadata is not limited
to adding some properties. In other words,
some advanced requirements should be covered
through adding new entities and relationships
to the model. The first proposed technique
to cover more advanced requirements in the
model is specialization of the existing elements.
Using this technique, in addition to make the
model developable to host more complicated
requirements, the core model, derived from
physical structure of relational databases, could
be preserved. In order to specialize the concepts
in the model, a few ISA-Relationship types on
tables, relationships and columns could be added.

Specialization of tables: each table in a database
could be resulted by realization of several higher
level entities. For example, in implementation
of ISA-Relationships in form of accumulation
of superclass and subclass in a single table,
the table could encompass structure and data
from several entities simultaneously. Through
specialization of tables by making its columns,
relations and even its data selective, chance
of introducing new entities in the metadata is
provided. For example, in Fig. 8 by adding a new
entity called TableDerivedEntity, each previously
detected table can be specialized. In other words,
columns and relationships of each existing table
can be selected and grouped in frame of a new
entity. Moreover, using the criteria property in
TableDerivedEntity, a distinctive range of data
rows for each entity could be defined.

Fig. 8 Specialization of tables in the metadata

Dolatkia M et al./ Metadata Enrichment for Automatic Data Entry Based on Relational Data Models

198 J. ADV COMP ENG TECHNOL, 4(3) Summer 2018

For example, using this method, the
department records of Department table can be
classified using the Type field. Then it is possible
to allow just some specific types of departments
to have projects.

Fig. 9 Classification of departments based on type

Specialization of relationships: through
separation of types of relationship in metadata,
specific properties could be defined for each
type of relationship. For example, in Fig. 10
one-to-many and one-to-one relationships have
been specialized through adding new entities
inheriting from the base Relationship entity.

Fig.10 Specialization of relationships in the metadata

Specialization of columns: types of columns
could be also specialized based on data type.
Hence, not only separated specifications and
structures are defined for each data type, but also
it is possible to define structure for custom types
of data in the metadata.

Fig. 11 Specialization of columns in metadata

Higher level relationships

One of the main capabilities of a desirable
metadata could be possibility of defining
conceptual and higher level relationships of
target database like ISA relationships or Union
relationships. Without prediction of these
relationships in metadata, a big gap remains
between metadata model and the object-oriented
designs of entities behind the data entry forms.
One technique to cover higher-level relationships
is defining conceptual relationships in the
metadata model and adjusting existing physical
relationships with these conceptual relationships.
Through classification of physical relationships in
form of conceptual relationships, a bridge could
be created between physical implementation of
relationships and their underlying higher-level
concepts. For example, as in Fig. 12, a set of physical
relationships of superclass to subclass in database
level (defined in SupertoSubRelationshipType)
could be mapped to an ISA-Relationship entity
in the metadata level. In this way, it is possible to
define the known ISA-Relationship properties,
such as total participation or disjoint quality of
the relationship in the metadata.

In another example, many-to-many
relationships could be defined in the metadata
through the ManyToManyRelationshipType
table. Since all the many-to-one relationships
in physical level are converted to one-to-
many relationships there would be a link
between ManyToManyRelationshipType and
OneToManyRelationshipType to detect all the
implementing physical one-to-many relationships
of each many-to-one relationship.

Dolatkia M et al./ Metadata Enrichment for Automatic Data Entry Based on Relational Data Models

199 J. ADV COMP ENG TECHNOL, 4(3) Summer 2018

Fig. 12 Definition of conceptual relationships in the

model

In this way, all the physical or conceptual
relationships defined in the sample model can be
defined in the metadata. In tables 3 and table 4
all the relationships of sample model and their
definition class in the metadata are shown.

Table 3 Definition of sample model relationships in the
metadata (Part 1)

Metadata Definition Type Relationship

OneToManyRelationship
One to

Many /
Physical

Department-
Employee

(Works for)

OneToManyRelationship

One to
Many /

Physical

City-Location

OneToManyRelationship
One to

Many /
Physical

Department-
Project

OneToOneRelationship

One to

One /
Physical

Employee-
Department
(Manages)

OneToOneRelationship

One to

One /
Physical

Department-
Location

Table 4 Definition of sample model relationships in the
metadata (Part 2)

Metadata Definition Type Relationship

ManyToManyRelationship
Many to

Many /
Conceptual

Employee-
Project

OneToManyRelationship

One to

Many /
Physical

Employee-
Employee_Project

OneToManyRelationship

One to

Many /
Physical

Project-
Employee_Project

ISARelationship
IS-A

Relationship
/ Conceptual

Employee-
Engineer/Technician

SuperToSub-
RelationshipType

Superclass
to Subclass/

Physical

Employee-
Engineer

SuperToSub-
RelationshipType

Superclass

to Subclass/
Physical

Employee-
Technician

UnionRelationshipType
Union

Relationship
/ Conceptual

ParkingOwner-
Employee

/Department

UnionToSubUnion-
RelationshipType

Union

Superclass to
Union

Subclass/
Physical

ParkingOwner -
Employee

UnionToSubUnion-
RelationshipType

Union

Superclass to
Union

Subclass/
Physica

ParkingOwner -
Department

More complicated requirements

With emphasis on more complicated
requirements and some creativity, more dynamic
requirements and constraints of data entry
could be predicted in metadata. Some of these
requirements might be as follows:

• The value range of a column: the feature
of defining valid range of values for a
column;

• Arc relationships: selecting a single
relationship from several specified
relationships of an entity;

• Conditional relationship: the condition of
making or not making of a relationship
based on the entry value of an attribute of
the entity;

• Conditional range of values: the
dependence of value range of an attribute
on the entered value of another attribute
of the same entity;

Dolatkia M et al./ Metadata Enrichment for Automatic Data Entry Based on Relational Data Models

200 J. ADV COMP ENG TECHNOL, 4(3) Summer 2018

• The condition of converting the values:
dependence of values an attribute could
be changed to on the current value of the
attribute.

For example, through adding three simple
entities to the model (figure 13), value range of
a column, conditional relationship, conditional
range of values and conditions of value conversion
could be covered. Using the ColumnValue entity,
the value range of a column is defined. Using the
ColumnValue_Relationships entity, disabling or
enabling of relationships based on column values
is possible and with the ColumnValue_Columns
entity, it is possible to determine the list of valid
values for a column based on another column’s
value (or based on the same column’ value in
case).

Fig. 13 Adding some complicated requirements of data

entry to the model

For example, by placing the “male” and
“female” values in the ColumnValue table for the
Gender column of the Employee table, in the data
entry process these values would be selectable
rather than entered by user. Now presume we need
another rule that do not allows male employees
to involve in projects. This rule can be defined
easily in the metadata by adding a record in the
ColumnValue_Relationship table for previously
defined “male” value and then setting the project
relationship disabled.

Generic designs in metadata

Definitely, with more coverage of data entry
requirements using the mentioned methods,
the obtained model would be more efficient
and applicable. However, such modifications
in metadata model could also lead to some
complications. Complexity of metadata structure
or its non-general structure would bring some
drawbacks such as less understandability and
less generality of the model. In order to meet the
problem, some generic designs could be used to
define some of the requirements in the model if
needed. Using these generic designs, there would
be no need to define all required attributes of
tables, relationships and columns explicitly in
the metadata. Moreover, it might be necessary
to define many application level attributes in the
model. For example think of a requirement that
needs to make emphasis on some columns in the
UI by making the font of the column’s label bold.
This requirement is a trivial application level
requirement and it is not wise to put it directly in
the metadata model.

A general strategy to make such changes in
the model might be using dynamic properties in
form of tag/value. In Fig. 14, an example of the
mentioned design technic is presented. As shown,
the extra attributes of tables and columns could
be defined in form of dynamic data rows rather
than static physical attributes.

Fig. 14 Generic constructs to define attributes of tables

and columns

Dolatkia M et al./ Metadata Enrichment for Automatic Data Entry Based on Relational Data Models

201 J. ADV COMP ENG TECHNOL, 4(3) Summer 2018

Model customization

Using the techniques mentioned in the
previous sections, an enriched metadata would be
achieved that can be generalized to many common
data entry solutions. The next supplementary step
of metadata enrichment, could be customization
of metadata to fit any specific data entry approach.
These subjective customization could include
adding optional types of attributes, entities or
relationships to the metadata. For example, in
Fig. 15, according to directed nature of data entry
scenarios in applications, instead of one physical
relationship between each pair of entities, two
directed relationships could be defined in the
metadata. This way, in addition to possibility of
separating attributes of each direction, the process
of navigation through entities and relationships
in data entry forms are facilitated.

Fig. 15 Defining sample directed relationships in the

metadata

For example, using the mentioned design, now
it is possible in data entry forms to let the Manages
relationship between employee and department
be established only from the department side. As
such, for each department, the manager employee
is selectable while this relationship would be
hidden in the employee form.

Regardless of reasons of customizations in
metadata, the innovations applied to metadata
could be also generalized to other solutions or
just be limited to scope of a system.

VI. INITIALIZATION OF CONSTRUCTS

A metadata with no data has no use and
meaning in practice. As it was mentioned, data
for core elements of metadata could be derived
from the database. However, to initialize the
extended parts of metadata what strategy could be
considered? According to key role of metadata in
automated data entry solutions and need to careful,
quick and integrated management of all details,
it is recommended to use a software program to
manage metadata. With such an administrative
program, in addition to apply control rules in
metadata initialization, the involvement of user
in lots of technical complexities (for example
implementing metadata manipulation queries)
could be avoided. In designing such a metadata
management program, a combination of three
methods of coding, rule engine and design expert
intervention is generally proposed.

nCoding: for initialization of some constructs
of metadata, fixed code snippets could be applied.
Algorithms of these codes would not change
a lot over the time. The examples could be the
previously mentioned technics for extraction of
initial structure of metadata from the database,
extracting list of available values of a column in
database (for example to fill the ColumnValue
entity automatically) or converting types of
relationships to each other in the metadata.

nRule engine: experience have proved that
there are semi-fixed rules and techniques in
designing databases. These rules may be observed
by a specific designer team or in a specific
solution; although they may vary from a problem
to another or from a designer team to another. For
example, the rules of naming tables and columns
are in this group. To extract some information of
metadata due to these changeable designs, it is
recommended to use rule engine environments.
Hence, the way of implementation of these rules
in extraction of information from the database is
not depended on principal code of the program.

As an example, suppose a database that has 30
reference tables all starting with “Ref_” like “Ref_
City”. Think of a metadata management program
that has a module to detect reference tables. In
facing such a situation the mentioned module

Dolatkia M et al./ Metadata Enrichment for Automatic Data Entry Based on Relational Data Models

202 J. ADV COMP ENG TECHNOL, 4(3) Summer 2018

can be implemented in two ways; hardcoded or
dynamically programmable. Since a metadata
management program is supposed to work with
various database designs it would be better to use
the dynamic rules.

Fig. 16 Sample dynamic rule for detecting reference

tables

nDesign expert intervention: a known
challenge with the perception of concepts from
the physical implementations of databases or
literally reverse database engineering could be
ambiguousness and mismatches in translating
different design layers to each other (Conceptual,
Logical and physical layers). In ref [10], the
necessity of interpretations of user in validation
of the concepts perceived from the database and
in ref [11], the necessity of intervention of user
in the process of conceptualization of database
reverse engineering are emphasized. In general,
the necessity of applying user’s comment (as
complementary part of mechanized methods)
could be caused by lack of certain correspondence
in mapping models from conceptual to physical
level and vice versa. Moreover, it has been observed
that in implementation of lots of concepts in
the database, implicit structures (e.g. Triggers)
are used. Regardless of these explanations and
considering the defined metadata, there are
some configurations in the metadata, which
should be initialized in customized way due to
user’s decision. For example, the way of setting
alias names for tables and columns or setting the
display order of columns are in this group.

VII. SOLUTION IN PRACTICE

In this section, the proposed solution for the
formation and enrichment of metadata and also its
effectiveness in covering some of the fundamental
data entry requirements are examined. For this
purpose, the real database of AdventureWorks is
used which is a well-known sample database used
in many of the Microsoft's documentations. The
version of the AdventureWorks database used is in

this paper is 2012 and it is available on [12]. Also
[13] helps to understand the database design as
it describes all the tables in the AdventureWorks.

In order to manage the metadata model as
well as its use in designing data entry forms,
existence of two programs is presumed; one
manages the information in the metadata, and
the other uses this information in generating
the data entry forms of the target database. It is
necessary to mention that the examples provided
of the features of these two programs are merely
due to the visualization of the proposed concepts
and the details of the design or implementation
of the mentioned programs - due to irrelevance
with the main theme of this research, which is the
enrichment process of the metadata - will not be
covered. Figure 17 shows how the four concept
of metadata management program, data entry
program, metadata database and target database
interact with each other.

Fig. 17 Proposed applications and databases interaction

pattern

As previously mentioned, in order to extract
the primary elements of the metadata, the data
dictionary of target database could be used.
For example, by running the queries shown in
figures 18 and 19 in SQL Server, the details of all
relationships in AdventureWorks are accessible,
including relationship names and involving
primary and foreign key tables and columns.

Dolatkia M et al./ Metadata Enrichment for Automatic Data Entry Based on Relational Data Models

203 J. ADV COMP ENG TECHNOL, 4(3) Summer 2018

Fig. 18 Fetching relationship names and tables in SQL

Server

Fig. 19 Fetching relationship columns in SQL Server

In this way, by adding a feature to a
metadata management program, all 72 tables,
91 relationships, and 749 columns of the
AdventureWorks database could be extracted and
then transformed into the core metadata model. In
Fig. 20, a view of a sample metadata management
application and the entities extracted from the
AdventureWorks database is displayed.

Fig. 20 Extracted entities in a sample metadata

management application

Interestingly, this basic information in the
metadata can be used to design some data entry

forms and the relationships between them. For
example, in Fig. 21 the UI of the ProductCategory
form in a data entry application is displayed.

Fig. 21 The data entry form of ProductCategory table in

a sample data entry application

Considering the role of metadata in explaining
automation solutions, related works like [1],
[2], [5] and [6] have optimistically defined the
metadata structure at the current depth, in other
words, a repository of elementary information
about tables, columns and relationships. But, as
mentioned earlier, this paper attempts to focus on
the metadata and its capabilities in more depth.

Now, using the metadata extension
process described previously, more data
entry requirements could be applied in the
ProductCategory form.

In the first step, metadata could be extended
according to the "Common requirements"
method discussed previously. Thus, it is possible
to define some simple attributes for any concept
in the metadata core and then managing them
in the metadata management program. For
example, suppose it is intended to apply three
new requirements in the ProductCategory form.
The first requirement is to change the form name
from the "ProductCategory" term to the "Product
Category”, the second requirement is to set the
columns of rowguid and ModifiedDate to read-
only mode and the third requirements is to hide
the relationship with the ProductSubcategory
entity. All these requirements can be resolved
by adding simple attributes to the current
metadata elements and then setting them in the
metadata application. The methods of setting the
three mentioned requirements in the metadata
management program are shown respectively in
Figures 22, 23 and 24.

Dolatkia M et al./ Metadata Enrichment for Automatic Data Entry Based on Relational Data Models

204 J. ADV COMP ENG TECHNOL, 4(3) Summer 2018

Fig. 22 Setting the Alias attribute for entities

Fig. 23 Making columns read-only in the metadata

management application

Fig. 24 Making relationships hidden in the metadata

management application

After applying these changes in the metadata,
the ProductCategory form will be changed to Fig.
25.

Fig. 25 The ProductCategory form after applying some

basic requirements

In the next step of metadata enrichment, the
concept of specialization of the core elements
such as tables, relationships, and columns was
discussed. For a better understanding of the
capabilities added to the data entry forms by
specializations in the metadata, data entry form
of the Person table is considered. In this form,
two requirements are defined; the first one is to
apply a validation rule to the PersonType field and
expresses that the field should only accept string
values composed of 2 characters. The second
requirement is the ability of defining only one
email address for each person. In other words, to
set the relationship between the Person entity and
the EmailAddress as a one-to-one relationship
and not one-to-many. As shown in Fig. 26,
currently it is possible to set a PersonType value
with a length of more than two characters. It is
also possible to define multiple e-mail addresses
through the link to the EmailAddress form.

Fig. 26 The Person data entry form before applying

requirements

In order to meet the requirements, the
metadata can be extended according to the
previously proposed specialization methods. For

Dolatkia M et al./ Metadata Enrichment for Automatic Data Entry Based on Relational Data Models

205 J. ADV COMP ENG TECHNOL, 4(3) Summer 2018

the first requirement, specialization of the string
columns in a new entity is proposed (inherited
from column entity as Fig.11). Hence, attributes
such as the length and the format of a string
column could be defined.

Fig. 27 Defining string columns’ properties in the

metadata management application

For the second requirement, the same way
applies. More precisely, some specialized entities
for relationship types should be added to the
model and then assigned to existing relationships
in the metadata application. Figure 28 shows how
to specialize the relationship between Person and
EmailAddress into a one-to-one relationship.

Fig. 28 Setting the relationship between Person and

EmailAddress to one-to-one

After applying these changes in the structure
and content of the metadata, the Person form will
be changed to Figure 29. Firstly, the PersonType
filed would not accept values with more than two
characters; secondly, only one email address can
be entered for each person.

Fig. 29 The Person form after applying the requirements

In order to examine the higher-level
relationships in the AdventureWorks database,
we consider the most significant inheritance
relationship which Introduces BusinessEntity
table as the superclass and the tables of Person,
Vendor, and Store as subclasses. In order to define
this inheritance relationship in the metadata,
we act as described previously in "Higher level
relationships" section. In other words, we classify
the physical relationships between the mentioned
tables in the form of a higher-level conceptual
relationship. Fig. 30 shows how to define these
relationships in the metadata management
program.

Fig. 30 Managing ISA relationships in metadata

application

Now, the properties like Disjoint or
TotalParticipation can also be defined for
inheritance relationships. More important,
when designing a data entry form containing
ISA relationships (like the BusinessEntity data
entry form), instead of visiting ISA relationships
separately according to their physical level
design, they can be implemented as a group of

Dolatkia M et al./ Metadata Enrichment for Automatic Data Entry Based on Relational Data Models

206 J. ADV COMP ENG TECHNOL, 4(3) Summer 2018

relationships realizing a higher level concept.

Fig. 31 ISA relationship between the BusinessEntity and

the group of subclasses (Person, Store and Vendor)

However by considering a database with data
like AdventureWorks, there is a more efficient
way to identify and initialize the majority of
relationships types rather than assessing them one
by one by a system expert; through implementing
a simple algorithm in the metadata management
program, it is possible to identify most of the
relationship types automatically. This algorithm
is shown in figure 32.

Fig. 32 Algorithm of setting default relationship types

By running this algorithm on the
AdventureWorks database, 73 relationships were
identified as one-to-many, 11 relationships as one-
to-one and 7 relationships as ISA relationships.
The ISA relationships are shown in Table 5 and
the one-to-one relationships are listed in Table
6. Rest of the relationships are one-to-many
relationships.

Table 5 Detected ISA relationships in the
AdventureWorks database

Subclass Superclass No

Person,Store,Vendor BusinessEntity 1
Employee,Password Person 2

SalesPerson Employee 3

Table 6 Detected one-to-one relationships in the
AdventureWorks database

To From Stat
us No

BusinessEntityAddress Address 1
BusinessEntityContact Person 2

Customer Person 3
EmailAddress Person 4
JobCandidate Employee 5

PersonCreditCard CreditCard 6
PersonCreditCard Person * 7

PersonPhone Person * 8
ProductModelProduct-

DescriptionCulture
ProductDesc

ription
 9

ProductProductPhoto Product 10
ShoppingCartItem Product * 11

By closer examination of these relationships,
we find that the proposed method succeeds in
identifying about 95% of the relationship types
correctly, in other words, 86 relationships out of
90 relationships. More precisely, all of the one-
to-many relationships are correctly detected and
from the one-to-one relationships, only three of
them (marked with * in the table) - in spite of their
one-to-one data match in the database - require
to change to one-to-many relationships. Also,
among the detected inheritance relationship,
it would be conceptually better to change the
relationship between Person and Password
tables to a one-to-one relationship. As mentioned
earlier, these conversions can be easily done in
the metadata managing program.

The next idea referred in enrichment methods
was the possibility of including more complex
requirements in the metadata. Using these
definitions in metadata, it is possible to improve
the raw data entry forms to forms containing
more and more business rules. For example,
remember the PersonType field in the Person
form. In fact this field can only accept values from
a certain range of two-character strings (‘IN’,
'EM', 'SP', 'SC', 'VC' and 'GC'). To cover this issue,
a change in the metadata model and application
can be done that allows to define a set of values
for a column. In Figure 33, the feature of setting a
set of values for a column is displayed. Note that
these values can be directly extracted from the
target database automatically.

Dolatkia M et al./ Metadata Enrichment for Automatic Data Entry Based on Relational Data Models

207 J. ADV COMP ENG TECHNOL, 4(3) Summer 2018

Fig. 33 Defining a set of values for the PersonType field

Therefore, the user can only select the value
of the PersonType field from a predefined set of
values.

Fig. 34 Selecting the value of the PersonType field

At the end of this section, the proposed idea of
inserting some of the requirements in the metadata
in form of general and dynamic construction
would be considered. These categories of
requirements can be either application level or
technical requirements that are not directly related
to the business rules of data entry forms. For
example, setting a distinctive color for a column's
header might be a requirement. In Figure 35, the
proposed method of defining the color property
as a tag and assigning it to columns through the
ColumnTag table is presented. Also in Figure 36,
the effect of these definitions in the metadata on
the data entry form is shown.

Fig. 35 The concepts of Tag and ColumnTag in the

metadata

Fig. 36 Different colors of fields based on the metadata

definitions

VIII. CONCLUSION

In this study, the idea of generation
and enrichment of metadata for automatic
implementation of data entry forms based on
database models is discussed. According to the
mentioned, the structure of metadata could be
systematically enhanced from a simple source of
database schema depended on data dictionary
to a more comprehensive model. A key point in
discrimination of the solution is commitment to
the known schema of relational databases and
development of metadata based on the extracted
initial elements.

The enrichment process begins from the
extraction of common elements such as tables,
columns and relationships and representing
them in a relational model. Afterwards, through
adding some properties to these elements,
some common requirements of data entry
would be covered. In the next step, for purpose
of more structural development of model,
some specialization techniques on the existing
elements of the metadata are discussed. Then, the
idea of considering some higher-level concepts
of target database in the metadata design like
ISA-relationships is proposed. The possibility

Dolatkia M et al./ Metadata Enrichment for Automatic Data Entry Based on Relational Data Models

208 J. ADV COMP ENG TECHNOL, 4(3) Summer 2018

of adding more complex rules and validation
requirements in the metadata is the next
discussed extension. However, there would be no
need to apply all requirements and modifications
explicitly in the metadata structure. To decrease
the size of metadata, some attributes could be
defined and initialized in form of tag/value using
generalization techniques.

Moreover, for purpose of initialization
of the proposed structures in metadata and
generally metadata management, necessity of
implementing a controlling software program is
referred. According to this idea, by means of this
program, the data in metadata could be initialized
and managed through using a combination of
three methods of coding, rule engine and direct
intervention of user. In Fig. 37, the function of
a metadata management program in a general
automation approach of data entry is illustrated.

In the final section, in order to observe the
functionality of the proposed solution, examples
of initialization, extension and application of the
appropriate metadata for data entry of a standard
database is provided.

Considering the data nature of metadata,
the enrichment of metadata is not limited to
mentioned requirements and it is possible to
extend it over other directions and applications.
For example adding user profile concepts and
related access controls for users or designing
schemas for configuring a variety of reports in the
metadata can be a supplementary goal.

Fig. 37 Role of a metadata management program in an

automated data entry approach

REFERENCES

1. A. Elbibas and M. J. Ridley, "Developing Web entry
forms Based on METADATA.," in International Workshop
on Web Quality in conjunction with ICWE 04-International
Conference on Web Engineering., 2004.

2. M. M. Elsheh and M. J. Ridley, "Using database
metadata and its semantics to generate automatic and
dynamic web entry forms." in Proceedings of the World
Congress on Engineering and Computer Science, 2007.

3. D. G. Saputra and F. N. Azizah, "A Metadata Approach
for Building Web Application User Interface," in the 4th
International Conference on Electrical Engineering and
Informatics, 2013.

4. Kesler, John N. "Automated generation of dynamic
data entry user interface for relational database management
systems." U.S. Patent No. 7,401,094. 15 Jul. 2008.

5. Mgheder, Mohamed Ahmed. Database Metadata
Requirements for Automated Web Development. A case
study using PHP. Diss. University of Bradford, 2011.

6. Albhbah, Atia M., and Mick J. Ridley. "A Rule
Framework for Automatic Generation of Web Forms."
International Journal of Computer Theory and Engineering
4.4 (2012): 584.

7. Oracle, "Chapter 22 INFORMATION_SCHEMA
Tables," [Online]. Available: http://dev.mysql.com/doc/
refman/5.7/en/information-schema.html.

8. Microsoft, "Information Schema Views (Transact-
SQL)," [Online]. Available: https://msdn.microsoft.com/en-
us/library/ms186778.aspx.

9. Oracle, "Data Dictionary and Dynamic Performance
Views," [Online]. Available: https://docs.oracle.com/cd/
E11882_01/server.112/e40540/datadict.htm.

10. R. H. L. Chiang, T. M. Barron and¬ V. C. Storey,
"Reverse engineering of relational databases: Extraction of an
EER model from a relational database," Data & Knowledge
Engineering, 1994.htm.

11. J.-L. Hainaut, J. Henrard, D. Roland, J.-M. Hick and
V. Englebert, "Database Reverse Engineering," Encyclopedia
of Database Systems, pp. 723-728, 2009.

12. Microsoft, "Microsoft SQL Server Product Samples:
Database", [Online]. Available: https://msftdbprodsamples.
codeplex.com/.

13. Microsoft, "AdventureWorks Data Dictionary,"
[Online]. Available: https://technet.microsoft.com/en-us/
library/ms124438(v=sql.100).aspx.

	Metadata Enrichment for Automatic Data Entry Based on Relational Data Models
	Abstract
	I. INTRODUCTION
	II. RELATED WORKS
	III. A SAMPLE DATA MODEL FOR DATA ENTRY
	IV. EXTRACTION OF THE INITIAL ELEMENTS OF METADATA
	V. METADATA ENRICHMENT
	General and common requirements
	Specialization of elements
	Higher level relationships
	More complicated requirements
	Generic designs in metadata
	Model customization

	VI. INITIALIZATION OF CONSTRUCTS
	VII. SOLUTION IN PRACTICE
	VIII. CONCLUSION
	REFERENCES

